Related
Please share the difference between homonyms and synonyms in data science with examples.
Synonyms for concepts:
When you determine that two concepts are synonyms (say, sofa and couch), you use the class expression owl:equivalentClass. The entailment here is that any instance that was a member of class sofa is now also a member of class couch and vice versa. One of the nice things about this approach is that "context" of this equivalence is automatically scoped to the ontology in which you make the equivalence statement. If you had a very small mapping ontology between a furniture ontology and an interior decorating ontology, you could say in the map that these two are equivalent. In another situation if you needed to retain the (subtle) difference between a couch and a sofa, you do that by merely not including the mapping ontology that declared them equivalent.
Homonyms for concepts:
As Led Zeppelin says, "and you know sometimes words have two meaningsā¦" What happens when a "word" has two meanings is that we have what WordNet would call "word senses." In a particular language, a set of characters may represent more than one concept. One example is the English word "mole," for which WordNet has 6 word senses. The Semantic Web approach is to give each its own namespace; for instance, I might refer to the counterspy mole as cia:mole and the burrowing rodent as the mammal:mole. (These are shortened qnames for what would be full namespace names.) The nice thing about this is, if the CIA ever needed to refer to the rodent they could unambiguously refer to mammal:mole.
Credit
Homonyms- are words that have the same sound but have different in meaning.
2. Synonyms- are words that have the same or almost the same meaning.
Homonyms
Machine learning algorithms are now the subject of ethical debate. Bias, in layman's terms, is a pre-formed view created before facts are known. It applies to an estimating procedure's proclivity to provide estimations or predictions that are, on average, off goal in machine learning and data mining.
A policy's strength can be measured in a variety of ways, including confidence. "Decision trees" are diagrams that show how decisions are being made and what consequences are available. Rescale a statistic to match the scale of other variables in the model to normalise it.
Confidence is a statistician's metric for determining how reliable a sample is (we are 95 percent confident that the average blood sugar in the group lies between X and Y, based on a sample of N patients). Decision tree algorithms are methods that divide data across pieces that are becoming more and more homogeneous in terms of the outcome measure as they advance.
A graph is a graphical representation of data that statisticians call plots and charts. A graph seems to be an information structure that contains the ties and links among items, according to computer programmers. The act of arranging relational databases and their columns such that table relationships are consistent is known as normalisation.
Synonyms
Statisticians use the terms record, instance, sample, or example to describe their data. In computer science and machine learning, this can be called an attribute, input variable, or feature. The term "estimation" is also used, though its use is generally limited to numeric outcomes.
Statisticians call the non-time-series data format a record, or record. In statistics, estimation more often refers to the use of a sample statistic to measure something. Predictive modelling involves developing aggregations of low-level predictors into more informative "features".
The spreadsheet format, in which each column is still a variable, so each row is a record, is perhaps the most common non-time-series data type. Modeling in machine learning and artificial intelligence often begins with some very low-level prediction data.
Business case:
Forecasting fuel consumption at site.
Say fuel consumption C, is dependent on various factors x1,x2,...xn. So mathematically speaking, C = F{x1,x2,...xn}. I do not have any equation to put this.
I do have historical dataset from where I can get a correlation of C to x1,x2 .. etc. C,x1,x2,.. are all quantitative. Finding out the correlation seems tough for a person like me with limited statistical knowledge, for a n variable equation.
So, I was thinking of employing some supervised machine learning techniques for the same. I will train a classifier with the historic data to get a prediction for the next consumption.
Question: Am I thinking in the right way?
Question: If this is correct, my system should be an evolving one. So the more real data I am going to feed to the system, that would evolve my model to make a better prediction the next time. Is this a correct understanding?
If the above the statements are true, does the AdaptiveLogisticRegression algorithm, as present in Mahout, will be of help to me?
Requesting advises from the experts here!
Thanks in advance.
Ok, correlation is not a forecasting model. Correlation simply ascribes some relationship between the datasets based on covariance.
In order to develop a forecasting model, what you need to peform is regression.
The simplest form of regression is linear univariate, where C = F (x1). This can easily be done in Excel. However, you state that C is a function of several variables. For this, you can employ linear multivariate regression. There are standard packages that can perform this (within Excel for example), or you can use Matlab, etc.
Now, we are assuming that there is a "linear" relationship between C and the components of X (the input vector). If the relationship were not linear, then you would need more sophisticated methods (nonlinear regression), which may very well employ machine learning methods.
Finally, some series exhibit auto-correlation. If this is the case, then it may be possible for you to ignore the C = F(x1, x2, x3...xn) relationships, and instead directly model the C function itself using time-series techniques such as ARMA and more complex variants.
I hope this helps,
Srikant Krishna
Specifically, their most recent implementation.
http://www.numenta.com/htm-overview/htm-algorithms.php
Essentially, I'm asking whether non-euclidean relationships, or relationships in patterns that exceed the dimensionality of the inputs, can be effectively inferred by the algorithm in its present state?
HTM uses Euclidean geometry to determine "neighborship" when analyzing patterns. Consistently framed input causes the algorithm to exhibit predictive behavior, and sequence length is practically unlimited. This algorithm learns very well - but I'm wondering whether it has the capacity to infer nonlinear attributes from its input data.
For example, if you input the entire set of texts from Project Gutenberg, it's going to pick up on the set of probabilistic rules that comprise English spelling, grammar, and readily apparent features from the subject matter, such as gender associations with words, and so forth. These are first level "linear" relations, and can be easily defined with probabilities in a logical network.
A nonlinear relation would be an association of assumptions and implications, such as "Time flies like an arrow, fruit flies like a banana." If correctly framed, the ambiguity of the sentence causes a predictive interpretation of the sentence to generate many possible meanings.
If the algorithm is capable of "understanding" nonlinear relations, then it would be able to process the first phrase and correctly identify that "Time flies" is talking about time doing something, and "fruit flies" are a type of bug.
The answer to the question is probably a simple one to find, but I can't decide either way. Does mapping down the input into a uniform, 2d, Euclidean plane preclude the association of nonlinear attributes of the data?
If it doesn't prevent nonlinear associations, my assumption would then be that you could simply vary the resolution, repetition, and other input attributes to automate the discovery of nonlinear relations - in effect, adding a "think harder" process to the algorithm.
From what I understand of HTM's, the structure of layers and columns mimics the structure of the neocortex. See appendix B here: http://www.numenta.com/htm-overview/education/HTM_CorticalLearningAlgorithms.pdf
So the short answer would be that since the brain can understand non-linear phenomenon with this structure, so can an HTM.
Initial, instantaneous sensory input is indeed mapped to 2D regions within an HTM. This does not limit HTM's to dealing with 2D representations any more than a one dimensional string of bits is limited to representing only one dimensional things. It's just a way of encoding stuff so that sparse distributed representations can be formed and their efficiencies can be taken advantage of.
To answer your question about Project Gutenberg, I don't think an HTM will really understand language without first understanding the physical world on which language is based and creates symbols for. That said, this is a very interesting sequence for an HTM, since predictions are only made in one direction, and in a way the understanding of what's happening to the fruit goes backwards. i.e. I see the pattern 'flies like a' and assume the phrase applies to the fruit the same way it did to time. HTM's do group subsequent input (words in this case) together at higher levels, so if you used Fuzzy Grouping (perhaps) as Davide Maltoni has shown to be effective, the two halves of the sentence could be grouped together into the same high level representation and feedback could be sent down linking the two specific sentences. Numenta, to my knowledge has not done too much with feedback messages yet, but it's definitely part of the theory.
The software which runs the HTM is called NuPIC (Numenta Platform for Intelligent Computing). A NuPIC region (representing a region of neocortex) can be configured to either use topology or not, depending on the type of data it's receiving.
If you use topology, the usual setup maps each column to a set of inputs which is centred on the corresponding position in the input space (the connections will be selected randomly according to a probability distribution which favours the centre). The spatial pattern recognising component of NuPIC, known as the Spatial Pooler (SP), will then learn to recognise and represent localised topological features in the data.
There is absolutely no restriction on the "linearity" of the input data which NuPIC can learn. NuPIC can learn sequences of spatial patterns in extremely high-dimensional spaces, and is limited only by the presence (or lack of) spatial and temporal structure in the data.
To answer the specific part of your question, yes, NuPIC can learn non-Euclidean and non-linear relationships, because NuPIC is not, and cannot be modelled by, a linear system. On the other hand, it seems logically impossible to infer relationships of a dimensionality which exceeds that of the data.
The best place to find out about HTM and NuPIC, its Open Source implementation, is at NuPIC's community website (and mailing list).
Yes, It can do non-linear. Basically it is multilayer. And all multilayer neural networks can infer non linear relationships. And I think the neighborship is calculated locally. If it is calcualted locally then globally it can be piece wise non linear for example look at Local Linear Embedding.
Yes HTM uses euclidean geometry to connect synapses, but this is only because it is mimicking a biological system that sends out dendrites and creates connections to other nearby cells that have strong activation at that point in time.
The Cortical Learning Algorithm (CLA) is very good at predicting sequences, so it would be good at determining "Time flies like an arrow, fruit flies like a" and predict "banana" if it has encountered this sequence before or something close to it. I don't think it could infer that a fruit fly is a type of insect unless you trained it on that sequence. Thus the T for Temporal. HTMs are sequence association compressors and retrievers (a form of memory). To get the pattern out of the HTM you play in a sequence and it will match the strongest representation it has encountered to date and predict the next bits of the sequence. It seems to be very good at this and the main application for HTMs right now are predicting sequences and anomalies out of streams of data.
To get more complex representations and more abstraction you would cascade a trained HTMs outputs to another HTMs inputs along with some other new sequence based input to correlate to. I suppose you could wire in some feedback and do some other tricks to combine multiple HTMs, but you would need lots of training on primitives first, just like a baby does, before you will ever get something as sophisticated as associating concepts based on syntax of the written word.
ok guys, dont get silly, htms just copy data into them, if you want a concept, its going to be a group of the data, and then you can have motor depend on the relation, and then it all works.
our cortex, is probably way better, and actually generates new images, but a computer cortex WONT, but as it happens, it doesnt matter, and its very very useful already.
but drawing concepts from a data pool, is tricky, the easiest way to do it is by recording an invarient combination of its senses, and when it comes up, associate everything else to it, this will give you organism or animal like intelligence.
drawing harder relations, is what humans do, and its ad hoc logic, imagine a set explaining the most ad hoc relation, and then it slowly gets more and more specific, until it gets to exact motor programs... and all knowledge you have is controlling your motor, and making relations that trigger pathways in the cortex, and tell it where to go, from the blast search that checks all motor, and finds the most successful trigger.
woah that was a mouthful, but watch out dummies, you wont get no concepts from a predictive assimilator, which is what htm is, unless you work out how people draw relations in the data pool, like a machine, and if you do that, its like a program thats programming itself.
no shit.
I am new to machine learning. I am familiar with SVM , Neural networks and GA. I'd like to know the best technique to learn for classifying pictures and audio. SVM does a decent job but takes a lot of time. Anyone know a faster and better one? Also I'd like to know the fastest library for SVM.
Your question is a good one, and has to do with the state of the art of classification algorithms, as you say, the election of the classifier depends on your data, in the case of images, I can tell you that there is one method called Ada-Boost, read this and this to know more about it, in the other hand, you can find lots of people are doing some researh, for example in Gender Classification of Faces Using Adaboost [Rodrigo Verschae,Javier Ruiz-del-Solar and Mauricio Correa] they say:
"Adaboost-mLBP outperforms all other Adaboost-based methods, as well as baseline methods (SVM, PCA and PCA+SVM)"
Take a look at it.
If your main concern is speed, you should probably take a look at VW and generally at stochastic gradient descent based algorithms for training SVMs.
if the number of features is large in comparison to the number of the trainning examples
then you should go for logistic regression or SVM without kernel
if the number of features is small and the number of training examples is intermediate
then you should use SVN with gaussian kernel
is the number of features is small and the number of training examples is large
use logistic regression or SVM without kernels .
that's according to the stanford ML-class .
For such task you may need to extract features first. Only after that classification is feasible.
I think feature extraction and selection is important.
For image classification, there are a lot of features such as raw pixels, SIFT feature, color, texture,etc. It would be better choose some suitable for your task.
I'm not familiar with audio classication, but there may be some specturm features, like the fourier transform of the signal, MFCC.
The methods used to classify is also important. Besides the methods in the question, KNN is a reasonable choice, too.
Actually, using what feature and method is closely related to the task.
The method mostly depends on problem at hand. There is no method that is always the fastest for any problem. Having said that, you should also keep in mind that once you choose an algorithm for speed, you will start compromising on the accuracy.
For example- since your trying to classify images, there might a lot of features compared to the number of training samples at hand. In such cases, if you go for SVM with kernels, you could end up over fitting with the variance being too high.
So you would want to choose a method that has a high bias and low variance. Using logistic regression or linear SVM are some ways to do it.
You could also use different types of regularizations or techniques such as SVD to remove the features that do not contribute much to your output prediction and have only the most important ones. In other words, choose the features that have little or no correlation between them. Once you do this, you would be able to speed yup your SVM algorithms without sacrificing the accuracy.
Hope it helps.
there are some good techniques in learning machines such as, boosting and adaboost.
One method of classification is the boosting method. This method will iteratively manipulate data which will then be classified by a particular base classifier on each iteration, which in turn will build a classification model. Boosting uses weighting of each data in each iteration where its weight value will change according to the difficulty level of the data to be classified.
While the method adaBoost is one ensamble technique by using loss function exponential function to improve the accuracy of the prediction made.
I think your question is very open ended, and "best classifier for images" will largely depend on the type of image you want to classify. But in general, I suggest you study convulutional neural networks ( CNN ) and transfer learning, currently these are the state of the art techniques for the problem.
check out pre-trained models of cnn based neural networks from pytorch or tensorflow
Related to images I suggest you also study pre-processing of images, pre-processing techniques are very important to highlight some feature of the image and improve the generalization of the classifier.
Do you have an example or an explanation of ANFIS (Adaptive Neuro-Fuzzy Inference System), I am reading that this could be applied to classify some diseases, What do you think about it?
Usually in order to develop a fuzzy system you have to determine the if-then rules, suitable membership functions, and their parameters. This is not always a trivial task, especially the development of correct if-then rules may be time consuming as we first have to "extract" the expert knowledge somehow.
This is where ANFIS comes into play: Under certain circumstances it can automatically determine suitable parameters for the membership functions. This is the case in particular when we already have a set of input and related output variables and values. Like in an artificial neural network the ANFIS system is able to adapt its nodes and connections between them "automatically".
To your question: you could of course create an ANFIS system for your desease classification, as long as you already have input and output data for system training available. But its not necessarily tied to such systems, you can see ANFIS more an approach usable under the mentioned circumstances, than a tool for a specific problem. It all depends on the requirements for the system you want to create, as well as the known (external) preconditions...
Hope that helps!
As Matthias said ANFIS is not mapped to a particular problem, you can use it on the basis of problem requirement. But where to use ANFIS: You can use it with any problem where something is ambiguous.
Actually this is the property of FIS(Fuzzy Inference System). Adaptive come in role as Matthias explained.
For ex. took famous classification problem, classifying a input to any class is not always perfectly determined, it somewhat ambiguous. So there using ANFIS may give better results then other classification algorithms depending upon whether you are able to model the system correctly or not using ANFIS.
But using ANFIS is computationally expensive as compared to other non-fuzzy approches. As to make FIS to perfect model your problem you will add AN part to it. This only make membership function selection adaptive. What about if-then rules. For that you have to do unsupervised rule selection from the complete possible rule base(this is basically a kind of unsupervised clustering problem, where you are trying to group all the rules whose effect would be same).
So far I have found a university 'Monash' that explains (based on the guide of Matlabs's Fuzzy Logic Toolbox) ANFIS.
The fuzzy inference system that we have considered is a model that maps:
input characteristics to input
membership functions
input
membership function to rules
rules
to a set of output characteristics
output characteristics to output
membership functions
the output membership function to a
single-valued output, or, a decision
associated with the output.
Yes it can be used for Diseases Classification.
Since the idea of ANFIS is combine fuzzy system in architecture of ANN. In this case, ANFIS have two main benefit.
first, you can use fuzzy variable which is support for Linguistic variable and it's fit for Diseases's symptoms that are commonly used as system's input (example of input >> pain levels : low, mid, high).
Second, since the architecture is mapped to ANN layers, ANFIS can do training process which aims to create more accurate result (ex : use Backpropagation method).