input value to create binary search trees - c

On binary search tree,If I give input as "2,1,3,4,5" the tree will be like
2
/\
1 3
\
4
\
5
But with input like "5,2,1,3,7,6,8".
5
/ \
2 7
/\ /\
1 3 6 8
So my question , how to produce inputs so that above like balanced tree structure is obtained. (I don't want to use AVL trees) .Do we have tricks to sort or re-arrange numbers in proper way and produce them as input.I'm looking for inputs so that tree can can created height upto 10.

One very simple way to guarantee a balanced tree is to sort the input, then recursively insert the values as follows:
Insert the middle of the whole array.
Recursively insert the left and right halves of the array using this procedure.
For example, in your case of the values 1 - 8 with 5 removed, you would sort the value as
1 2 3 5 6 7 8
You would then insert 5, then recursively apply this procedure to the two halves. On the half 1 2 3, you would insert 2, then recursively insert 1 and 3. This gives the ordering so far as
5 2 1 3
Now, you recursively process the other half, 6 7 8, which inserts 7 and then recursively inserts 6 and 8. Overall, this produces the ordering
5 2 1 3 7 6 8
which is precisely the ordering you came up with earlier in your post.
This procedure runs in O(n lg n) time. I'm not positive that this is optimal, so if someone else wants to post a better answer I'd love to see it.

Related

correctness of fast small order statistic algorithm for odd-length array

Problem 9-3 of the textbook Intro to Algorithms (CLRS) describes a fast O(n) algorithm for finding the k-th order statistic (k-th element in the array when sorted) of a length-n array, for the particular case that k is much smaller than n. I am not certain about the correctness of this algorithm when n is odd, and want to see a way to prove that it is correct.
The basic idea is that we first split the array into two halves, the first with floor(n/2) elements, and the second with ceil(n/2) elements. Then, we "partner" each element in the first half with the corresponding element in the second half. When n is odd this leaves a remaining unpartnered element.
For each pair of partners, we make sure that the left partner is >= the right partner, swapping the two if not. Then, recursively find the k-th order statistic of the second half, mirroring any swaps made in the second half with corresponding swaps in the first half. After this, the k-th order statistic of the entire array must be either in the first k elements in the first half, or the first k elements in the second half.
My confusion comes from the case when the array length n is odd, and there is a lone element in the second half that has no partner. Since the recursion is performed on the second half, consisting of the last ceil(n/2) elements of the array, including the lone partnerless last element, and we are supposed to mirror all swaps made in second half with swaps made within the corresponding partners in the first half, it is unclear what to do when one of the swaps involves the final element, since it has no partner.
The textbook doesn't seem to take particular care on this issue, so I'm assuming that when a swap involves the final element, then just don't make any mirror moves of the partner in the first half at all. As a result, the final element simply "steals" the partner of whoever it got swapped with. However, in this case, is there an easy way to see if the algorithm is still correct? What if when the last element steals someone else's partner, the partner is actually the k-th order statistic, and gets swapped later on to an inaccessible location? The mechanics of the recursion and partitioning involving in order-statistic selection are sufficiently opaque to me such that I cannot confidently rule out that scenario.
I don't think your description of the algorithm is entirely accurate (but then the explanation you linked to is far from clear). As I understand it, the reason why the algorithm is correct for an odd-length array is as follows:
Let's first look at a few examples of even-length arrays, with n=10 and k=3 (i.e. we're looking for the third-smallest element, which is 2):
a. 5 2 7 6 1 9 3 8 4 0
b. 5 1 7 6 2 9 3 8 4 0
c. 5 0 7 6 2 9 3 8 4 1
d. 5 0 7 6 2 9 3 8 1 4
If we split the arrays into two parts, we get:
a. 5 2 7 6 1 9 3 8 4 0
b. 5 1 7 6 2 9 3 8 4 0
c. 5 0 7 6 2 9 3 8 4 1
d. 5 0 7 6 2 9 3 8 1 4
and these couples:
a. (5,9) (2,3) (7,8) (6,4) (1,0) <- 0 coupled with 1
b. (5,9) (1,3) (7,8) (6,4) (2,0) <- 0 coupled with 2
c. (5,9) (0,3) (7,8) (6,4) (2,1) <- 1 coupled with 2
d. (5,9) (0,3) (7,8) (6,1) (2,4) <- 0, 1 and 2 not coupled with each other
After comparing and swapping the couples so that their smallest element is in the first group, we get:
a. 5 2 7 4 0 9 3 8 6 1
b. 5 1 7 4 0 9 3 8 6 2
c. 5 0 7 4 1 9 3 8 6 2
d. 5 0 7 1 2 9 3 8 6 4
You'll see that the smallest element 0 will always be in the first group. The second-smallest element 1 will be either in the first group, or in the second group if it was coupled with the smallest element 0. The third-smallest element 2 will be either in the first group, or in the second group if it was coupled with either the smallest element 0 or the second-smallest element 1.
So the smallest element is in the first group, and the second- and third-smallest elements can be in either group. That means that the third-smallest element is either one of the 3 smallest elements in the first group, or one of the 2 (!) smallest elements in the second group.
a. 5 2 7 4 0 9 3 8 6 1 -> 0 2 4 + 1 3
b. 5 1 7 4 0 9 3 8 6 2 -> 0 1 4 + 2 3
c. 5 0 7 4 1 9 3 8 6 2 -> 0 1 4 + 2 3
d. 5 0 7 1 2 9 3 8 6 4 -> 0 1 2 + 3 4
So if we say that the k-th smallest element of the whole array is now one of the k-th smallest elements in either of the groups, there is an available spot in the the second group, and that's why, in an odd-length array, we'd add the uncoupled element to the second group. Whether or not the uncoupled element is the element we're looking for, it will certainly be one of the k-th smallest elements in either of the groups.
It is in fact more correct to say that the k-th smallest element is either one of the k smallest elements in the first group, or one of the k/2+1 smallest elements in the second group. I'm actually not sure that the algorithm is optimal, or even correct. There's a lot of repeated comparing and swapping going on, and the idea of keeping track of the couples and swapping elements in one group when their corresponding elements in the other group are swapped doesn't seem to make sense.

HeIp understanding Fibonacci Search

On the internet I only find code for the algorithm but I need understand in form of text first because I have trouble understand things from code only. And other description of the algorithm are very complicated for me (on Wikipedia and other sites).
Here is what I understand for far:
Let say we want search in array the element 10:
Index i 0 1 2 3 4
2 3 4 10 40
Some fibonacci number here:
Index j 0 1 2 3 4 5 6 7 8 9
0 1 1 2 3 5 8 13 21 34
First thing we do is find fibonacci number that is greater-equal to array length. Array length is 4 so we need take fibonacci number 5 that is in index position j=5.
But where we divide the array now and how continue? I really don't understand it.. Please help understand for exam...
The algorithm goes in the following way:
The length of the array is 5, so the fibonacci number which is greater than or equal to 5 is 5. The two numbers which are preceding in the Fibonacci sequence are 2 [n-2] and 3 [n-1] - (2, 3, 5).
So, arr[n-2] i.e. arr[2] is compared with the number to be searched which is 10.
If the element is smaller than the number, then the sequence is shifted 1 time to the left. Also, the previous index is saved for next iteration to give an offset for the index. In this case, since 4 is smaller, n-2 becomes 1 (1, 2, 3). arr[1 + 2(prev)] = arr[3] = 10. So, the index of the number is 3.
If the element is larger, the sequence is shifted 2 times to the left.
Always the min(n-2+offset,n)th element is compared with number to get the matching result.

Need some simple logic help, been stuck for a few hours

The problem is asking to take any amount of numbers, and find the highest possible sum of difference(using absolute value) between consecutive numbers. For example numbers 1 2 and 3 would be arranged 3 1 2 to get a sum of 3 (3-1 = 2, and 1-2 = 1).
Now my first thoughts were to take the highest number in the list followed by the lowest number and arrange in that way through the end, but that doesnt work out as the end of the list will end up having all of the numbers in the middle accumulating almost no differences. The only other thing I have thought of is to find every single possible order and return the highest sum, but with a longer list this will take way too long and I assume there might be a better way.
For reference here are some sample input and output numbers
9 2 5 3 1 -> 21
7 3 4 5 5 7 6 8 5 4 -> 24
Any help at all would be much appreciated, even if its just pointing me in the right direction.
There are 2 approaches to this problem.
Approach 1:
Brute force.
Approach 2:
Figure out an algorithm for how to arrange the numbers.
I always like approach 2 better if it is feasible.
It seems reasonable that you would get a high sum if you order the numbers high-low-high-low-high...
So start by sorting the numbers and then divide them into two equally large groups of low and high numbers. If there is an odd number of numbers the middle number will be left over.
Then you just pick numbers alternately from the two groups.
It is easy to prove that the order of the interior numbers doesn't matter as long as you stick with the high-low-high-low ordering.
However, since the start and end number only has one neighbour, the first and last number should be the middle numbers.
Finally, if you have an odd number of numbers, place the last number at the start or end, whatever gives the biggest difference.
Example:
7 3 4 5 5 7 6 8 5 4 -> [sort] -> 3 4 4 5 5 5 6 7 7 8
high numbers: 5 6 7 7 8
low numbers: 3 4 4 5 5
Arranged:
5 3 6 4 7 4 7 5 8 5 = 24
Example:
9 2 5 3 1 -> [sort] -> 1 2 3 5 9
high numbers: 5 9
low numbers: 1 2
left over: 3
Arranged:
3 5 1 9 2 = 21 (3 goes at the start, because |3-5| > |3-2|)

Matlab : Matrix indexing Logic

i am doing very simple Matrix indexing examples . where code is as give below
>> A=[ 1 2 3 4 ; 5 6 7 8 ; 9 10 11 12 ]
A =
1 2 3 4
5 6 7 8
9 10 11 12
>> A(end, end-2)
ans =
10
>> A(2:end, end:-2:1)
ans =
8 6
12 10
here i am bit confused . when i use A(end, end-2) it takes difference of two till first column and when there is just one column left there is no further processing , but when i use A(2:end, end:-2:1) it takes 6 10 but how does it print 8 12 while there is just one column left and we have to take difference of two from right to left , Pleas someone explain this simple point
The selection A(end, end-2) reads: take elements in last row of A that appear in column 4(end)-2=2.
The selection A(2:end, end:-2:1) similarly reads: take elements in rows 2 to 4(end) and starting from last column going backwards in jumps of two, i.e. 4 then 2.
To check the indexing, simply substitute the end with size(A,1) or size(A,2) if respectively found in the row and col position.
First the general stuff: end is just a placeholder for an index, namely the last position in a given array dimension. For instance, for an arbitrary array A(end,1) will pick the last element in column 1, and A(1,end) will pick the last element in the first row.
In your example, A(end, end-2) picks an element in the last row two columns before the last one.
To interpret a statement such as
A(2:end, end:-2:1)
it might help to substitute end with the actual index of the last row/column elements, so this is equivalent to
A(2:3, 4:-2:1)
Furthermore 4:-2:1 is equivalent to the list 4,2 since we are instructing to make the list starting at 4, decreasing in steps of 2, up to (minimum) 1. So this is equivalent to
A([2 3],[4 2])
Finally, the following combination of indices is implied by A([2 3],[4 2]):
A(2,4) A(2,2)
A(3,4) A(3,2)

What is the "number of partitions" and "range" of an array?

As per MSDN doc for Array.Sort,
If the number of partitions exceeds 2 * logN, where N is the range of the input array, it uses a Heapsort algorithm.
What I don't know is what are the "number of partitions" and the "range" of an array. What are they?
A partition in a sort is basically a section of the list based upon a pivot point. For example, using the quick sort algorithm to sort the following:
First Pass Second Pass
3 3 1
8 1 3
5 <- Pivot 5--------- 5
1 8 7
7 7 8
In the first pass, there are two partitions based off numbers that are less than or greater than 5
The range is the difference between the largest and smallest values, so in this example that is 7 (8 - 1)
So the line you are questioning works as
(2 * log(7)) > 2 == Use HeapSort
1.691 > 2 false

Resources