Related
I want to develop an app that detects how far the user/device is from points on a map.
Calculating the distance is easy, but when you get close to about 30meters I would need it to be as precise as possible.
Basically I want some lights on the UI to get brighter the closer you get to the target/point.
How do I achieve this if the gps position sometimes bounces around for 5-10 meters or more?
Any ideas on how to approach this?
Thanks!
In general there is the inaccuracy with the position, and indeed its meters, thus the bouncing will be there and its rather impossible to get rid of it, anyways, one suggestion would be to collect the last few (3-10 up to you and your logic really) locations and calculate average from them. Then with fast movements your position would be lagging of course, but when doing slow movements the position shown should be more stable.. Of course you could also have additional logic on determining the movement direction, and accepting the location change towards that faster etc.
You will not get a better precision than 3m to the target.
At low, speed, like walking, you will no make it better than 8-10m.
Count the distance sicne last used fix, If it exceeds 12m then use the fix, and mark it as last used.
This is a simple filter which works well for walking speeds.
At speeds higher (> 10km/h) switch off the filter.
GPS should not jump at that speed.
I would like to produce a realistic 3D demonstration of a ball rolling down a Conical Helix path. The reference that has helped me get close to a solution can be found here. [I am creating my solution in Actionscript 3, using Stage3D, but would be happy to have any suggested coding solutions in other languages, using other 3D frameworks, with which you may be more familiar.]
As I entered the title for my posting, the system pointed me to a wealth of "Questions that may already have your answer", and that was helpful, and I did check each of them out. Without wanting to hijack an existing thread, I should say that this oneincludes a good deal of very helpful commentary about the general subject, but does not get to the specific challenges I have been unable to resolve.
Using the cited reference, I am happy with this code snippet that traces the path I would like the ball to follow. [N.B. My reference, and most other math-based references, treat Z as being up-down; my usage, however, is the more usual 3D graphics of Y for up-down.]
This code is executed for each frame.
ft += 0.01; // Where ft is a global Number.
var n:Number = Math.pow (0.5, (0.15 * ft));
// Where s is a constant used to scale the overall path.
obj.moveTo (
(s * n * Math.cos (2.0 * ft)),
(s * n),
(s * n * Math.sin (2.0 * ft))
);
The ball follows a nice path, and owing to the lighting and other shader code, a very decent effect is viewed in the scene.
What is not good about my current implementation is that the ball does not appear to be rolling along that path as it moves from point to point. I am not using any physics engine, and am not seeking any solution dealing with collisions, but I would like the ball to correctly demonstrate what would be happening if the movement were due to the ball rolling down a track.
So, to make a little more clear the challenge, let's say that the ball is a billiard ball with the stripe and label for #15. In that case, the visual result should be that the number 15 should be turning head over heals, but, as you can probably surmise from the name of my obj.moveTo() function, that only results in changes in position of the 3D object, not its orientation.
That, finally, brings me to the specific question/request. I have been unable to discover what rotation changes must be synchronized with each positional change in order to correctly demonstrate the way the billiard ball would appear if it rolled from point 1 from point 2 along the path.
Part of the solution appears to be:
obj.setRotation ((Math.atan2 (Math.sin (ft), Math.cos (ft))), Vector3D.Y_AXIS);
but that is still not correct. I hope there is some well-known formula that I can add to my render code.
I am using GL_LINE_LOOP to draw a circle in C and openGL! Is it possible for me to fill the circle with colors?
If needed, this is the code I'm using:
const int circle_points=100;
const float cx=50+i, cy=50+x, r=50;
const float pi = 3.14159f;
int i = 50;
glColor3f(1, 1, 1);
glBegin(GL_LINE_LOOP);
for(i=0;i<circle_points;i++)
{
const float theta=(2*pi*i)/circle_points;
glVertex2f(cx+r*cos(theta),cy+r*sin(theta));
}
glEnd();
Lookup polygon triangulation!
I hope something here is somehow useful to someone, even though this question was asked in February. There are many answers, even though a lot of people would give none. I could witter forever, but I'll try to finish before then.
Some would even say, "You never would," or, "That's not appropriate for OpenGL," I'd like to say more than them about why. Converting polygons into the triangles that OpenGL likes so much is outside of OpenGL's job-spec, and is probably better done on the processor side anyway. Calculate that stage in advance, as few times as possible, rather than repeatedly sending such a chunky problem on every draw call.
Perhaps the original questioner drifted away from OpenGL since February, or perhaps they've become an expert. Perhaps I'll re-inspire them to look at it again, to hack away at some original 'imposters'. Or maybe they'll say it's not the tool for them after all, but that would be disappointing. Whatever graphics code you're writing, you know that OpenGL can speed it up!
Triangles for convex polygons are easy
Do you just want a circle? Make a triangle fan with the shared point at the circle's origin. GL_POLYGON was, for better or worse, deprecated then killed off entirely; it will not work with current or future implementations of OpenGL.
Triangles for concave polygons are hard
You'll want more general polygons later? Well, there are some tricks you could play with, for all manner of convex polygons, but concave ones will soon get difficult. It would be easy to start five different solutions without finishing a single one. Then it would be difficult, on finishing one, to make it quick, and nearly impossible to be sure that it's the quickest.
To achieve it in a future-proofed way you really want to stick with triangles -- so "polygon triangulation" is the subject you want to search for. OpenGL will always be great for drawing triangles. Triangle strips are popular because they reuse many vertices, and a whole mesh can be covered with only triangle strips, (perhaps including the odd lone triangle or pair of triangles). Drawing with only one primitive usually means the entire mesh can be rendered with a single draw call, which could improve performance. (Number of draw calls is one performance consideration, but not always the most important.)
Polygon triangulation gets more complex when you allow convex polygons or polygons with holes. (Finding algorithms for triangulating a general polygon, robustly yet quickly, is actually an area of ongoing research. Nonetheless, you can find some pretty good solutions out there that are probably fit for purpose.)
But is this what you want?
Is a filled polygon crucial to your final goals in OpenGL? Or did you simply choose what felt like it would be a simple early lesson?
Frustratingly, although drawing a filled polygon seems like a simple thing to do -- and indeed is one of the simplest things to do in many languages -- the solution in OpenGL is likely to be quite complicated. Of course, it can be done if we're clever enough -- but that could be a lot of effort, without being the best route to take towards your later goals.
Even in languages that implement filled polygons in a way that is simple to program with, you don't always know how much strain it puts on the CPU or GPU. If you send a sequence of vertices, to be linked and filled, once every animation frame, will it be slow? If a polygon doesn't change shape, perhaps you should do the difficult part of the calculation just once? You will be doing just that, if you triangulate a polygon once using the CPU, then repeatedly send those triangles to OpenGL for rendering.
OpenGL is very, very good at doing certain things, very quickly, taking advantage of hardware acceleration. It is worth appreciating what it is and is not optimal for, to decide your best route towards your final goals with OpenGL.
If you're looking for a simple early lesson, rotating brightly coloured tetrahedrons is ideal, and happens early in most tutorials.
If on the other hand, you're planning a project that you currently envision using filled polygons a great deal -- say, a stylized cartoon rendering engine for instance -- I still advise going to the tutorials, and even more so! Find a good one; stick with it to the end; you can then think better about OpenGL functions that are and aren't available to you. What can you take advantage of? What do you need or want to redo in software? And is it worth writing your own code for apparently simple things -- like drawing filled polygons -- that are 'missing from' (or at least inappropriate to) OpenGL?
Is there a higher level graphics library, free to use -- perhaps relying on OpenGL for rasterisation -- that can already do want you want? If so, how much freedom does it give you, to mess with the nuts and bolts of OpenGL itself?
OpenGL is very good at drawing points, lines, and triangles, and hardware accelerating certain common operations such as clipping, face culling, perspective divides, perspective texture accesses (very useful for lighting) and so on. It offers you a chance to write special programs called shaders, which operate at various stages of the rendering pipeline, maximising your chance to insert your own unique cleverness while still taking advantage of hardware acceleration.
A good tutorial is one that explains the rendering pipeline and puts you in a much better position to assess what the tool of OpenGL is best used for.
Here is one such tutorial that I found recently: Learning Modern 3D Graphics Programming
by Jason L. McKesson. It doesn't appear to be complete, but if you get far enough for that to annoy you, you'll be well placed to search for the rest.
Using imposters to fill polygons
Everything in computer graphics is an imposter, but the term often has a specialised meaning. Imposters display very different geometry from what they actually have -- only more so than usual! Of course, a 3D world is very different from the pixels representing it, but with imposters, the deception goes deeper than usual.
For instance, a rectangle that OpenGL actually constructs out of two triangles can appear to be a sphere if, in its fragment shader, you write a customised depth value to the depth coordinate, calculate your own normals for lighting and so on, and discard those fragments of the square that would fall outside the outline of the sphere. (Calculating the depth on those fragments would involve a square root of a negative number, which can be used to discard the fragment.) Imposters like that are sometimes called flat cards or billboards.
(The tutorial above includes a chapter on imposters, and examples doing just what I've described here. In fact, the rectangle itself is constructed only part way through the pipeline, from a single point. I warn that the scaling of their rectangle, to account for the way that perspective distorts a sphere into an ellipse in a wide FOV, is a non-robust fudge . The correct and robust answer is tricky to work out, using mathematics that would be slightly beyond the scope of the book. I'd say it is beyond the author's algebra skills to work it out but I could be wrong; he'd certainly understand a worked example. However, when you have the correct solution, it is computationally inexpensive; it involves only linear operations plus two square roots, to find the four limits of a horizontally- or vertically-translated sphere. To generalise that technique for other displacements requires one more square root, for a vector normalisation to find the correct rotation, and one application of that rotation matrix when you render the rectangle.)
So just to suggest an original solution that others aren't likely to provide, you could use an inequality (like x * x + y * y <= 1 for a circle or x * x - y * y <= 1 for a hyperbola) or a system of inequalities (like three straight line forms to bound a triangle) to decide how to discard a fragment. Note that if inequalities have more than linear order, they can encode perfect curves, and render them just as smoothly as your pixelated screen will allow -- with no limitation on the 'geometric detail' of the curve. You can also combine straight and curved edges in a single polygon, in this way.
For instance, a fragment shader (which would be written in GLSL) for a semi-circle might have something like this:
if (y < 0) discard;
float rSq = x * x + y * y;
if (1 < rSq) discard;
// We're inside the semi-circle; put further shader computations here
However, the polygons that are easy to draw, in this way, are very different from the ones that you're used to being easy. Converting a sequence of connected nodes into inequalities means yet more code to write, and deciding on the Boolean logic, to deal with combining those inequalities, could then get quite complex -- especially for concave polygons. Performing inequalities in a sensible order, so that some can be culled based on the results of others, is another ill-posed headache of a problem, if it needs to be general, even though it is easy to hard-code an optimal solution for a single case like a square.
I suggest using imposters mainly for its contrast with the triangulation method. Something like either one could be a route to pursue, depending on what you're hoping to achieve in the end, and the nature of your polygons.
Have fun...
P.S. have a related topic... Polygon triangulation into triangle strips for OpenGL ES
As long as the link lasts, it's a more detailed explanation of 'polygon triangulation' than mine. Those are the two words to search for if the link ever dies.
A line loop is just an outline.
To fill the middle as well, you want to use GL_POLYGON.
I have a video which has got turn left,turn right etc marks on the roads.
I have to detect those signs.I am going ahead with template matching in which I am matching the edge detected outputs,But I am not getting satisfactory results,Is there any other way to detect it? Please help.
If you want a solution that is not too complicated but more robust than template matching, I suggest you'd go for Hough voting on SIFT descriptors. This method is provides some degree of robustness to various problems, including partial occlusion of the sign, illumination variations and deformations of the sign. In particular, the method is completely invariant to rotation and uniform scaling of the template object.
The basic idea of the algorithm is as follows:
a) extract SIFT features from the template and query images.
b) set an arbitrary reference point in the template image and calculate, for each keypoint in the template image, the vector from the keypoint to the reference point.
c) match keypoints from the template image to the query image.
d) cast a vote for each matched keypoint for all object locations in the query image that this keypoint agrees with. You do that using the vectors calculated in step (b) and the location, scale and orientation of the matched keypoints in the query image.
e) If the object is indeed located in the image, the votes map should have a strong local maximum at it's location.
f) Optionally, you can verify the detection by using template matching.
You can read more about that method on Wikipedia here or in the original paper (by D. Lowe) here.
Using SIFT or SURF. You can get the invariable descriptor with training you can determine if the vector that represent the road marks (turn left, right or stop) match with the new in the video.
You might try extracting features and training a classifier (linear discriminant, neural network, naive Bayes, etc.). There are many candidate features you might try, but I'd think that you wouldn't need anything too complicated, even if the edge detection is poor, assuming that isolation of the sign is good. Some features to consider are: horizontal and vertical projections (row and column totals) and simple statistics of edge pixels (mean, standard deviation, skewness, etc. For more feature ideas, see any of these books:
"Shape Classification and Analysis: Theory and Practice", by Costa and Cesar
"Algorithms for Image Processing and Computer Vision", by J. R. Parker
"Digital Image Processing", by Gonzalez and Woods
I found a lot of references to the AI of the ghosts in Pacman, but none of them mentioned how the eyes find their way back to the central ghost hole after a ghost is eaten by Pacman.
In my implementation I implemented a simple but awful solution. I just hard coded on every corner which direction should be taken.
Are there any better/or the best solution? Maybe a generic one that works with different level designs?
Actually, I'd say your approach is a pretty awesome solution, with almost zero-run time cost compared to any sort of pathfinding.
If you need it to generalise to arbitrary maps, you could use any pathfinding algorithm - breadth-first search is simple to implement, for example - and use that to calculate which directions to encode at each of the corners, before the game is run.
EDIT (11th August 2010): I was just referred to a very detailed page on the Pacman system: The Pac-Man Dossier, and since I have the accepted answer here, I felt I should update it. The article doesn't seem to cover the act of returning to the monster house explicitly but it states that the direct pathfinding in Pac-Man is a case of the following:
continue moving towards the next intersection (although this is essentially a special case of 'when given a choice, choose the direction that doesn't involve reversing your direction, as seen in the next step);
at the intersection, look at the adjacent exit squares, except the one you just came from;
picking one which is nearest the goal. If more than one is equally near the goal, pick the first valid direction in this order: up, left, down, right.
I've solved this problem for generic levels that way: Before the level starts, I do some kind of "flood fill" from the monster hole; every tile of the maze that isn't a wall gets a number that says how far it is away from the hole. So when the eyes are on a tile with a distance of 68, they look which of the neighbouring tiles has a distance of 67; that's the way to go then.
For an alternative to more traditional pathfinding algorithms, you could take a look at the (appropriately-named!) Pac-Man Scent Antiobject pattern.
You could diffuse monster-hole-scent around the maze at startup and have the eyes follow it home.
Once the smell is set up, runtime cost is very low.
Edit: sadly the wikipedia article has been deleted, so WayBack Machine to the rescue...
You should take a look a pathfindings algorithm, like Dijsktra's Algorithm or A* algorithm. This is what your problem is : a graph/path problem.
Any simple solution that works is maintainable, reliable and performs well enough is a good solution. It sounds to me like you have already found a good solution ...
An path-finding solution is likely to be more complicated than your current solution, and hence more likely to require debugging. It will probably also be slower.
IMO, if it ain't broken, don't fix it.
EDIT
IMO, if the maze is fixed then your current solution is good / elegant code. Don't make the mistake of equating "good" or "elegant" with "clever". Simple code can also be "good" and "elegant".
If you have configurable maze levels, then maybe you should just do the pathfinding when you initially configure the mazes. Simplest would be to get the maze designer to do it by hand. I'd only bother automating this if you have a bazillion mazes ... or users can design them.
(Aside: if the routes are configured by hand, the maze designer could make a level more interesting by using suboptimal routes ... )
In the original Pacman the Ghost found the yellow pill eater by his "smell" he would leave a trace on the map, the ghost would wander around randomly until they found the smell, then they would simply follow the smell path which lead them directly to the player. Each time Pacman moved, the "smell values" would get decreased by 1.
Now, a simple way to reverse the whole process would be to have a "pyramid of ghost smell", which has its highest point at the center of the map, then the ghost just move in the direction of this smell.
Assuming you already have the logic required for chasing pacman why not reuse that? Just change the target. Seems like it would be a lot less work than trying to create a whole new routine using the exact same logic.
It's a pathfinding problem. For a popular algorithm, see http://wiki.gamedev.net/index.php/A*.
How about each square having a value of distance to the center? This way for each given square you can get values of immediate neighbor squares in all possible directions. You pick the square with the lowest value and move to that square.
Values would be pre-calculated using any available algorithm.
This was the best source that I could find on how it actually worked.
http://gameai.com/wiki/index.php?title=Pac-Man#Respawn
When the ghosts are killed, their disembodied eyes return to their starting location. This is simply accomplished by setting the ghost's target tile to that location. The navigation uses the same rules.
It actually makes sense. Maybe not the most efficient in the world but a pretty nice way to not have to worry about another state or anything along those lines you are just changing the target.
Side note: I did not realize how awesome those pac-man programmers were they basically made an entire message system in a very small space with very limited memory ... that is amazing.
I think your solution is right for the problem, simpler than that, is to make a new version more "realistic" where ghost eyes can go through walls =)
Here's an analog and pseudocode to ammoQ's flood fill idea.
queue q
enqueue q, ghost_origin
set visited
while q has squares
p <= dequeue q
for each square s adjacent to p
if ( s not in visited ) then
add s to visited
s.returndirection <= direction from s to p
enqueue q, s
end if
next
next
The idea is that it's a breadth-first search, so each time you encounter a new adjacent square s, the best path is through p. It's O(N) I do believe.
I don't know much on how you implemented your game but, you could do the following:
Determine the eyes location relative position to the gate. i.e. Is it left above? Right below?
Then move the eyes opposite one of the two directions (such as make it move left if it is right of the gate, and below the gate) and check if there are and walls preventing you from doing so.
If there are walls preventing you from doing so then make it move opposite the other direction (for example, if the coordinates of the eyes relative to the pin is right north and it was currently moving left but there is a wall in the way make it move south.
Remember to keep checking each time to move to keep checking where the eyes are in relative to the gate and check to see when there is no latitudinal coordinate. i.e. it is only above the gate.
In the case it is only above the gate move down if there is a wall, move either left or right and keep doing this number 1 - 4 until the eyes are in the den.
I've never seen a dead end in Pacman this code will not account for dead ends.
Also, I have included a solution to when the eyes would "wobble" between a wall that spans across the origin in my pseudocode.
Some pseudocode:
x = getRelativeOppositeLatitudinalCoord()
y
origX = x
while(eyesNotInPen())
x = getRelativeOppositeLatitudinalCoordofGate()
y = getRelativeOppositeLongitudinalCoordofGate()
if (getRelativeOppositeLatitudinalCoordofGate() == 0 && move(y) == false/*assume zero is neither left or right of the the gate and false means wall is in the way */)
while (move(y) == false)
move(origX)
x = getRelativeOppositeLatitudinalCoordofGate()
else if (move(x) == false) {
move(y)
endWhile
dtb23's suggestion of just picking a random direction at each corner, and eventually you'll find the monster-hole sounds horribly ineficient.
However you could make use of its inefficient return-to-home algorithm to make the game more fun by introducing more variation in the game difficulty. You'd do this by applying one of the above approaches such as your waypoints or the flood fill, but doing so non-deterministically. So at every corner, you could generate a random number to decide whether to take the optimal way, or a random direction.
As the player progresses levels, you reduce the likelihood that a random direction is taken. This would add another lever on the overall difficulty level in addition to the level speed, ghost speed, pill-eating pause (etc). You've got more time to relax while the ghosts are just harmless eyes, but that time becomes shorter and shorter as you progress.
Short answer, not very well. :) If you alter the Pac-man maze the eyes won't necessarily come back. Some of the hacks floating around have that problem. So it's dependent on having a cooperative maze.
I would propose that the ghost stores the path he has taken from the hole to the Pacman. So as soon as the ghost dies, he can follow this stored path in the reverse direction.
Knowing that pacman paths are non-random (ie, each specific level 0-255, inky, blinky, pinky, and clyde will work the exact same path for that level).
I would take this and then guess there are a few master paths that wraps around the entire
maze as a "return path" that an eyeball object takes pending where it is when pac man ate the ghost.
The ghosts in pacman follow more or less predictable patterns in terms of trying to match on X or Y first until the goal was met. I always assumed that this was exactly the same for eyes finding their way back.
Before the game begins save the nodes (intersections) in the map
When the monster dies take the point (coordinates) and find the
nearest node in your node list
Calculate all the paths beginning from that node to the hole
Take the shortest path by length
Add the length of the space between the point and the nearest node
Draw and move on the path
Enjoy!
My approach is a little memory intensive (from the perspective of Pacman era), but you only need to compute once and it works for any level design (including jumps).
Label Nodes Once
When you first load a level, label all the monster lair nodes 0 (representing the distance from the lair). Proceed outward labelling connected nodes 1, nodes connected to them 2, and so on, until all nodes are labelled. (note: this even works if the lair has multiple entrances)
I'm assuming you already have objects representing each node and connections to their neighbours. Pseudo code might look something like this:
public void fillMap(List<Node> nodes) { // call passing lairNodes
int i = 0;
while(nodes.count > 0) {
// Label with distance from lair
nodes.labelAll(i++);
// Find connected unlabelled nodes
nodes = nodes
.flatMap(n -> n.neighbours)
.filter(!n.isDistanceAssigned());
}
}
Eyes Move to Neighbour with Lowest Distance Label
Once all the nodes are labelled, routing the eyes is trivial... just pick the neighbouring node with the lowest distance label (note: if multiple nodes have equal distance, it doesn't matter which is picked). Pseudo code:
public Node moveEyes(final Node current) {
return current.neighbours.min((n1, n2) -> n1.distance - n2.distance);
}
Fully Labelled Example
For my PacMan game I made a somewhat "shortest multiple path home" algorithm which works for what ever labyrinth I provide it with (within my set of rules). It also works across them tunnels.
When the level is loaded, all the path home data in every crossroad is empty (default) and once the ghosts start to explore the labyrinth, them crossroad path home information keeps getting updated every time they run into a "new" crossroad or from a different path stumble again upon their known crossroad.
The original pac-man didn't use path-finding or fancy AI. It just made gamers believe there is more depth to it than it actually was, but in fact it was random. As stated in Artificial Intelligence for Games/Ian Millington, John Funge.
Not sure if it's true or not, but it makes a lot of sense to me. Honestly, I don't see these behaviors that people are talking about. Red/Blinky for ex is not following the player at all times, as they say. Nobody seems to be consistently following the player, on purpose. The chance that they will follow you looks random to me. And it's just very tempting to see behavior in randomness, especially when the chances of getting chased are very high, with 4 enemies and very limited turning options, in a small space. At least in its initial implementation, the game was extremely simple. Check out the book, it's in one of the first chapters.