Concerning efficiency, logical compares vs redundant memory manipulation - c

Which is more taxing? Is enclosing an array element exchange with a conditional if statement to prevent redundant exchanges, like say exchanging with itself, more efficient?
Or is having to check for an only probabilistic condition all the time more inefficient? Say the chance of the special condition increases every invocation.
Say you're developing an algorithm and is trying to check for efficiency: compares or exchanges(like insertion sort).
if(condition)
exchange two elements

This very much depends on your processor architecture, how often this would be done, the throughput its required to handle and the cost of doing said exchanges, in which case, the only viable, real world-answer is: "profile, profile and profile some more".
Basically, if you CPU suffers badly from branch miss-prediction, and the swapping of elements is trivial, then its makes sense to leave out the conditional.
however, if your target CPU architecture can support a fair amount of branch miss-predictions with cause too much stalling or the cost of swapping elements is not trivial, then you might gain performance, depending on the size of said array. you may also benefit from the use of instructions like MOVcc/CMPXCHG, or there non-x86 counterparts (though it this situation, you'd still need a read + compare, but it removes the branching).
With so many variable inputs, it makes sense to profile your code and find where its really bottlenecking, things like VTune or CodeAnalyst will also give you stats on branch miss-prediction so you can see how much it affects your algorithm as a whole.

A useful way to look at any condition-evaluation code to ask, "What is the probability of each outcome?"
For example, it there's a test expression test, and it's probability of being true is 1/100, then on average it is telling you very little, for your investment in processor cycles.
In fact you can quantify that.
If it's true, then the the amount of information you've learned is pretty good.
It is log2(100/1) = 6.6 bits, roughly, but that only happens 1 out of 100 times.
The other 99 times, the amount of information you learn is log2(100/99) = .014 bits.
Practically nothing.
So a condition like that is telling you very little, on average. It's not "working" very hard.
A good way to finish quantifying it is to multiply what you learn from each outcome by the probability of that outcode, and add those up.
That tells you what you learn on average.
That is 6.6 * 1/100 + .014 * 99/100 = .066 + .014 = .08 bits, which is very poor.
(This number is called the entropy of the decision.)
On the other hand, if you have a decision point where each outcome is equally likely, it learns a full 1 bit on average.
In fact that's the most work a binary decision can possibly do.
So if you're worried about the performance of a conditional test (you may not be) try to make it earn its cycles.

Related

Idiomatic way of performance evaluation?

I am evaluating a network+rendering workload for my project.
The program continuously runs a main loop:
while (true) {
doSomething()
drawSomething()
doSomething2()
sendSomething()
}
The main loop runs more than 60 times per second.
I want to see the performance breakdown, how much time each procedure takes.
My concern is that if I print the time interval for every entrance and exit of each procedure,
It would incur huge performance overhead.
I am curious what is an idiomatic way of measuring the performance.
Printing of logging is good enough?
Generally: For repeated short things, you can just time the whole repeat loop. (But microbenchmarking is hard; easy to distort results unless you understand the implications of doing that; for very short things, throughput and latency are different, so measure both separately by making one iteration use the result of the previous or not. Also beware that branch prediction and caching can make something look fast in a microbenchmark when it would actually be costly if done one at a time between other work in a larger program.
e.g. loop unrolling and lookup tables often look good because there's no pressure on I-cache or D-cache from anything else.)
Or if you insist on timing each separate iteration, record the results in an array and print later; you don't want to invoke heavy-weight printing code inside your loop.
This question is way too broad to say anything more specific.
Many languages have benchmarking packages that will help you write microbenchmarks of a single function. Use them. e.g. for Java, JMH makes sure the function under test is warmed up and fully optimized by the JIT, and all that jazz, before doing timed runs. And runs it for a specified interval, counting how many iterations it completes. See How do I write a correct micro-benchmark in Java? for that and more.
Beware common microbenchmark pitfalls
Failure to warm up code / data caches and stuff: page faults within the timed region for touching new memory, or code / data cache misses, that wouldn't be part of normal operation. (Example of noticing this effect: Performance: memset; or example of a wrong conclusion based on this mistake)
Never-written memory (obtained fresh from the kernel) gets all its pages copy-on-write mapped to the same system-wide physical page (4K or 2M) of zeros if you read without writing, at least on Linux. So you can get cache hits but TLB misses. e.g. A large allocation from new / calloc / malloc, or a zero-initialized array in static storage in .bss. Use a non-zero initializer or memset.
Failure to give the CPU time to ramp up to max turbo: modern CPUs clock down to idle speeds to save power, only clocking up after a few milliseconds. (Or longer depending on the OS / HW).
related: on modern x86, RDTSC counts reference cycles, not core clock cycles, so it's subject to the same CPU-frequency variation effects as wall-clock time.
Most integer and FP arithmetic asm instructions (except divide and square root which are already slower than others) have performance (latency and throughput) that doesn't depend on the actual data. Except for subnormal aka denormal floating point being very slow, and in some cases (e.g. legacy x87 but not SSE2) also producing NaN or Inf can be slow.
On modern CPUs with out-of-order execution, some things are too short to truly time meaningfully, see also this. Performance of a tiny block of assembly language (e.g. generated by a compiler for one function) can't be characterized by a single number, even if it doesn't branch or access memory (so no chance of mispredict or cache miss). It has latency from inputs to outputs, but different throughput if run repeatedly with independent inputs is higher. e.g. an add instruction on a Skylake CPU has 4/clock throughput, but 1 cycle latency. So dummy = foo(x) can be 4x faster than x = foo(x); in a loop. Floating-point instructions have higher latency than integer, so it's often a bigger deal. Memory access is also pipelined on most CPUs, so looping over an array (address for next load easy to calculate) is often much faster than walking a linked list (address for next load isn't available until the previous load completes).
Obviously performance can differ between CPUs; in the big picture usually it's rare for version A to be faster on Intel, version B to be faster on AMD, but that can easily happen in the small scale. When reporting / recording benchmark numbers, always note what CPU you tested on.
Related to the above and below points: you can't "benchmark the * operator" in C in general, for example. Some use-cases for it will compile very differently from others, e.g. tmp = foo * i; in a loop can often turn into tmp += foo (strength reduction), or if the multiplier is a constant power of 2 the compiler will just use a shift. The same operator in the source can compile to very different instructions, depending on surrounding code.
You need to compile with optimization enabled, but you also need to stop the compiler from optimizing away the work, or hoisting it out of a loop. Make sure you use the result (e.g. print it or store it to a volatile) so the compiler has to produce it. For an array, volatile double sink = output[argc]; is a useful trick: the compiler doesn't know the value of argc so it has to generate the whole array, but you don't need to read the whole array or even call an RNG function. (Unless the compiler aggressively transforms to only calculate the one output selected by argc, but that tends not to be a problem in practice.)
For inputs, use a random number or argc or something instead of a compile-time constant so your compiler can't do constant-propagation for things that won't be constants in your real use-case. In C you can sometimes use inline asm or volatile for this, e.g. the stuff this question is asking about. A good benchmarking package like Google Benchmark will include functions for this.
If the real use-case for a function lets it inline into callers where some inputs are constant, or the operations can be optimized into other work, it's not very useful to benchmark it on its own.
Big complicated functions with special handling for lots of special cases can look fast in a microbenchmark when you run them repeatedly, especially with the same input every time. In real life use-cases, branch prediction often won't be primed for that function with that input. Also, a massively unrolled loop can look good in a microbenchmark, but in real life it slows everything else down with its big instruction-cache footprint leading to eviction of other code.
Related to that last point: Don't tune only for huge inputs, if the real use-case for a function includes a lot of small inputs. e.g. a memcpy implementation that's great for huge inputs but takes too long to figure out which strategy to use for small inputs might not be good. It's a tradeoff; make sure it's good enough for large inputs (for an appropriate definition of "enough"), but also keep overhead low for small inputs.
Litmus tests:
If you're benchmarking two functions in one program: if reversing the order of testing changes the results, your benchmark isn't fair. e.g. function A might only look slow because you're testing it first, with insufficient warm-up. example: Why is std::vector slower than an array? (it's not, whichever loop runs first has to pay for all the page faults and cache misses; the 2nd just zooms through filling the same memory.)
Increasing the iteration count of a repeat loop should linearly increase the total time, and not affect the calculated time-per-call. If not, then you have non-negligible measurement overhead or your code optimized away (e.g. hoisted out of the loop and runs only once instead of N times).
Vary other test parameters as a sanity check.
For C / C++, see also Simple for() loop benchmark takes the same time with any loop bound where I went into some more detail about microbenchmarking and using volatile or asm to stop important work from optimizing away with gcc/clang.

What is good measure to compare algorithms?

Well I was reading an article about comparing two algorithms by firstly analyzing them.
My teacher taught me that you can analyze algorithm by directly using number of steps for that algorithm.
for ex:
algo printArray(arr[n]){
for(int i=0;i<n;i++){
write arr[i];
}
}
will have complexity of O(N), where N is size of array. and it repeats the for loop for N times.
while
algo printMatrix(arr,m,n){
for(i=0;i<m;i++){
for(j=0;j<n;j++){
write arr[i][j];
}
}
}
will have complexity of O(MXN) ~ O(N^2) when M=N. statements inside for are executed MXN times.
similarly O(log N). if it divides input into 2 equal parts. and So on.
But according to that article:
The Measures Execution Time, Number of statements aren't good for analyzing the algorithm.
because:
Execution Time will be system Dependent and,
Number of statements will vary with the programming language used.
and It states that
Ideal Solution will be to express running time of algorithm as a function of input size N that is f(n).
That confused me a little, How can you calculate running time if you consider execution time as not good measure?
Can experts here please elaborate this?
Thanks in advance.
When you were saying "complexity of O(N)" that is referred to as "Big-O notation" which is the same as the "Ideal Solution" that you mentioned in your post. It is a way of expressing run time as a function of input size.
I think were you got confused was when it said "express running time" - it didn't mean express it in a numerical value (which is what execution time is), it meant express it in Big-O notation. I think you just got tripped up on the terminology.
Execution time is indeed system-dependent, but it also depends on the number of instructions the algorithm executes.
Also, I do not understand how the number of steps is irrelevant, given that algorithms are analyzed as language-agnostic and without paying any attention to whatever features and syntactic-sugars various languages imply.
The one measure of algorithm analysis I have always encountered since I started analyzing algorithms is the number of executed instructions and I fail to see how this metric may be irrelevant.
At the same time, complexity classes are meant as an "order of magnitude" indication of how fast or slow an algorithm is. They are dependent of the number of executed instructions and independent of the system the algorithm runs on, because by definition an elementary operation (such as addition of two numbers) should take constant time, however large or small this "constant" means in practice, therefore complexity classes do not change. The constants inside the expression for the exact complexity function may indeed vary from system to system, but what is actually relevant for algorithm comparison is the complexity class, as only by comparing those can you find out how an algorithm behaves on increasingly large inputs (asymptotically) compared to another algorithm.
Big-O notation waves away constants (both fixed cost and constant multipliers). So any function that takes kn+c operations to complete is (by definition!) O(n), regardless of k and c. This is why it's often better to take real-world measurements (profiling) of your algorithms in action with real data, to see how fast they effectively are.
But execution time, obviously, varies depending on the data set -- if you're trying to come up with a general measure of performance that's not based on a specific usage scenario, then execution time is less valuable (unless you're comparing all algorithms under the same conditions, and even then it's not necessarily fair unless you model the majority of possible scenarios, and not just one).
Big-O notation becomes more valuable as you move to larger data sets. It gives you a rough idea of the performance of an algorithm, assuming reasonable values for k and c. If you have a million numbers you want to sort, then it's safe to say you want to stay away from any O(n^2) algorithm, and try to find a better O(n lg n) algorithm. If you're sorting three numbers, the theoretical complexity bound doesn't matter anymore, because the constants dominate the resources taken.
Note also that while the number of statements a given algorithm can be expressed in varies wildly between programming languages, the number of constant-time steps that need to be executed (at the machine level for your target architecture, which is typically one where integer arithmetic and memory accesses take a fixed amount of time, or more precisely are bounded by a fixed amount of time). It is this bound on the maximum number of fixed-cost steps required by an algorithm that big-O measures, which has no direct relation to actual running time for a given input, yet still describes roughly how much work must be done for a given data set as the size of the set grows.
In comparing algorithms, execution speed is important as well mentioned by others, but other factors like memory space are crucial too.
Memory space also uses order of complexity notation.
Code could sort an array in place using a bubble sort needing only a handful of extra memory O(1). Other methods, though faster, may need O(ln N) memory.
Other more esoteric measures include code complexity like Cyclomatic complexity and Readability
Traditionally, computer science measures algorithm effectivity (speed) by the number of comparisons or sometimes data accesses, using "Big O notation". This is so, because the number of comparisons (and/or data accesses) is a good mathematical model to describe efficiency of certain algorithms, searching and sorting ones in particular, where O(log n) is considered the fastest possible in theory.
This theoretic model has always had several flaws though. It assumes that comparisons (and/or data accessing) are what takes time, and that the time for performing things like function calls and branching/looping is neglectible. This is of course nonsense in the real world.
In the real world, a recursive binary search algorithm might for example be extremely slow compared to a quick & dirty linear search implemented with a plain for loop, because on the given system, the function call overhead is what takes the most time, not the comparisons.
There are a whole lot of things that affect performance. As CPUs evolve, more such things are invented. Nowadays, you might have to consider things like data alignment, instruction pipe-lining, branch prediction, data cache memory, multiple CPU cores and so on. All these technologies make traditional algorithm theory rather irrelevant.
To write the most effective code possible, you need to have a specific system in mind and you need in-depth knowledge about said system. Fortunately, compilers have evolved a lot too, so a lot of the in-depth system knowledge can be left to the person who implements a compiler port for the specific system.
Generally, I think many programmers today spend far too much time pondering about program speed and coming up with "clever things" to get better performance. Back in the days when CPUs were slow and compilers were terrible, such things were very important. But today, a good, modern programmer focus on making the code bug-free, readable, maintainable, re-useable, secure, portable etc. It doesn't matter how fast your program is, if it is a buggy mess of unreadable crap. So deal with performance when the need arises.

Counting FLOPs and size of data and check whether function is memory-bound or cpu-bound

I am going to analyse and optimize some C-Code and therefore I first have to check, whether the functions I want to optimize are memory-bound or cpu-bound. In general I know, how to do this, but I have some questions about counting Floating Point Operations and analysing the size of data, which is used. Look at the following for-loop, which I want to analyse. The values of the array are doubles (that means 8 Byte each):
for(int j=0 ;j<N;j++){
for(int i=1 ;i<Nt;i++){
matrix[j*Nt+i] = matrix[j*Nt+i-1] * mu + matrix[j*Nt+i]*sigma;
}
}
1) How many floating point operations do you count? I thought about 3*(Nt-1)*N... but do I have to count the operations within the arrays, too (matrix[j*Nt+i], which are 2 more FLOP for this array)?
2)How much data is transfered? 2* ((Nt-1)*N)8Byte or 3 ((Nt-1)*N)*8Byte. I mean, every entry of the matrix has to be loaded. After the calculation, the new values is saved to that index of the array (now these is 1load and 1 store). But this value is used for the next calculation. Is another load operations needed therefore, or is this value (matrix[j*Nt+i-1]) already available without a load operation?
Thx a lot!!!
With this type of code, the direct sort of analysis you are proposing to do can be almost completely misleading. The only meaningful information about the performance of the code is actually measuring how fast it runs in practice (benchmarking).
This is because modern compilers and processors are very clever about optimizing code like this, and it will end up executing in a way which is nothing like your straightforward analysis. The compiler will optimize the code, rearranging the individual operations. The processor will itself try to execute the individual sub-operations in parallel and/or pipelined, so that for example computation is occurring while data is being fetched from memory.
It's useful to think about algorithmic complexity, to distinguish between O(n) and O(n²) and so on, but constant factors (like you ask about 2*... or 3*...) are completely moot because they vary in practice depending on lots of details.

Is a pointer indirection more costly than a conditional?

Is a pointer indirection (to fetch a value) more costly than a conditional?
I've observed that most decent compilers can precompute a pointer indirection to varying degrees--possibly removing most branching instructions--but what I'm interested in is whether the cost of an indirection is greater than the cost of a branch point in the generated code.
I would expect that if the data referenced by the pointer is not in a cache at runtime that a cache flush might occur, but I don't have any data to back that.
Does anyone have solid data (or a justifiable opinion) on the matter?
EDIT: Several posters noted that there is no "general case" on the cost of branching: it varies wildly from chip to chip.
If you happen to know of a notable case where branching would be cheaper (with or without branch prediction) than an in-cache indirection, please mention it.
This is very much dependant on the circumstances.
1 How often is the data in cache (L1, L2, L3) or and how often it must be fetched all the way from the RAM?
A fetch from RAM will take around 10-40ns. Of course, that will fill a whole cache-line in little more than that, so if you then use the next few bytes as well, it will definitely not "hurt as bad".
2 What processor is it?
Older Intel Pentium4 were famous for their long pipeline stages, and would take 25-30 clockcycles (~15ns at 2GHz) to "recover" from a branch that was mispredicted.
3 How "predictable" is the condition?
Branch prediction really helps in modern processors, and they can cope quite well with "unpredictable" branches too, but it does hurt a little bit.
4 How "busy" and "dirty" is the cache?
If you have to throw out some dirty data to fill the cache-line, it will take another 15-50ns on top of the "fetch the data in" time.
The indirection itself will be a fast instruction, but of course, if the next instruction uses the data immediately after, you may not be able to execute that instruction immediately - even if the data is in L1 cache.
On a good day (well predicted, target in cache, wind in the right direction, etc), a branch, on the other hand, takes 3-7 cycles.
And finally, of course, the compiler USUALLY knows quite well what works best... ;)
In summary, it's hard to say for sure, and the only way to tell what is better IN YOUR case would be to benchmark alternative solutions. I would thin that an indirect memory access is faster than a jump, but without seeing what code your source compiles to, it's quite hard to say.
It would really depend on your platform. There is no one right answer without looking at the innards of the target CPU. My advice would be to measure it both ways in a test app to see if there is even a noticeable difference.
My gut instinct would be that on a modern CPU, branching through a function pointer and conditional branching both rely on the accuracy of the branch predictor, so I'd expect similar performance from the two techniques if the predictor is presented with similar workloads. (i.e. if it always ends up branching the same way, expect it to be fast; if it's hard to predict, expect it to hurt.) But the only way to know for sure is to run a real test on your target platform.
It depends from processor to processor, but depending on the set of data you're working with, a pipeline flush caused by a mispredicted branch (or badly ordered instructions in some cases) can be more damaging to the speed than a simple cache miss.
In the PowerPC case, for instance, branches not taken (but predicted to be taken) cost about 22 cycles (the time taken to re-fill the pipeline), while a L1 cache miss may cost 600 or so memory cycles. However, if you're going to access contiguous data, it may be better to not branch and let the processor cache-miss your data at the cost of 3 cycles (branches predicted to be taken and taken) for every set of data you're processing.
It all boils down to: test it yourself. The answer is not definitive for all problems.
Since the processor would have to predict the conditional answer in order to plan which instruction has more chances of having to be executed, I would say that the actual cost of the instructions is not important.
Conditional instructions are bad efficiency wise because they make the process flow unpredictable.

Which is faster — sorting or multiplying a small array of elements?

Reading through Cactus Kev's Poker Hand Evaluator, I noticed the following statements:
At first, I thought that I could always simply sort the hand first before passing it to the evaluator; but sorting takes time, and I didn't want to waste any CPU cycles sorting hands. I needed a method that didn't care what order the five cards were given as.
...
After a lot of thought, I had a brainstorm to use prime numbers. I would assign a prime number value to each of the thirteen card ranks... The beauty of this system is that if you multiply the prime values of the rank of each card in your hand, you get a unique product, regardless of the order of the five cards.
...
Since multiplication is one of the fastest calculations a computer can make, we have shaved hundreds of milliseconds off our time had we been forced to sort each hand before evaluation.
I have a hard time believing this.
Cactus Kev represents each card as a 4-byte integer, and evaluates hands by calling eval_5cards( int c1, int c2, int c3, int c4, int c5 ). We could represent cards as one byte, and a poker hand as a 5-byte array. Sorting this 5-byte array to get a unique hand must be pretty fast. Is it faster than his approach?
What if we keep his representation (cards as 4-byte integers)? Can sorting an array of 5 integers be faster than multiplying them? If not, what sort of low-level optimizations can be done to make sorting a small number of elements faster?
Thanks!
Good answers everyone; I'm working on benchmarking the performance of sorting vs multiplication, to get some hard performance statistics.
Of course it depends a lot on the CPU of your computer, but a typical Intel CPU (e.g. Core 2 Duo) can multiply two 32 Bit numbers within 3 CPU clock cycles. For a sort algorithm to beat that, the algorithm needs to be faster than 3 * 4 = 12 CPU cycles, which is a very tight constraint. None of the standard sorting algorithms can do it in less than 12 cycles for sure. Alone the comparison of two numbers will take one CPU cycle, the conditional branch on the result will also take one CPU cycle and whatever you do then will at least take one CPU cycle (swapping two cards will actually take at least 4 CPU cycles). So multiplying wins.
Of course this is not taking the latency into account to fetch the card value from either 1st or 2nd level cache or maybe even memory; however, this latency applies to either case, multiplying and sorting.
Without testing, I'm sympathetic to his argument. You can do it in 4 multiplications, as compared to sorting, which is n log n. Specifically, the optimal sorting network requires 9 comparisons. The evaluator then has to at least look at every element of the sorted array, which is another 5 operations.
Sorting is not intrinsically harder than multiplying numbers. On paper, they're about the same, and you also need a sophisticated multiplication algorithm to make large multiplication competitive with large sort. Moreover, when the proposed multiplication algorithm is feasible, you can also use bucket sort, which is asymptotically faster.
However, a poker hand is not an asymptotic problem. It's just 5 cards and he only cares about one of the 13 number values of the card. Even if multiplication is complicated in principle, in practice it is implemented in microcode and it's incredibly fast. What he's doing works.
Now, if you're interested in the theoretical question, there is also a solution using addition rather than multiplication. There can only be 4 cards of any one value, so you could just as well assign the values 1,5,25,...,5^12 and add them. It still fits in 32-bit arithmetic. There are also other addition-based solutions with other mathematical properties. But it really doesn't matter, because microcoded arithmetic is so much faster than anything else that the computer is doing.
5 elements can be sorted using an optimized decision tree, which is much faster than using a general-purpose sorting algorithm.
However, the fact remains that sorting means lots of branches (as do the comparisons that are necessary afterwards). Branches are really bad for modern pipelined CPU architectures, especially branches that go either way with similar likelihood (thus defeating branch prediction logic). That, much more than the theoretical cost of multiplication vs. comparisons, makes multiplication faster.
But if you could build custom hardware to do the sorting, it might end up faster.
That shouldn't really be relevant, but he is correct. Sorting takes much longer than multiplying.
The real question is what he did with the resulting prime number, and how that was helpful (since factoring it I would expect to take longer than sorting.
It's hard to think of any sorting operation that could be faster than multiplying the same set of numbers. At the processor level, the multiplication is just load, load, multiply, load, multiply, ..., with maybe some manipulation of the accumulator thrown in. It's linear, easily pipelined, no comparisons with the associated branch mis-prediction costs. It should average about 2 instructions per value to be multiplied. Unless the multiply instruction is painfully slow, it's really hard to imagine a faster sort.
One thing worth mentioning is that even if your CPU's multiply instruction is dead slow (or nonexistent...) you can use a lookup table to speed things even further.
After a lot of thought, I had a brainstorm to use prime numbers. I would assign a prime number value to each of the thirteen card ranks... The beauty of this system is that if you multiply the prime values of the rank of each card in your hand, you get a unique product, regardless of the order of the five cards.
That's a example of a non-positional number system.
I can't find the link to the theory. I studied that as part of applied algebra, somewhere around the Euler's totient and encryption. (I can be wrong with terminology as I have studied all that in my native language.)
What if we keep his representation (cards as 4-byte integers)? Can sorting an array of 5 integers be faster than multiplying them?
RAM is an external resource and is generally slower compared to the CPU. Sorting 5 of ints would always have to go to RAM due to swap operations. Add here the overhead of sorting function itself, and multiplication stops looking all that bad.
I think on modern CPUs integer multiplication would pretty much always faster than sorting, since several multiplications can be executed at the same time on different ALUs, while there is only one bus connecting CPU to RAM.
If not, what sort of low-level optimizations can be done to make sorting a small number of elements faster?
5 integers can be sorted quite quickly using bubble sort: qsort would use more memory (for recursion) while well optimized bubble sort would work completely from d-cache.
As others have pointed out, sorting alone isn't quicker than multiplying for 5 values. This ignores, however, the rest of his solution. After disdaining a 5-element sort, he proceeds to do a binary search over an array of 4888 values - at least 12 comparisons, more than the sort ever required!
Note that I'm not saying there's a better solution that involves sorting - I haven't given it enough thought, personally - just that sorting alone is only part of the problem.
He also didn't have to use primes. If he simply encoded the value of each card in 4 bits, he'd need 20 bits to represent a hand, giving a range of 0 to 2^20 = 1048576, about 1/100th of the range produced using primes, and small enough (though still suffering cache coherency issues) to produce a lookup table over.
Of course, an even more interesting variant is to take 7 cards, such as are found in games like Texas Holdem, and find the best 5 card hand that can be made from them.
The multiplication is faster.
Multiplication of any given array will always be faster than sorting the array, presuming the multiplication results in a meaningful result, and the lookup table is irrelevant because the code is designed to evaluate a poker hand so you'd need to do a lookup on the sorted set anyway.
An example of a ready made Texas Hold'em 7- and 5-card evaluator can be found here with documentation and further explained here. All feedback welcome at the e-mail address found therein.
You don't need to sort, and can typically (~97% of the time) get away with just 6 additions and a couple of bit shifts when evaluating 7-card hands. The algo uses a generated look up table which occupies about 9MB of RAM and is generated in a near-instant. Cheap. All of this is done inside of 32-bits, and "inlining" the 7-card evaluator is good for evaluating about 50m randomly generated hands per second on my laptop.
Oh, and multiplication is faster than sorting.

Resources