PROLOG / All paths in a directed graph with loops - loops

I've got the following diagram given:
Diagram here
The first gateway/connector is an OR-gateway/connector (it has a circle in it). The gateway/connector with a 'x' in it is a XOR-gateway/connector.
An OR-gateway specifies that one or more of the available paths will be taken.
An XOR-gateway represents a decision to take exactly one path in the flow.
I need to transform this diagram to PROLOG in order to get all possible paths from node 1 to node 8 but I have problems to code the OR-gateway and to find all possible paths.
How can I transform this diagram easily to Prolog and how can i find all possible paths respecting the gateways between two nodes?
Thank you for answers in advance.

As you should know, a Prolog program is basically a set of rules. From your graph, each node could begin a rule where each directed edge gives an explicit rule. By encoding your graph as a set of rules, a query on what satisfies say, (1, X, 8), would give you every possible path, even infinitely.
Encoding the rules should be easy (basic Prolog). Maybe I'm not understanding the special functions behind the OR and XOR. Please explain more if this isn't as trivial as it seems.

Related

Safe Datalog rules for the query

Consider the relations: edge(X,Y), Red(X,Y), Blue(X,Y). These relations are representing a graph whose edges can be colored red or blue(or no color).
provide safe datalog rules(with negation if necessary) for the following queries.
Q1. find the pairs of nodes X and Y where there is path (a sequence of linked edges) from X to Y ?
my attempt:- reachable(X,Y) :- edge(X,Y)
reachable(X,Y) :- edge(X,Z), reachable(Z,Y)
Q2. Find the pairs of nodes X and Y where there is path (a sequence of linked edges) of even length from X to Y with alternating red and blue colors?
my attempt:
I have made odd even datalog program and a red/blue program, but don't know how to combine the both to get even length alternate red/blue node
ODD(x,y):- edge(x,y)
ODD(x,y):- edge(x,z), EVEN(z,y)
EVEN(x,y):- edge(x,z), ODD(z,y).
path(X,Y) :- Red(X,Y)
path(X,Y) :- path(X,Z), Blue(Z,W), path(W,Y)
From your questions I get the impression that you're trying to answer these assignments without testing your potential solutions. That's a very difficult way to work. I would strongly suggest to make little examples to test whether your solution is correct and run it in a Datalog engine (easiest is something online like http://www.iris-reasoner.org/demo or https://developer.logicblox.com/playground/ ).
In this particular case, it is easy to see that if you have an edge("a", b"), edge("b", c") and edge("c", "d"), that your solution will not find a path from "a" to "d".
This query can only be solved with recursion. This path query is pretty basic recursion, search for ancestor or transitive closure.

How to go about creating a prolog program that can work backwards to determine steps needed to reach a goal

I'm not sure what exactly I'm trying to ask. I want to be able to make some code that can easily take an initial and final state and some rules, and determine paths/choices to get there.
So think, for example, in a game like Starcraft. To build a factory I need to have a barracks and a command center already built. So if I have nothing and I want a factory I might say ->Command Center->Barracks->Factory. Each thing takes time and resources, and that should be noted and considered in the path. If I want my factory at 5 minutes there are less options then if I want it at 10.
Also, the engine should be able to calculate available resources and utilize them effectively. Those three buildings might cost 600 total minerals but the engine should plan the Command Center when it would have 200 (or w/e it costs).
This would ultimately have requirements similar to 10 marines # 5 minutes, infantry weapons upgrade at 6:30, 30 marines at 10 minutes, Factory # 11, etc...
So, how do I go about doing something like this? My first thought was to use some procedural language and make all the decisions from the ground up. I could simulate the system and branching and making different choices. Ultimately, some choices are going quickly make it impossible to reach goals later (If I build 20 Supply Depots I'm prob not going to make that factory on time.)
So then I thought weren't functional languages designed for this? I tried to write some prolog but I've been having trouble with stuff like time and distance calculations. And I'm not sure the best way to return the "plan".
I was thinking I could write:
depends_on(factory, barracks)
depends_on(barracks, command_center)
builds_from(marine, barracks)
build_time(command_center, 60)
build_time(barracks, 45)
build_time(factory, 30)
minerals(command_center, 400)
...
build(X) :-
depends_on(X, Y),
build_time(X, T),
minerals(X, M),
...
Here's where I get confused. I'm not sure how to construct this function and a query to get anything even close to what I want. I would have to somehow account for rate at which minerals are gathered during the time spent building and other possible paths with extra gold. If I only want 1 marine in 10 minutes I would want the engine to generate lots of plans because there are lots of ways to end with 1 marine at 10 minutes (maybe cut it off after so many, not sure how you do that in prolog).
I'm looking for advice on how to continue down this path or advice about other options. I haven't been able to find anything more useful than towers of hanoi and ancestry examples for AI so even some good articles explaining how to use prolog to DO REAL THINGS would be amazing. And if I somehow can get these rules set up in a useful way how to I get the "plans" prolog came up with (ways to solve the query) other than writing to stdout like all the towers of hanoi examples do? Or is that the preferred way?
My other question is, my main code is in ruby (and potentially other languages) and the options to communicate with prolog are calling my prolog program from within ruby, accessing a virtual file system from within prolog, or some kind of database structure (unlikely). I'm using SWI-Prolog atm, would I be better off doing this procedurally in Ruby or would constructing this in a functional language like prolog or haskall be worth the extra effort integrating?
I'm sorry if this is unclear, I appreciate any attempt to help, and I'll re-word things that are unclear.
Your question is typical and very common for users of procedural languages who first try Prolog. It is very easy to solve: You need to think in terms of relations between successive states of your world. A state of your world consists for example of the time elapsed, the minerals available, the things you already built etc. Such a state can be easily represented with a Prolog term, and could look for example like time_minerals_buildings(10, 10000, [barracks,factory])). Given such a state, you need to describe what the state's possible successor states look like. For example:
state_successor(State0, State) :-
State0 = time_minerals_buildings(Time0, Minerals0, Buildings0),
Time is Time0 + 1,
can_build_new_building(Buildings0, Building),
building_minerals(Building, MB),
Minerals is Minerals0 - MB,
Minerals >= 0,
State = time_minerals_buildings(Time, Minerals, Building).
I am using the explicit naming convention (State0 -> State) to make clear that we are talking about successive states. You can of course also pull the unifications into the clause head. The example code is purely hypothetical and could look rather different in your final application. In this case, I am describing that the new state's elapsed time is the old state's time + 1, that the new amount of minerals decreases by the amount required to build Building, and that I have a predicate can_build_new_building(Bs, B), which is true when a new building B can be built assuming that the buildings given in Bs are already built. I assume it is a non-deterministic predicate in general, and will yield all possible answers (= new buildings that can be built) on backtracking, and I leave it as an exercise for you to define such a predicate.
Given such a predicate state_successor/2, which relates a state of the world to its direct possible successors, you can easily define a path of states that lead to a desired final state. In its simplest form, it will look similar to the following DCG that describes a list of successive states:
states(State0) -->
( { final_state(State0) } -> []
; [State0],
{ state_successor(State0, State1) },
states(State1)
).
You can then use for example iterative deepening to search for solutions:
?- initial_state(S0), length(Path, _), phrase(states(S0), Path).
Also, you can keep track of states you already considered and avoid re-exploring them etc.
The reason you get confused with the example code you posted is essentially that build/1 does not have enough arguments to describe what you want. You need at least two arguments: One is the current state of the world, and the other is a possible successor to this given state. Given such a relation, everything else you need can be described easily. I hope this answers your question.
Caveat: my Prolog is rusty and shallow, so this may be off base
Perhaps a 'difference engine' approach would be appropriate:
given a goal like 'build factory',
backwards-chaining relations would check for has-barracks and tell you first to build-barracks,
which would check for has-command-center and tell you to build-command-center,
and so on,
accumulating a plan (and costs) along the way
If this is practical, it may be more flexible than a state-based approach... or it may be the same thing wearing a different t-shirt!

Steps to creating an NFA from a regular expression

I'm having issues 'describing each step' when creating an NFA from a regular expression. The question is as follows:
Convert the following regular expression to a non-deterministic finite-state automaton (NFA), clearly describing the steps of the algorithm that you use:
(b|a)*b(a|b)
I've made a simple 3-state machine but it's very much from intuition.
This is a question from a past exam written by my lecturer, who also wrote the following explanation of Thompson's algorithm: http://www.cs.may.ie/staff/jpower/Courses/Previous/parsing/node5.html
Can anyone clear up how to 'describe each step clearly'? It just seems like a set of basic rules rather than an algorithm with steps to follow.
Maybe there's an algorithm I've glossed over somewhere but so far I've just created them with an educated guess.
Short version for general approach.
There's an algo out there called the Thompson-McNaughton-Yamada Construction Algorithm or sometimes just "Thompson Construction." One builds intermediate NFAs, filling in the pieces along the way, while respecting operator precedence: first parentheses, then Kleene Star (e.g., a*), then concatenation (e.g., ab), followed by alternation (e.g., a|b).
Here's an in-depth walkthrough for building (b|a)*b(a|b)'s NFA
Building the top level
Handle parentheses. Note: In actual implementation, it can make sense to handling parentheses via a recursive call on their contents. For the sake of clarity, I'll defer evaluation of anything inside of parens.
Kleene Stars: only one * there, so we build a placeholder Kleene Star machine called P (which will later contain b|a).
Intermediate result:
Concatenation: Attach P to b, and attach b to a placeholder machine called Q (which will contain (a|b). Intermediate result:
There's no alternation outside of parentheses, so we skip it.
Now we're sitting on a P*bQ machine. (Note that our placeholders P and Q are just concatenation machines.) We replace the P edge with the NFA for b|a, and replace the Q edge with the NFA for a|b via recursive application of the above steps.
Building P
Skip. No parens.
Skip. No Kleene stars.
Skip. No contatenation.
Build the alternation machine for b|a. Intermediate result:
Integrating P
Next, we go back to that P*bQ machine and we tear out the P edge. We have the source of the P edge serve as the starting state for the P machine, and the destination of the P edge serve as the destination state for the P machine. We also make that state reject (take away its property of being an accept state). The result looks like this:
Building Q
Skip. No parens.
Skip. No Kleene stars.
Skip. No contatenation.
Build the alternation machine for a|b. Incidentally, alternation is commutative, so a|b is logically equivalent to b|a. (Read: skipping this minor footnote diagram out of laziness.)
Integrating Q
We do what we did with P above, except replacing the Q edge with the intermedtae b|a machine we constructed. This is the result:
Tada! Er, I mean, QED.
Want to know more?
All the images above were generated using an online tool for automatically converting regular expressions to non-deterministic finite automata. You can find its source code for the Thompson-McNaughton-Yamada Construction algorithm online.
The algorithm is also addressed in Aho's Compilers: Principles, Techniques, and Tools, though its explanation is sparse on implementation details. You can also learn from an implementation of the Thompson Construction in C by the excellent Russ Cox, who described it some detail in a popular article about regular expression matching.
In the GitHub repository below, you can find a Java implementation of Thompson's construction where first an NFA is being created from the regex and then an input string is being matched against that NFA:
https://github.com/meghdadFar/regex
https://github.com/White-White/RegSwift
No more tedious words. Check out this repo, it translates your regular expression to an NFA and visually shows you the state transitions of an NFA.

Identifying the components in a English sentence that do not make sense

I'm wondering is there an algorithm or a library which helps me identify the components in an English which has no meaning? e.g., very serious grammar error? If so, could you explain how it works, because I would really like to implement that or use that for my own projects.
Here's a random example:
In the sentence: "I closed so etc page hello the door."
As a human, we can quickly identify that [so etc page hello] does not make any sense. Is it possible for a machine to point out that the string does not make any sense and also contains grammar errors?
If there's such a solution, how precise can that be? Is it possible, for example, given a clip of an English sentence, the algorithm returns a measure, indicating how meaningful, or correct that clip is? Thank you very much!
PS: I've looked at CMU's link grammar as well as the NLTK library. But still I'm not sure how to use for example link grammar parser to do what I would like to do as the if the parser doesn't accept the sentence, I don't know how to tweak it to tell me which part it is not right.. and I'm not sure whether NLTK supported that.
Another thought I had towards solving the problem is to look at the frequencies of the word combination. Since I'm currently interested in correcting very serious errors only. If I define the "serious error" to be the cases where words in a clip of a sentence are rarely used together, i.e., the frequency of the combo should be much lower than those of the other combos in the sentence.
For instance, in the above example: [so etc page hello] these four words really seldom occur together. One intuition of my idea comes from when I type such combo in Google, no related results jump out. So is there any library that provides me such frequency information like Google does? Such frequencies may give a good hint on the correctness of the word combo.
I think that what you are looking for is a language model. A language model assigns a probability to each sentence of k words appearing in your language. The simplest kind of language models are n-grams models: given the first i words of your sentence, the probability of observing the i+1th word only depends on the n-1 previous words.
For example, for a bigram model (n=2), the probability of the sentence w1 w2 ... wk is equal to
P(w1 ... wk) = P(w1) P(w2 | w1) ... P(wk | w(k-1)).
To compute the probabilities P(wi | w(i-1)), you just have to count the number of occurrence of the bigram w(i-1) wi and of the word w(i-1) on a large corpus.
Here is a good tutorial paper on the subject: A Bit of Progress in Language Modeling, by Joshua Goodman.
Yes, such things exist.
You can read about it on Wikipedia.
You can also read about some of the precision issues here.
As far as determining which part is not right after determining the sentence has a grammar issue, that is largely impossible without knowing the author's intended meaning. Take, for example, "Over their, dead bodies" and "Over there dead bodies". Both are incorrect, and could be fixed either by adding/removing the comma or swapping their/there. However, these result in very different meanings (yes, the second one would not be a complete sentence, but it would be acceptable/understandable in context).
Spell checking works because there are a limited number of words against which you can check a word to determine if it is valid (spelled correctly). However, there are infinite sentences that can be constructed, with infinite meanings, so there is no way to correct a poorly written sentence without knowing what the meaning behind it is.
I think what you are looking for is a well-established library that can process natural language and extract the meanings.
Unfortunately, there's no such library. Natural language processing, as you probably can imagine, is not an easy task. It is still a very active research field. There are many algorithms and methods in understanding natural language, but to my knowledge, most of them only work well for specific applications or words of specific types.
And those libraries, such as the CMU one, seems to be still quite rudimental. It can't do what you want to do (like identifying errors in English sentence). You have to develop algorithm to do that using the tools that they provide (such as sentence parser).
If you want to learn about it check out ai-class.com. They have some sections that talks about processing language and words.

Matching with SIFT (Conceptual)

I have two images of real world. (IMPORTANT)I approximately know transformation of one real world to another. Due to texture problem I don't get enough matches between two images. How can I bring transformation information into account to get more and correct matches by using SIFt.
Any idea will be helpful.
Have you tried other alternatives? Are you sure SIFT is the answer? First, OpenCV provides SIFT, among other tools. (At the moment, I can't speak highly enough of OpenCV).
If I were solving this problem, I would first try:
Downsample your two images to reduce the influence of "texture", i.e. cvPyrDown.
Perform some feature detection: edge detection, etc. OpenCV provides a Harris corner detector, among others. Google "cvGoodFeaturesToTrack" for some detail.
If you have good confidence in your transformations, take advantage of your a priori information and look for features in neighborhoods corresponding to the transformed locations.
If you still want to look at SIFT or SURF, OpenCV provides those capabilities, as well.
If you know the transform, then apply the transform and then apply SURF/SIFT to the transformed image. That's one standard way to extend the robustness of feature descriptors/matchers across large perspective changes.
There is another alternative:
In sift parameters, Contrast Threshold is set to 0.04. If you reduce it and set it to a lower value ( 0.02,0.01) SIFT would find more enough matches:
SIFT(int nfeatures=0, int nOctaveLayers=3, double contrastThreshold=0.04, double edgeThreshold=10, double sigma=1.6)
The first step I think is to try with the settings of the SIFT algorithm to find the best efficiency with respect to your problem.
One another way to use SIFT more effectively is adding the COLOR information to SIFT. So you can add the color information (RGB) of the points which are being used in the descriptor to it. For instance if your descriptor size is 10x128 then it shows that you are using 10 points in each descriptor. Now you can extract and add three column and make the size 10x(128+3) [R-G-B for each point]. In this way the SIFT algorithm will work more efficient. But remember, you need to apply weight to your descriptor and make the last three columns be stronger than the other 128 columns. Actually I do not know in your case how the images are. but this method helped me a lot. and you can see that this modification makes SIFT a stronger method than before.
A similar implementation can be find here.

Resources