I have a table of daily closing stock prices and commodity prices such as Gold, Oil, etc. I want to find what stocks move closely with another stock or a commodity.
Where do I start to do this type of analysis - I know java, SQL, python, perl, and a little bit of R.
Willing to buy and learn new tools like Matlab if necessary.
Any guidance will be highly appreciated.
This is not a homework question.
Thanks..
The technique you are looking for is called cointegration. Language is not important at all when computing cointegration of two time series so use whatever you are comfortable with.
I disagree with other responses that computation is not a problem. It is a huge problem to be able to compute potentially billions of cointegration coefficients between different time series. Using a highly optimized library is critical. However this article on cointegration testing in R should get you started.
Also checkout quant.stackexchange.com for more info on quantitative finance.
Try this:
http://www.sectorspdr.com/correlation/
http://www.etfscreen.com/corr.php
http://correlate.googlelabs.com/faq
https://quant.stackexchange.com/questions/1027/correlation-and-cointegration-similarities-differences-relationships/1038#1038
Where do I start to do this type of analysis
If I were you, I'd start by searching Google Scholar for the word "comovement". Not everything that turns up is directly relevant, but there's quite a lot of stuff that is relevant.
By looking through the papers and googling some more, you should get a clearer picture of what types of statistical methods to learn.
I agree with Ben Bolker that computational tools are not the main issue at this point.
Related
I have to develop a personality/job suitability online test for an HR department. Basically, users will answer questions, on a scale of 0-10 for example, and after say 50 questions, I want to translate that to a rating in 5 different personality/ job suitability characteristics.
I don't have any real data to start with, so first, is it even worth it to use a recommendation engine like MyMediaLite (github). How many samples will I need to train it to a decent performance?
I previously built a training course recommender, by simply doing and hand-weighted sum where each question increased the weight of several courses that were related to that question. It was an expert system, built like a feed-forward neural network, where I personally tuned all the weights based on my knowledge of the questions and the courses' content.
I would like to this time around use a recommender system, but I'm wondering how many times I would have to take the 50 question test, and then assign the results manually. would 100 examples do? that could be possible. 1000 would be too long. How can I know ahead of time?
Though useless, I want to say this is not possible to give a definite number. You should focus on learning curve when adding new samples.
You can process the samples by hand and engine on parallel, and compare the result given by both. Once the measurement e.g. recall and precision of the result given by engine achieve your expectation, then you get enough samples.
Hope this helpful!
I'm starting up looking into doing some machine translation of search queries, and have been trying to think of different ways to rate my translation system between iterations and against other systems. The first thing that comes to mind is getting translations of a set of search terms from mturk from a bunch of people and saying each is valid, or something along those lines, but that would be expensive, and possibly prone to people putting in bad translations.
Now that I'm trying to think of something cheaper or better, I figured I'd ask StackOverflow for ideas, in case there's already some standard available, or someone has tried to find one of these before. Does anyone know, for example, how Google Translate rates various iterations of their system?
There is some information here that might be useful as it provides a basic explanation of the BLEU scoring technique that is often used to measure the quality of an MT system by developers.
The first link provides a basic overview of BLEU and the second points out some problems with BLEU in terms of it's limitations.
http://kv-emptypages.blogspot.com/2010/03/need-for-automated-quality-measurement.html
and
http://kv-emptypages.blogspot.com/2010/03/problems-with-bleu-and-new-translation.html
There is also some very specific pragmatic advice on how to develop a useful Test Set at this link: AsiaOnline.Net site in the November newsletter. I am unable to put this link in as there is a limit of two.
I'd suggest refining your question. There are a great many metrics for machine translation, and it depends on what you're trying to do. In your case, I believe the problem is simply stated as: "Given a set of queries in language L1, how can I measure the quality of the translations into L2, in a web search context?"
This is basically cross-language information retrieval.
What's important to realize here is that you don't actually care about providing the user with the translation of the query: you want to get them the results that they would have gotten from a good translation of the query.
To that end, you can simply measure the discrepancy of the results lists between a gold translation and the result of your system. There are many metrics for rank correlation, set overlap, etc., that you can use. The point is that you need not judge each and every translation, but just evaluate whether the automatic translation gives you the same results as a human translation.
As for people proposing bad translations, you can assess whether the putative gold standard candidates have similar results lists (i.e. given 3 manual translations do they agree in results? If not, use the 2 that most overlap). If so, then these are effectively synonyms from the IR perspective.
In our MT Evaluation we use hLEPOR score (see the slides for details)
I have a typical AI Problem to solve. Customers gonna submit comments about a product. I have to be able to create a program that classify these comment as either good,bad or neutral.
Surely, Neural Network gonna play a great role in it.
Also, I think fuzzy logic can play some role in it. Such as how far a comment is good,bad or neutral!!
Some more ideas about how to solve it??
This problem is usually referred to as Sentiment Analysis. You can check out the wikipedia entry about Sentiment Analysis for a brief review, or Liu Bing's page on sentiment analysis for more detailed resources and tutorials.
You can use some form of supervised learning.
The most important thing for classification is then choosing the right features. "Features" means you extract some values from the review that still capture the essence with respect to the classification task. Things that come to my mind are
number of words
average number of words per sentence
number of words from some set like {crap, shit, damn, viagra, ...}
Then you can use any available machine learning algorithm (neural networks, SVM) and train a classifier given you have enough reviews that are labeled with good/neutral/bad.
Neural networks would certainly work for it, however I would be supicious about introducing new words, and languages. I would go for a Bayes net approach for determining the probability of being in a "good/neutral/bad" state. You should consider cleaning the data [stemming, etc] before putting it through the bayes net.
Additionally: The meta attributes [what ziggy mentioned] are more of an indicator to boost the performance of the approach you take.
EDIT: Bayes-Nets are a form of supervised learning.
I remember when I was in college we went over some problem where there was a smart agent that was on a grid of squares and it had to clean the squares. It was awarded points for cleaning. It also was deducted points for moving. It had to refuel every now and then and at the end it got a final score based on how many squares on the grid were dirty or clean.
I'm trying to study that problem since it was very interesting when I saw it in college, however I cannot find anything on wikipedia or anywhere online. Is there a specific name for that problem that you know about? Or maybe it was just something my teacher came up with for the class.
I'm searching for AI cleaning agent and similar things, but I don't find anything. I don't know, I'm thinking maybe it has some other name.
If you know where I can find more information about this problem I would appreciate it. Thanks.
Perhaps a "stigmergy" approach is closely related to your problem. There is a starting point here, and you can find something by searching for "dead ants" and "robots" on google scholar.
Basically: instead of modelling a precise strategy you work toward a probabilistic approach. Ants (probably) collect their deads by piling up according to a simple rule such as "if there is a pile of dead ants there, I bring this corpse hither; otherwise, I'll make a new pile". You can start by simplifying your 'cleaning' situation with that, and see where you go.
Also, I think (another?) suitable approach could be modelled with a Genetic Algorithm using a carefully chosen combination of fitness functions such as:
the end number of 'clean' tiles
the number of steps made by the robot
of course if the robots 'dies' out of starvation it automatically removes itself from the gene pool, a-la darwin awards :)
You could start by modelling a very, very simple genotype that will be 'computed' into a behaviour. Consider using a simple GA such as this one by Inman Harvey, then to each gene assign either a part of the strategy, or a complete behaviour. E.g.: if gene A is turned to 1 then the robot will try to wander randomly; if gene B is also turned to 1, then it will give priority to self-charging unless there are dirty tiles at distance X. Or use floats and model probability. Your mileage may vary but I can assure it will be fun :)
The problem is reminiscent of Shakey, although there's cleaning involved (which is like the Roomba -- a device that can also be programmed to perform these very tasks).
If the "problem space" (or room) is small enough, you can solve for an optimal solution using a simple A*-based search, but likely it won't be, since that won't leave for very interesting problems.
The machine learning approach suggested here using genetic algorithms is an interesting approach. Given the problem domain you would only have one "rule" (a move-to action, since clean could be eliminated by implicitly cleaning any square you move to that is dirty) so your learner would essentially be learning how to move around an environment. The problem there would be to build a learner that would be adaptable to any given floor plan, instead of just becoming proficient at cleaning a very specific space.
Whatever approach you have, I'd also consider doing a further meta-reasoning step if the problem sets are big enough, and use a partition approach to divide the floor up into separate areas and then conquering them one at a time.
Can you use techniques to create data to use "offline"? In that case, I'd even consider creating a "database" of optimal routes to take to clean certain floor spaces (1x1 up to, say, 5x5) that include all possible start and end squares. This is similar to "endgame databases" that game AIs use to effectively "solve" games once they reach a certain depth (c.f. Chinook).
This problem reminds me of this. A similar problem is briefly mentioned in the book Complexity as an example of a genetic algorithm. These versions are simplified though, they don't take into account fuel consumption.
I need to implement some kind of metric space search in Postgres(*) (PL or PL/Python). So, I'm looking for good sources (or papers) with a very clear and crisp explanation of the machinery behind these ideas, in such way that I can implement it myself.
I would prefer clarity over efficiency.
(*) The need for that is described better here.
Especially for geographical data, look at PostGIS first to see if you need to implement anything. If you do, start with the papers listed in the Wikipedia entry on GiST.
Looking at your link, it seems your metric space is strings with some sort of edit distance as the metric. A nice but oldish overview of some solutions is given by Navarro, Baeza-Yates, Sutinen, and Tarhio, IEEE Data Engineering Bulletin, 2001; the related papers on Citeseer could also be useful. Locality Sensitive Hashing is a newer technique that might be useful, but a lot of the papers are heavy on math.
BK-Trees are useful for indexing and searching anything that obeys the triangle inequality, metric spaces included. The canonical example is searching for strings within a given edit distance of a target. I wrote an article about that here.
Unfortunately, there's no built in support for this in Postgres. You could implement it yourself using GIST, but obviously that'll be a lot of work. I can't think of any way to implement it without writing your own indexes short of storing the tree in a table, which obviously isn't going to be very efficient.
You can try http://sisap.org where many modern metric indexes are listed, including BK-trees. You can find code in C to try different alternatives.
Some techniques that involve space search that might help you are Hill-Climbing, Neural Network Training, Genetic Algorithm, and Particle Swarm.
You will also need to define a distance metric over your metric space. Have you done so?(& out of curiosity, what is it, if you have done so)