This is one of many similar ray-triangle intersection algorithms. Every other algorithm I've tested also returns true for these numbers, while the ray clearly does not cross the triangle. The ray goes from y=0 to y=1, while the triangle is flat across y = 2.3.
This is not a winding issue, as it should never return true (winding issues would explain false negatives, not false positives).
All code necessary to reproduce in C or C++ is included here.
What am I missing?
#define vector(a,b,c) \
(a)[0] = (b)[0] - (c)[0]; \
(a)[1] = (b)[1] - (c)[1]; \
(a)[2] = (b)[2] - (c)[2];
#define crossProduct(a,b,c) \
(a)[0] = (b)[1] * (c)[2] - (c)[1] * (b)[2]; \
(a)[1] = (b)[2] * (c)[0] - (c)[2] * (b)[0]; \
(a)[2] = (b)[0] * (c)[1] - (c)[0] * (b)[1];
#define innerProduct(v,q) \
((v)[0] * (q)[0] + \
(v)[1] * (q)[1] + \
(v)[2] * (q)[2])
#define DOT(A,B) \
((A)[0] * (B)[0] + (A)[1] * (B)[1] + (A)[2] * (B)[2])
int intersect3D_RayTriangle( )
{
// dir, w0, w; // ray vectors
double r, a, b; // params to calc ray-plane intersect
// output: Point* I
//Ray R
double origin[3] = {0,0,0};//{orig[0],orig[1],orig[2]};
double direction[3] = {0,1,0};//{dir[0],dir[1],dir[2]};
//Triangle T
double corner1[3] = {3, 2.3, -4 };//{v0[0],v0[1],v0[2]};
double corner2[3] = {-7, 2.3, 2};//{v1[0],v1[1],v1[2]};
double corner3[3] = {3, 2.3, 2};// v2[0],v2[1],v2[2]};
// Vector u, v, n; // triangle vectors
double u[3] = {corner2[0]-corner1[0],corner2[1]-corner1[1],corner2[2]-corner1[2]};
double v[3] = {corner3[0]-corner1[0],corner3[1]-corner1[1],corner3[2]-corner1[2]};
double n[3] = {0,0,0};
double e1[3],e2[3],h[3],q[3];
double f;
// get triangle edge vectors and plane normal
crossProduct(n, u, v);
if ((n[0] == 0) && (n[1] == 0) && (n[2] == 0)) // triangle is wonky
return -1; // do not deal with this case
// dir = R.P1 - R.P0; // ray direction vector
double rayDirection[3] = {direction[0] - origin[0], direction[1] - origin[1], direction[2] - origin[2]};
//w0 = R.P0 - T.V0;
double w0[3] = {origin[0] - corner1[0], origin[1] - corner1[1], origin[2] - corner1[2]};
a = -DOT(n,w0);
b = DOT(n,rayDirection);
if (fabs(b) < __DBL_EPSILON__) { // ray is parallel to triangle plane
if (a == 0) // ray lies in triangle plane
return 2;
else return 0; // ray disjoint from plane
}
// get intersect point of ray with triangle plane
r = a / b;
if (r < 0.0) // ray goes away from triangle
return 0; // => no intersect
// for a segment, also test if (r > 1.0) => no intersect
//*I = R.P0 + r * dir; // intersect point of ray and plane
double I[3] = {0,0,0};
I[0] = origin[0] + rayDirection[0] * r;
I[1] = origin[1] + rayDirection[1] * r;
I[2] = origin[2] + rayDirection[2] * r;
// is I inside T?
double uu, uv, vv, wu, wv, D;
uu = DOT(u,u);
uv = DOT(u,v);
vv = DOT(v,v);
double w[3] = {0,0,0};
w[0] = I[0] - corner1[0];
w[1] = I[1] - corner1[1];
w[2] = I[2] - corner1[2];
wu = DOT(w,u);
wv = DOT(w,v);
D = uv * uv - uu * vv;
// get and test parametric coords
double s, t;
s = (uv * wv - vv * wu) / D;
if (s < 0.0 || s > 1.0) // I is outside T
return 0;
t = (uv * wu - uu * wv) / D;
if (t < 0.0 || (s + t) > 1.0) // I is outside T
return 0;
return 1; // I is in T
}
Code works fine for "rays".
OP expected that that "ray" code functioned like a "segment" one.
Could use the r value to testing for "segment" exclusion.
if (r > 1.0) return 0;
I have a 2D plane in three dimensions: x+y+z=1, and I want to generate random points(x,y,z) on the plane. How can I choose these points so that they are distributed uniformly?
The Problem
As mentioned in the comments, the question was under specified. Despite that it's a interesting question. Because no distribution was given I just picked one. Here is the more precise(?)/general(?) question I will answer:
Suppose I have a plane P in R^3 defined by ax + by + cz = d.
Let c be in the point on P closest to the origin.
How can I uniformly choose a point on P within some radius r of c?
The Algorithm
Let n = (a,b,c). n is the vector normal to P.
direction
Generate any non-zero vector on the plane ax + by + cz = d, call it w. You can do this by taking the cross product of n with any non-zero vector not parallel to n.
Rotate w around n by a random angle in [0,2pi). You can do this using http://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula.
so , now you got direction by normalizing it
direction = direction / direction.magnitude
origin of the ray
If d is 0, we're done. Otherwise:
Calculate c = distance of plane from Vector3(0 , 0 , 0)
according to http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane.
Translate Origin of ray
origin of the ray = vector3.zero + c * ( n )
scale = random.range(min , max)
So the point is
origin_of_the_ray + scale * (direction_)
The Code
Here is my C implementation of the algorithm. I wrote all the vector machinery from scratch so it's a little messy. I have not tested this throughly.
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <math.h>
typedef struct {
double x, y, z;
} vec3;
vec3 vec(double x, double y, double z);
vec3 crossp(vec3 u, vec3 v);
vec3 add(vec3 u, vec3 v);
double dotp(vec3 u, vec3 v);
double norm2(vec3 u);
double norm(vec3 u);
vec3 scale(vec3 u, double s);
vec3 normalize(vec3 u);
void print_vec3(vec3 u);
// generates a random point on the plane ax + by + cz = d
vec3 random_on_plane(double r, double a, double b, double c, double d) {
// The normal vector for the plane
vec3 n = vec(a, b, c);
// create a normal vector on the plane ax + by + cz = 0
// we take any vector not parallel to n
// and find the cross product
vec3 w;
if (n.x == 0)
w = crossp(n, vec(1,0,0));
else
w = crossp(n, vec(0,0,1));
// rotate the vector around n by a random angle
// using Rodrigues' rotation formula
// http://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
double theta = ((double)rand() / RAND_MAX) * M_PI;
vec3 k = normalize(n);
w = add(scale(w, cos(theta)),
scale(crossp(k, w), sin(theta)));
// Scale the vector fill our disk.
// If the radius is zero, generate unit vectors
if (r == 0) {
w = scale(w, r/norm(w));
} else {
double rand_r = ((double)rand() / RAND_MAX) * r;
w = scale(w, rand_r/norm(w));
}
// now translate the vector from ax + by + cz = 0
// to the plane ax + by + cz = d
// http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane
if (d != 0) {
vec3 t = scale(n, d / norm2(n));
w = add(w, t);
}
return w;
}
int main(void) {
int i;
srand(time(NULL));
for (i = 0; i < 100; i++) {
vec3 r = random_on_plane(10, 1, 1, 1, 1);
printf("random v = ");
print_vec3(r);
printf("sum = %f, norm = %f\n", r.x + r.y + r.z, norm(r));
}
}
vec3 vec(double x, double y, double z) {
vec3 u;
u.x = x;
u.y = y;
u.z = z;
return u;
}
vec3 crossp(vec3 u, vec3 v) {
vec3 w;
w.x = (u.y * v.z) - (u.z * v.y);
w.y = (u.z * v.x) - (u.x * v.z);
w.z = (u.x * v.y) - (u.y * v.x);
return w;
}
double dotp(vec3 u, vec3 v) {
return (u.x * v.x) + (u.y * v.y) + (u.z * v.z);
}
double norm2(vec3 u) {
return dotp(u, u);
}
double norm(vec3 u) {
return sqrt(norm2(u));
}
vec3 scale(vec3 u, double s) {
u.x *= s;
u.y *= s;
u.z *= s;
return u;
}
vec3 add(vec3 u, vec3 v) {
u.x += v.x;
u.y += v.y;
u.z += v.z;
return u;
}
vec3 normalize(vec3 u) {
return scale(u, 1/norm(u));
}
void print_vec3(vec3 u) {
printf("%f %f %f\n", u.x, u.y, u.z);
}
Eugene had it almost right: generate two random numbers on the interval [0,1), call them A, B. Then x = min(A,B), y = max(A,B) - x, z = 1 - (x + y). Basically, you pick two points on the line [0,1) and your three coordinates are the three intervals defined by those two points.
I'll first give you a simple algorithm
x = rand()
y = rand()
z = 1 - x - y
Now lets see an implementation of that algorithm
This code will produce any sort of numbers ( +ve or -ve )
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
int main()
{
srand(time(NULL));
int x= ( rand() - rand() ) ;
int y= ( rand() - rand() ) ;
int z=1-x-y;
printf("x=%d y=%d z=%d",x,y,z);
}
just use srand() to seed the random number generator, and use rand() to assign a random number.
If you need to create random numbers with a range, then use rand() % ( maxnumber + 1 ) where maxnumber is the maximum value you want.
If you want all of your numbers to be positive, then try this
int main()
{
srand(time(NULL));
int x, y , z = -1;
while ( z < 0 )
{
x = rand() ;
y = rand() ;
z = 1 - (x + y );
}
printf("x=%d y=%d z=%d",x,y,z);
}
WARNING
the above code might take some time to execute, so don't expect an instant result
I am trying to write a simple ray tracer. The final image should like this: I have read stuff about it and below is what I am doing:
create an empty image (to fill each pixel, via ray tracing)
for each pixel [for each row, each column]
create the equation of the ray emanating from our pixel
trace() ray:
if ray intersects SPHERE
compute local shading (including shadow determination)
return color;
Now, the scene data is like: It sets a gray sphere of radius 1 at (0,0,-3). It sets a white light source at the origin.
2
amb: 0.3 0.3 0.3
sphere
pos: 0.0 0.0 -3.0
rad: 1
dif: 0.3 0.3 0.3
spe: 0.5 0.5 0.5
shi: 1
light
pos: 0 0 0
col: 1 1 1
Mine looks very weird :
//check ray intersection with the sphere
boolean intersectsWithSphere(struct point rayPosition, struct point rayDirection, Sphere sp,float* t){
//float a = (rayDirection.x * rayDirection.x) + (rayDirection.y * rayDirection.y) +(rayDirection.z * rayDirection.z);
// value for a is 1 since rayDirection vector is normalized
double radius = sp.radius;
double xc = sp.position[0];
double yc =sp.position[1];
double zc =sp.position[2];
double xo = rayPosition.x;
double yo = rayPosition.y;
double zo = rayPosition.z;
double xd = rayDirection.x;
double yd = rayDirection.y;
double zd = rayDirection.z;
double b = 2 * ((xd*(xo-xc))+(yd*(yo-yc))+(zd*(zo-zc)));
double c = (xo-xc)*(xo-xc) + (yo-yc)*(yo-yc) + (zo-zc)*(zo-zc) - (radius * radius);
float D = b*b + (-4.0f)*c;
//ray does not intersect the sphere
if(D < 0 ){
return false;
}
D = sqrt(D);
float t0 = (-b - D)/2 ;
float t1 = (-b + D)/2;
//printf("D=%f",D);
//printf(" t0=%f",t0);
//printf(" t1=%f\n",t1);
if((t0 > 0) && (t1 > 0)){
*t = min(t0,t1);
return true;
}
else {
*t = 0;
return false;
}
}
Below is the trace() function:
unsigned char* trace(struct point rayPosition, struct point rayDirection, Sphere * totalspheres) {
struct point tempRayPosition = rayPosition;
struct point tempRayDirection = rayDirection;
float f=0;
float tnear = INFINITY;
boolean sphereIntersectionFound = false;
int sphereIndex = -1;
for(int i=0; i < num_spheres ; i++){
float t = INFINITY;
if(intersectsWithSphere(tempRayPosition,tempRayDirection,totalspheres[i],&t)){
if(t < tnear){
tnear = t;
sphereIntersectionFound = true;
sphereIndex = i;
}
}
}
if(sphereIndex < 0){
//printf("No interesection found\n");
mycolor[0] = 1;
mycolor[1] = 1;
mycolor[2] = 1;
return mycolor;
}
else {
Sphere sp = totalspheres[sphereIndex];
//intersection point
hitPoint[0].x = tempRayPosition.x + tempRayDirection.x * tnear;
hitPoint[0].y = tempRayPosition.y + tempRayDirection.y * tnear;
hitPoint[0].z = tempRayPosition.z + tempRayDirection.z * tnear;
//normal at the intersection point
normalAtHitPoint[0].x = (hitPoint[0].x - totalspheres[sphereIndex].position[0])/ totalspheres[sphereIndex].radius;
normalAtHitPoint[0].y = (hitPoint[0].y - totalspheres[sphereIndex].position[1])/ totalspheres[sphereIndex].radius;
normalAtHitPoint[0].z = (hitPoint[0].z - totalspheres[sphereIndex].position[2])/ totalspheres[sphereIndex].radius;
normalizedNormalAtHitPoint[0] = normalize(normalAtHitPoint[0]);
for(int j=0; j < num_lights ; j++) {
for(int k=0; k < num_spheres ; k++){
shadowRay[0].x = lights[j].position[0] - hitPoint[0].x;
shadowRay[0].y = lights[j].position[1] - hitPoint[0].y;
shadowRay[0].z = lights[j].position[2] - hitPoint[0].z;
normalizedShadowRay[0] = normalize(shadowRay[0]);
//R = 2 * ( N dot L) * N - L
reflectionRay[0].x = - 2 * dot(normalizedShadowRay[0],normalizedNormalAtHitPoint[0]) * normalizedNormalAtHitPoint[0].x +normalizedShadowRay[0].x;
reflectionRay[0].y = - 2 * dot(normalizedShadowRay[0],normalizedNormalAtHitPoint[0]) * normalizedNormalAtHitPoint[0].y +normalizedShadowRay[0].y;
reflectionRay[0].z = - 2 * dot(normalizedShadowRay[0],normalizedNormalAtHitPoint[0]) * normalizedNormalAtHitPoint[0].z +normalizedShadowRay[0].z;
normalizeReflectionRay[0] = normalize(reflectionRay[0]);
struct point temp;
temp.x = hitPoint[0].x + (shadowRay[0].x * 0.0001 );
temp.y = hitPoint[0].y + (shadowRay[0].y * 0.0001);
temp.z = hitPoint[0].z + (shadowRay[0].z * 0.0001);
struct point ntemp = normalize(temp);
float f=0;
struct point tempHitPoint;
tempHitPoint.x = hitPoint[0].x + 0.001;
tempHitPoint.y = hitPoint[0].y + 0.001;
tempHitPoint.z = hitPoint[0].z + 0.001;
if(intersectsWithSphere(hitPoint[0],ntemp,totalspheres[k],&f)){
// if(intersectsWithSphere(tempHitPoint,ntemp,totalspheres[k],&f)){
printf("In shadow\n");
float r = lights[j].color[0];
float g = lights[j].color[1];
float b = lights[j].color[2];
mycolor[0] = ambient_light[0] + r;
mycolor[1] = ambient_light[1] + g;
mycolor[2] = ambient_light[2] + b;
return mycolor;
} else {
// point is not is shadow , use Phong shading to determine the color of the point.
//I = lightColor * (kd * (L dot N) + ks * (R dot V) ^ sh)
//(for each color channel separately; note that if L dot N < 0, you should clamp L dot N to zero; same for R dot V)
float x = dot(normalizedShadowRay[0],normalizedNormalAtHitPoint[0]);
if(x < 0)
x = 0;
V[0].x = - rayDirection.x;
V[0].x = - rayDirection.y;
V[0].x = - rayDirection.z;
normalizedV[0] = normalize(V[0]);
float y = dot(normalizeReflectionRay[0],normalizedV[0]);
if(y < 0)
y = 0;
float ar = totalspheres[sphereIndex].color_diffuse[0] * x;
float br = totalspheres[sphereIndex].color_specular[0] * pow(y,totalspheres[sphereIndex].shininess);
float r = lights[j].color[0] * (ar+br);
//----------------------------------------------------------------------------------
float bg = totalspheres[sphereIndex].color_specular[1] * pow(y,totalspheres[sphereIndex].shininess);
float ag = totalspheres[sphereIndex].color_diffuse[1] * x;
float g = lights[j].color[1] * (ag+bg);
//----------------------------------------------------------------------------------
float bb = totalspheres[sphereIndex].color_specular[2] * pow(y,totalspheres[sphereIndex].shininess);
float ab = totalspheres[sphereIndex].color_diffuse[2] * x;
float b = lights[j].color[2] * (ab+bb);
mycolor[0] = r + ambient_light[0];
mycolor[1] = g + ambient_light[1];
mycolor[2] = b+ ambient_light[2];
return mycolor;
}
}
}
}
}
The code calling trace() looks like :
void draw_scene()
{
//Aspect Ratio
double a = WIDTH / HEIGHT;
double angel = tan(M_PI * 0.5 * fov/ 180);
ray[0].x = 0.0;
ray[0].y = 0.0;
ray[0].z = 0.0;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
unsigned int x,y;
float sx, sy;
for(x=0;x < WIDTH;x++)
{
glPointSize(2.0);
glBegin(GL_POINTS);
for(y=0;y < HEIGHT;y++)
{
sx = (((x + 0.5) / WIDTH) * 2.0 ) - 1;
sy = (((y + 0.5) / HEIGHT) * 2.0 ) - 1;;
sx = sx * angel * a;
sy = sy * angel;
//set ray direction
ray[1].x = sx;
ray[1].y = sy;
ray[1].z = -1;
normalizedRayDirection[0] = normalize(ray[1]);
unsigned char* color = trace(ray[0],normalizedRayDirection[0],spheres);
unsigned char x1 = color[0] * 255;
unsigned char y1 = color[1] * 255;
unsigned char z1 = color[2] * 255;
plot_pixel(x,y,x1 %256,y1%256,z1%256);
}
glEnd();
glFlush();
}
}
There could be many, many problems with the code/understanding.
I haven't taken the time to understand all your code, and I'm definitely not a graphics expert, but I believe the problem you have is called "surface acne". In this case it's probably happening because your shadow rays are intersecting with the object itself. What I did in my code to fix this is add epsilon * hitPoint.normal to the shadow ray origin. This effectively moves the ray away from your object a bit, so they don't intersect.
The value I'm using for epsilon is the square root of 1.19209290 * 10^-7, as that is the square root of a constant called EPSILON that is defined in the particular language I'm using.
What possible reason do you have for doing this (in the non-shadow branch of trace (...)):
V[0].x = - rayDirection.x;
V[0].x = - rayDirection.y;
V[0].x = - rayDirection.z;
You might as well comment out the first two computations since you write the results of each to the same component. I think you probably meant to do this instead:
V[0].x = - rayDirection.x;
V[0].y = - rayDirection.y;
V[0].z = - rayDirection.z;
That said, you should also avoid using GL_POINT primitives to cover a 2x2 pixel quad. Point primitives are not guaranteed to be square, and OpenGL implementations are not required to support any size other than 1.0. In practice, most support 1.0 - ~64.0 but glDrawPixels (...) is a much better way of writing 2x2 pixels, since it skips primitive assembly and the above mentioned limitations. You are using immediate mode in this example anyway, so glRasterPos (...) and glDrawPixels (...) are still a valid approach.
It seems you are implementing the formula here, but you deviate at the end from the direction the article takes.
First the article warns that D & b can be very close in value, so that -b + D gets you a very limited number. They suggest an alternative.
Also, you are testing that both t0 & t1 > 0. This doesn't have to be true for you to hit the sphere, you could be inside of it (though you obviously should not be in your test scene).
Finally, I would add a test at the beginning to confirm that the direction vector is normalized. I've messed that up more than once in my renderers.
I am using Bresenham's circle algorithm for fast circle drawing. However, I also want to (at the request of the user) draw a filled circle.
Is there a fast and efficient way of doing this? Something along the same lines of Bresenham?
The language I am using is C.
Having read the Wikipedia page on Bresenham's (also 'Midpoint') circle algorithm, it would appear that the easiest thing to do would be to modify its actions, such that instead of
setPixel(x0 + x, y0 + y);
setPixel(x0 - x, y0 + y);
and similar, each time you instead do
lineFrom(x0 - x, y0 + y, x0 + x, y0 + y);
That is, for each pair of points (with the same y) that Bresenham would you have you plot, you instead connect with a line.
Just use brute force. This method iterates over a few too many pixels, but it only uses integer multiplications and additions. You completely avoid the complexity of Bresenham and the possible bottleneck of sqrt.
for(int y=-radius; y<=radius; y++)
for(int x=-radius; x<=radius; x++)
if(x*x+y*y <= radius*radius)
setpixel(origin.x+x, origin.y+y);
Here's a C# rough guide (shouldn't be that hard to get the right idea for C) - this is the "raw" form without using Bresenham to eliminate repeated square-roots.
Bitmap bmp = new Bitmap(200, 200);
int r = 50; // radius
int ox = 100, oy = 100; // origin
for (int x = -r; x < r ; x++)
{
int height = (int)Math.Sqrt(r * r - x * x);
for (int y = -height; y < height; y++)
bmp.SetPixel(x + ox, y + oy, Color.Red);
}
bmp.Save(#"c:\users\dearwicker\Desktop\circle.bmp");
You can use this:
void DrawFilledCircle(int x0, int y0, int radius)
{
int x = radius;
int y = 0;
int xChange = 1 - (radius << 1);
int yChange = 0;
int radiusError = 0;
while (x >= y)
{
for (int i = x0 - x; i <= x0 + x; i++)
{
SetPixel(i, y0 + y);
SetPixel(i, y0 - y);
}
for (int i = x0 - y; i <= x0 + y; i++)
{
SetPixel(i, y0 + x);
SetPixel(i, y0 - x);
}
y++;
radiusError += yChange;
yChange += 2;
if (((radiusError << 1) + xChange) > 0)
{
x--;
radiusError += xChange;
xChange += 2;
}
}
}
Great ideas here!
Since I'm at a project that requires many thousands of circles to be drawn, I have evaluated all suggestions here (and improved a few by precomputing the square of the radius):
http://quick-bench.com/mwTOodNOI81k1ddaTCGH_Cmn_Ag
The Rev variants just have x and y swapped because consecutive access along the y axis are faster with the way my grid/canvas structure works.
The clear winner is Daniel Earwicker's method ( DrawCircleBruteforcePrecalc ) that precomputes the Y value to avoid unnecessary radius checks. Somewhat surprisingly that negates the additional computation caused by the sqrt call.
Some comments suggest that kmillen's variant (DrawCircleSingleLoop) that works with a single loop should be very fast, but it's the slowest here. I assume that is because of all the divisions. But perhaps I have adapted it wrong to the global variables in that code. Would be great if someone takes a look.
EDIT: After looking for the first time since college years at some assembler code, I managed find that the final additions of the circle's origin are a culprit.
Precomputing those, I improved the fastest method by a factor of another 3.7-3.9 according to the bench!
http://quick-bench.com/7ZYitwJIUgF_OkDUgnyMJY4lGlA
Amazing.
This being my code:
for (int x = -radius; x < radius ; x++)
{
int hh = (int)std::sqrt(radius_sqr - x * x);
int rx = center_x + x;
int ph = center_y + hh;
for (int y = center_y-hh; y < ph; y++)
canvas[rx][y] = 1;
}
I like palm3D's answer. For being brute force, this is an amazingly fast solution. There are no square root or trigonometric functions to slow it down. Its one weakness is the nested loop.
Converting this to a single loop makes this function almost twice as fast.
int r2 = r * r;
int area = r2 << 2;
int rr = r << 1;
for (int i = 0; i < area; i++)
{
int tx = (i % rr) - r;
int ty = (i / rr) - r;
if (tx * tx + ty * ty <= r2)
SetPixel(x + tx, y + ty, c);
}
This single loop solution rivals the efficiency of a line drawing solution.
int r2 = r * r;
for (int cy = -r; cy <= r; cy++)
{
int cx = (int)(Math.Sqrt(r2 - cy * cy) + 0.5);
int cyy = cy + y;
lineDDA(x - cx, cyy, x + cx, cyy, c);
}
palm3D's brute-force algorithm I found to be a good starting point. This method uses the same premise, however it includes a couple of ways to skip checking most of the pixels.
First, here's the code:
int largestX = circle.radius;
for (int y = 0; y <= radius; ++y) {
for (int x = largestX; x >= 0; --x) {
if ((x * x) + (y * y) <= (circle.radius * circle.radius)) {
drawLine(circle.center.x - x, circle.center.x + x, circle.center.y + y);
drawLine(circle.center.x - x, circle.center.x + x, circle.center.y - y);
largestX = x;
break; // go to next y coordinate
}
}
}
Next, the explanation.
The first thing to note is that if you find the minimum x coordinate that is within the circle for a given horizontal line, you immediately know the maximum x coordinate.
This is due to the symmetry of the circle. If the minimum x coordinate is 10 pixels ahead of the left of the bounding box of the circle, then the maximum x is 10 pixels behind the right of the bounding box of the circle.
The reason to iterate from high x values to low x values, is that the minimum x value will be found with less iterations. This is because the minimum x value is closer to the left of the bounding box than the centre x coordinate of the circle for most lines, due to the circle being curved outwards, as seen on this image
The next thing to note is that since the circle is also symmetric vertically, each line you find gives you a free second line to draw, each time you find a line in the top half of the circle, you get one on the bottom half at the radius-y y coordinate. Therefore, when any line is found, two can be drawn and only the top half of the y values needs to be iterated over.
The last thing to note is that is that if you start from a y value that is at the centre of the circle and then move towards the top for y, then the minimum x value for each next line must be closer to the centre x coordinate of the circle than the last line. This is also due to the circle curving closer towards the centre x value as you go up the circle. Here is a visual on how that is the case.
In summary:
If you find the minimum x coordinate of a line, you get the maximum x coordinate for free.
Every line you find to draw on the top half of the circle gives you a line on the bottom half of the circle for free.
Every minimum x coordinate has to be closer to the centre of the circle than the previous x coordinate for each line when iterating from the centre y coordinate to the top.
You can also store the value of (radius * radius), and also (y * y) instead of calculating them
multiple times.
Here's how I'm doing it:
I'm using fixed point values with two bits precision (we have to manage half points and square values of half points)
As mentionned in a previous answer, I'm also using square values instead of square roots.
First, I'm detecting border limit of my circle in a 1/8th portion of the circle. I'm using symetric of these points to draw the 4 "borders" of the circle. Then I'm drawing the square inside the circle.
Unlike the midpoint circle algorith, this one will work with even diameters (and with real numbers diameters too, with some little changes).
Please forgive me if my explanations were not clear, I'm french ;)
void DrawFilledCircle(int circleDiameter, int circlePosX, int circlePosY)
{
const int FULL = (1 << 2);
const int HALF = (FULL >> 1);
int size = (circleDiameter << 2);// fixed point value for size
int ray = (size >> 1);
int dY2;
int ray2 = ray * ray;
int posmin,posmax;
int Y,X;
int x = ((circleDiameter&1)==1) ? ray : ray - HALF;
int y = HALF;
circlePosX -= (circleDiameter>>1);
circlePosY -= (circleDiameter>>1);
for (;; y+=FULL)
{
dY2 = (ray - y) * (ray - y);
for (;; x-=FULL)
{
if (dY2 + (ray - x) * (ray - x) <= ray2) continue;
if (x < y)
{
Y = (y >> 2);
posmin = Y;
posmax = circleDiameter - Y;
// Draw inside square and leave
while (Y < posmax)
{
for (X = posmin; X < posmax; X++)
setPixel(circlePosX+X, circlePosY+Y);
Y++;
}
// Just for a better understanding, the while loop does the same thing as:
// DrawSquare(circlePosX+Y, circlePosY+Y, circleDiameter - 2*Y);
return;
}
// Draw the 4 borders
X = (x >> 2) + 1;
Y = y >> 2;
posmax = circleDiameter - X;
int mirrorY = circleDiameter - Y - 1;
while (X < posmax)
{
setPixel(circlePosX+X, circlePosY+Y);
setPixel(circlePosX+X, circlePosY+mirrorY);
setPixel(circlePosX+Y, circlePosY+X);
setPixel(circlePosX+mirrorY, circlePosY+X);
X++;
}
// Just for a better understanding, the while loop does the same thing as:
// int lineSize = circleDiameter - X*2;
// Upper border:
// DrawHorizontalLine(circlePosX+X, circlePosY+Y, lineSize);
// Lower border:
// DrawHorizontalLine(circlePosX+X, circlePosY+mirrorY, lineSize);
// Left border:
// DrawVerticalLine(circlePosX+Y, circlePosY+X, lineSize);
// Right border:
// DrawVerticalLine(circlePosX+mirrorY, circlePosY+X, lineSize);
break;
}
}
}
void DrawSquare(int x, int y, int size)
{
for( int i=0 ; i<size ; i++ )
DrawHorizontalLine(x, y+i, size);
}
void DrawHorizontalLine(int x, int y, int width)
{
for(int i=0 ; i<width ; i++ )
SetPixel(x+i, y);
}
void DrawVerticalLine(int x, int y, int height)
{
for(int i=0 ; i<height ; i++ )
SetPixel(x, y+i);
}
To use non-integer diameter, you can increase precision of fixed point or use double values.
It should even be possible to make a sort of anti-alias depending on the difference between dY2 + (ray - x) * (ray - x) and ray2 (dx² + dy² and r²)
If you want a fast algorithm, consider drawing a polygon with N sides, the higher is N, the more precise will be the circle.
I would just generate a list of points and then use a polygon draw function for the rendering.
It may not be the algorithm yo are looking for and not the most performant one,
but I always do something like this:
void fillCircle(int x, int y, int radius){
// fill a circle
for(int rad = radius; rad >= 0; rad--){
// stroke a circle
for(double i = 0; i <= PI * 2; i+=0.01){
int pX = x + rad * cos(i);
int pY = y + rad * sin(i);
drawPoint(pX, pY);
}
}
}
The following two methods avoid the repeated square root calculation by drawing multiple parts of the circle at once and should therefore be quite fast:
void circleFill(const size_t centerX, const size_t centerY, const size_t radius, color fill) {
if (centerX < radius || centerY < radius || centerX + radius > width || centerY + radius > height)
return;
const size_t signedRadius = radius * radius;
for (size_t y = 0; y < radius; y++) {
const size_t up = (centerY - y) * width;
const size_t down = (centerY + y) * width;
const size_t halfWidth = roundf(sqrtf(signedRadius - y * y));
for (size_t x = 0; x < halfWidth; x++) {
const size_t left = centerX - x;
const size_t right = centerX + x;
pixels[left + up] = fill;
pixels[right + up] = fill;
pixels[left + down] = fill;
pixels[right + down] = fill;
}
}
}
void circleContour(const size_t centerX, const size_t centerY, const size_t radius, color stroke) {
if (centerX < radius || centerY < radius || centerX + radius > width || centerY + radius > height)
return;
const size_t signedRadius = radius * radius;
const size_t maxSlopePoint = ceilf(radius * 0.707106781f); //ceilf(radius * cosf(TWO_PI/8));
for (size_t i = 0; i < maxSlopePoint; i++) {
const size_t depth = roundf(sqrtf(signedRadius - i * i));
size_t left = centerX - depth;
size_t right = centerX + depth;
size_t up = (centerY - i) * width;
size_t down = (centerY + i) * width;
pixels[left + up] = stroke;
pixels[right + up] = stroke;
pixels[left + down] = stroke;
pixels[right + down] = stroke;
left = centerX - i;
right = centerX + i;
up = (centerY - depth) * width;
down = (centerY + depth) * width;
pixels[left + up] = stroke;
pixels[right + up] = stroke;
pixels[left + down] = stroke;
pixels[right + down] = stroke;
}
}
This was used in my new 3D printer Firmware, and it is proven the
fastest way for filled circle of a diameter from 1 to 43 pixel. If
larger is needed, the following memory block(or array) should be
extended following a structure I wont waste my time explaining...
If you have questions, or need larger diameter than 43, contact me, I
will help you drawing the fastest and perfect filled circles... or
Bresenham's circle drawing algorithm can be used above those
diameters, but having to fill the circle after, or incorporating the
fill into Bresenham's circle drawing algorithm, will only result in
slower fill circle than my code. I already benchmarked the different
codes, my solution is 4 to 5 times faster. As a test I have been
able to draw hundreds of filled circles of different size and colors
on a BigTreeTech tft24 1.1 running on a 1-core 72 Mhz cortex-m4
https://www.youtube.com/watch?v=7_Wp5yn3ADI
// this must be declared anywhere, as static or global
// as long as the function can access it !
uint8_t Rset[252]={
0,1,1,2,2,1,2,3,3,1,3,3,4,4,2,3,4,5,5,5,2,4,5,5,
6,6,6,2,4,5,6,6,7,7,7,2,4,5,6,7,7,8,8,8,2,5,6,7,
8,8,8,9,9,9,3,5,6,7,8,9,9,10,10,10,10,3,5,7,8,9,
9,10,10,11,11,11,11,3,5,7,8,9,10,10,11,11,12,12,
12,12,3,6,7,9,10,10,11,12,12,12,13,13,13,13,3,6,
8,9,10,11,12,12,13,13,13,14,14,14,14,3,6,8,9,10,
11,12,13,13,14,14,14,15,15,15,15,3,6,8,10,11,12,
13,13,14,14,15,15,15,16,16,16,16,4,7,8,10,11,12,
13,14,14,15,16,16,16,17,17,17,17,17,4,7,9,10,12,
13,14,14,15,16,16,17,17,17,18,18,18,18,18,4,7,9,
11,12,13,14,15,16,16,17,17,18,18,18,19,19,19,19,
19,7,9,11,12,13,15,15,16,17,18,18,19,19,20,20,20,
20,20,20,20,20,7,9,11,12,14,15,16,17,17,18,19,19
20,20,21,21,21,21,21,21,21,21};
// SOLUTION 1: (the fastest)
void FillCircle_v1(uint16_t x, uint16_t y, uint16_t r)
{
// all needed variables are created and set to their value...
uint16_t radius=(r<1) ? 1 : r ;
if (radius>21 ) {radius=21; }
uint16_t diam=(radius*2)+1;
uint16_t ymir=0, cur_y=0;
radius--; uint16_t target=(radius*radius+3*radius)/2; radius++;
// this part draws directly into the ILI94xx TFT buffer mem.
// using pointers..2 versions where you can draw
// pixels and lines with coordinates will follow
for (uint16_t yy=0; yy<diam; yy++)
{ ymir= (yy<=radius) ? yy+target : target+diam-(yy+1);
cur_y=y-radius+yy;
uint16_t *pixel=buffer_start_addr+x-Rset[ymir]+cur_y*buffer_width;
for (uint16_t xx= 0; xx<=(2*Rset[ymir]); xx++)
{ *pixel++ = CANVAS::draw_color; }}}
// SOLUTION 2: adaptable to any system that can
// add a pixel at a time: (drawpixel or add_pixel,etc_)
void FillCircle_v2(uint16_t x, uint16_t y, uint16_t r)
{
// all needed variables are created and set to their value...
uint16_t radius=(r<1) ? 1 : r ;
if (radius>21 ) {radius=21; }
uint16_t diam=(radius*2)+1;
uint16_t ymir=0, cur_y=0;
radius--; uint16_t target=(radius*radius+3*radius)/2; radius++;
for (uint16_t yy=0; yy<diam; yy++)
{ ymir= (yy<=radius) ? yy+target : target+diam-(yy+1);
cur_y=y-radius+yy;
uint16_t Pixel_x=x-Rset[ymir];
for (uint16_t xx= 0; xx<=(2*Rset[ymir]); xx++)
{ //use your add_pixel or draw_pixel here
// using those coordinates:
// X position will be... (Pixel_x+xx)
// Y position will be... (cur_y)
// and add those 3 brackets at the end
}}}
// SOLUTION 3: adaptable to any system that can draw fast
// horizontal lines
void FillCircle_v3(uint16_t x, uint16_t y, uint16_t r)
{
// all needed variables are created and set to their value...
uint16_t radius=(r<1) ? 1 : r ;
if (radius>21 ) {radius=21; }
uint16_t diam=(radius*2)+1;
uint16_t ymir=0, cur_y=0;
radius--; uint16_t target=(radius*radius+3*radius)/2; radius++;
for (uint16_t yy=0; yy<diam; yy++)
{ ymir= (yy<=radius) ? yy+target : target+diam-(yy+1);
cur_y=y-radius+yy;
uint16_t start_x=x-Rset[ymir];
uint16_t width_x=2*Rset[ymir];
// ... then use your best drawline function using those values:
// start_x: position X of the start of the line
// cur_y: position Y of the current line
// width_x: length of the line
// if you need a 2nd coordinate then :end_x=start_x+width_x
// and add those 2 brackets after !!!
}}
I did pretty much what AlegGeorge did but I changed three lines. I thought that this is faster but these are the results am I doing anything wrong? my function is called DrawBruteforcePrecalcV4. here's the code:
for (int x = 0; x < radius ; x++) // Instead of looping from -radius to radius I loop from 0 to radius
{
int hh = (int)std::sqrt(radius_sqr - x * x);
int rx = center_x + x;
int cmx = center_x - x;
int ph = center_y+hh;
for (int y = center_y-hh; y < ph; y++)
{
canvas[rx][y] = 1;
canvas[cmx][y] = 1;
}
}