Database Design (Inventory DB) - database

I'm looking to design an inventory database that tracks a snack bar. As this would be a single person/computer access and need to be easily movable to another system, I plan to use SQLite as the DB engine. The basic concept is to track inventory bought from a wholesale warehouse such as Sams Club, and then keep track of the inventory.
The main obstacle I'm trying to overcome is how to track bulk vs individual items in the products database. For example if a bulk item is purchased, let us say a 24 pack of coke, how do I maintain in the product database, the bulk item and that it contains 24 of the individual items. The solution would be fairly easy if all bulk items only contained multiple of 1 item, but in variety packs, such as a carton of chips that contains 5 different individual items all with separate UPCs, the solution becomes a bit more difficult.
So far I have come up with the multiple pass approach where the DB would be scanned multiple times to obtain all of the information.
Product_Table
SKU: INT
Name: TEXT
Brand: TEXT
PurchasePrice: REAL
UPC: BIGINT
DESC: TEXT
BULK: BOOLEAN
BulkList: TEXT // comma separated list of SKUs for each individual item
BulkQty: TEXT // comma separated list corresponding to each SKU above representing the quantity
Transaction_Table
SKU: INT
Qty: INT
// Other stuff but that is the essential
When I add a bulk item to the inventory (A Positive Quantity Transaction), it should instead add all of it's individual items, as I can't think of any time I would keep in stock to sell the bulk item. I would like to keep the bulk items in the database however, to help receiving and adding them into the inventory.

one way to do it is to create a 1:N mapping between bulk objects and their contents:
create table bulk_item (
bulk_product_id integer not null,
item_product_id integer not null,
qty integer not null,
primary key(bulk_product_id, item_product_id),
foreign key(bulk_product_id) references product(sku),
foreign key(item_product_id) references product(sku)
);
A comma-separated list is certainly fine (it might make it harder to do certain queries such as find all bulk objects that contain this SKU etc...).

I have to both agree and disagree with jspcal. I agree with the "bulk_item" table, but I would not say that it's "fine" to use a comma separated list. I suspect that they were only being polite and would not endorse a design that isn't in first normal form.
The design that jspcal has suggested is commonly called "Bill of Materials" and is the only sane way to approach a problem like composite products.
In order to use this effectively with your transaction table, you should include a transaction type code along with the SKU and quantity. There are different reasons why your stock in any given SKU might go up or down. The most common are receiving new stock and customers buying stock. However, there are other things like manual inventory adjustments to take into consideration clerical errors and shrinkage. There are also stock conversions like when you decide to bust up a variety pack into individual products for sale. Don't think you can count on whether the quantity is positive or negative to give you enough information to be able to make sense of your inventory levels and how (and why) they've changed.

Related

database, separate table or columns for extra fields?

I have Stock table.
sku
quantity
quantity_sold
price
seller
I have StockExtra table for products that has date/time property (you can think of event tickets)
stock # references stock
quantity
quantity_sold
price
date_at
time_at
datetime_rule # foreign key to another table, it is a rule that describes when events occur
For event tickets, I use stock and seller from the Stock table, but use quantity from StockExtra table. Because a ticket at different date can have different quantity and price.
I've divided the tables but not so sure if it is the best practice.
Now I need to create another table to hold stock data for separate market stores.
(I'm making a system where seller can manage his inventory when he sells products over multiple stores)
One could sell event tickets in amazon.com and in ebay.com for instance.
And the price, quantity in each store might be different.
So there will be one to many relations from Stock to StoreStock.
Stock will hold default price and aggregated quantity/quantity_sold for all stores. StoreStock will hold data for an individual store.
And I'll also need one to many relations from StockExtra to StoreStock due to the same reason, i.e price/quantity might be different for each date/time for event tickets.
So with my current setup,
there will be Stock StockExtra and StoreStock.
Would it be better to have just Stock and StoreStock even though date/time related fields will be empty for non-ticket products?
You should think about reducing the complexity of your system by keeping everything in a consistent way. Keep complex scenarios in the same tables as simple scenarios.
By keeping the same information in different places (e.g. Stock vs StockExtra, or Stock vs StoreStock) you are creating a situation in which your code has to have extra branching to find the data depending on the situation.
When you're going after the data for a single transaction, branching isn't the end of the world, although it is more code to have to write, debug and maintain. However, when you go after data in aggregate, having it spread across multiple potential locations makes your data retrieval much more complicated.
I would recommend keeping everything at the most detailed level. Therefore everything goes in StoreStock even if there is only one store applicable to a particular situation. Then, unless you have a demonstrable performance issue, don't split off StockExtra from Stock - Just use nullable columns in Stock.
It's OK to keep default prices in Stock, but use a more descriptive name for the sake of the next guy that has to maintain your code. I'd advise against tracking sales quantity in the Stock table. Keep this in StoreStock only. Don't keep a pre-calculated quantity on hand value. This will inevitably be out of whack. Instead, track quantities added (receipts) and quantities removed (sales) and calculate quantity on hand dynamically. This will avoid inventory reconciliation problems.

Designing a data model that incorporates logical operators

I am new to data modeling and i'm having trouble coming up with a data model that can store logic.
The data model would be used to store location and marketing attributes.
When a customer visits one of the company's websites, they would enter in their zip code, and based on their location the attributes would be used to arrange the online catalog of items.
The catalog of items would be separate from the database, so the data model would only produce the output of attributes used to arrange the items. Each item in the catalog has attributes such as ItemNumber, Price, Condition, Manufacture, and marketing segments (Age:Adult, Education: College, Income:High, etc.).
**For example:**
**Input zip code**: 90210
**Output Attributes**: (ItemNumber:123456, Segment:HighIncome, Condition:New)
This example is saying for zip 90210, first show item #123456, followed by all of the items with the HighIncome segment, and then display all of the non-refurbished items.
So far I have 2 tables with a many to many relationship and I would like to add an additional table(s) so I can incorporate logic (AND & OR).
The first table would have location and other information about which of the company's site the user is on.
Table Location(
Location_Unique_Identifier number
ZipCode varchar2
State varchar2
Site varchar2
..
)
The second table would have the attributes types (Manufacture, Price, Condition, etc.) and the attribute values (IBM, 10.00, Refurbished, etc.).
Table Attributes(
Attribute_Unique_Identifier number
Attribute_Type varchar2
Attribute_Value varchar2
..
..
)
In-between these two tables to break up the many to many relationship I would add the logic table. This table should allow me to output
item#123456 AND (item#768900 OR Condition:New)
The problem I am having with the logic table is trying to make it flexible enough to handle an unknown amount of AND/ORs and to handle the grouping.
This is a typical scenario of JOIN two( many ) tables together to do AND/OR/XOR or something else logical.
The best choice is to build a meterailized view that denormalize the attributes from multiple tables together into one table(this table is called a view).
In your case, the view may be:
table location_join_attributes{
number,
zipcode,
state,
site,
Manufacture,
Price,
Condition,
......
}
Then you will operate your logical statement on this table/view as(modified from your example):
item#123456 OR (item#768900 AND Condition:New) AND (more condition)
If we do not have this view, this operation will firstly fetch out all the records have item#768900, and then filter among the second table to know which of them have condition:new. It will take a long time to finish. If the condition is complex, the performance is terrible.
For quick query, you should build secondary indexes on the columns you operate.
On the scalability side, if your business logic changes, you may build a new view, and the older one will be discarded. The original tables do not change, which is also one of the advantages of a materialized view has.

How to handle an immutable table referencing mutable tables?

In making a pretty standard online store in .NET, I've run in to a bit of an architectural conundrum regarding my database. I have a table "Orders", referenced by a table "OrderItems". The latter references a table "Products".
Now, the orders and orderitems tables are in most aspects immutable, that is, an order created and its orderitems should look the same no matter when you're looking at the tables (for instance, printing a receipt for an order for bookkeeping each year should yield the same receipt the customer got at the time of the order).
I can think of two ways of achieving this behavior, one of which is in use today:
1. Denormalization, where values such as price of a product are copied to the orderitem table.
2. Making referenced tables immutable. The code that handles products could create a new product whenever a value such as the price is changed. Mutable tables referencing the products one would have their references updated, whereas the immutable ones would be fine and dandy with their old reference
What is your preferred way of doing this? Is there a better, more clever way of doing this?
It depends. I'm writing on a quite complex enterprise software that includes a kind of document management and auditing and is used in pharmacy.
Normally, primitive values are denormalized. For instance, if you just need a current state of the customer when the order was created, I would stored it to the order.
There are always more complex data that that need to be available of almost every point in time. There are two approaches: you create a history of them, or you implement a revision control system, which is almost the same.
The history means that every state that ever existed is stored as a separate record, in the same or another table.
I implemented a revision control system, where I split records into two tables, one for the actual item, lets say a product, and the other one for its versions. This way I can reference the product as a whole, or any specific version of it, because both have its own primary key.
This system is used for many entities. I can safely reference an object under revision control from audit trail for instance or other immutable records. At the beginning it seems to be more complex to have such a system, but at the end it is very straight forward and solves many problems at once.
Storing the price in both the Product table and the OrderItem table is NOT denormalizing if the price can change over time. Normalization rules say that every "fact" should be recorded only once in the database. But in this case, just because both numbers are called "price" doesn't make them the same thing. One is the current price, the other is the price as of the date of the sale. These are very different things. Just like "customer zip code" and "store zip code" are completely different fields; the fact that both might be called "zip code" for short does not make them the same thing. Personally, I have a strong aversion to giving fields that hold different data the same name because it creates confusion. I would not call them both "Price": I would call one "Current_Price" and the other "Sale_Price" or something like that.
Not keeping the price at the time of the sale is clearly wrong. If we need to know this -- which we almost surely do -- than we need to save it.
Duplicating the entire product record for every sale or every time the price changes is also wrong. You almost surely have constant data about a product, like description and supplier, that does not change every time the price changes. If you duplicate the product record, you will be duplicating all this data, which definately IS denormalization. This creates many potential problems. Like, if someone fixes a spelling error in the product description, we might now have the new record saying "4-slice toaster" while the old record says "4-slice taster". If we produce a report and sort on the description, they'll get separated and look like different products. Etc.
If the only data that changes about the product and that you care about is the price, then I'd just post the price into the OrderItem record.
If there's lots of data that changes, then you want to break the Product table into two tables: One for the data that is constant or whose history you don't care about, and another for data where you need to track the history. Like, have a ProductBase table with description, vendor, stock number, shipping weight, etc.; and a ProductMutable table with our cost, sale price, and anything else that routinely changes. You probably also want an as-of date, or at least an indication of which is current. The primary key of ProductMutable could then be Product_id plus As_of_date, or if you prefer simple sequential keys for all tables, fine, it at least has a reference to product_id. The OrderItem table references ProductMutable, NOT ProductBase. We find ProductBase via ProductMutable.
I think Denormalization is the way to go.
Also, Product should not have price (when it changes from time to time & when price mean different value to different people -> retailers, customers, bulk sellers etc).
You could also have a price history table where it contains ProductID, FromDate, ToDate, Price, IsActive - to maintain the price history for a product.

How do you manage "pick lists" in a database

I have an application with multiple "pick list" entities, such as used to populate choices of dropdown selection boxes. These entities need to be stored in the database. How do one persist these entities in the database?
Should I create a new table for each pick list? Is there a better solution?
In the past I've created a table that has the Name of the list and the acceptable values, then queried it to display the list. I also include a underlying value, so you can return a display value for the list, and a bound value that may be much uglier (a small int for normalized data, for instance)
CREATE TABLE PickList(
ListName varchar(15),
Value varchar(15),
Display varchar(15),
Primary Key (ListName, Display)
)
You could also add a sortOrder field if you want to manually define the order to display them in.
It depends on various things:
if they are immutable and non relational (think "names of US States") an argument could be made that they should not be in the database at all: after all they are simply formatting of something simpler (like the two character code assigned). This has the added advantage that you don't need a round trip to the db to fetch something that never changes in order to populate the combo box.
You can then use an Enum in code and a constraint in the DB. In case of localized display, so you need a different formatting for each culture, then you can use XML files or other resources to store the literals.
if they are relational (think "states - capitals") I am not very convinced either way... but lately I've been using XML files, database constraints and javascript to populate. It works quite well and it's easy on the DB.
if they are not read-only but rarely change (i.e. typically cannot be changed by the end user but only by some editor or daily batch), then I would still consider the opportunity of not storing them in the DB... it would depend on the particular case.
in other cases, storing in the DB is the way (think of the tags of StackOverflow... they are "lookup" but can also be changed by the end user) -- possibly with some caching if needed. It requires some careful locking, but it would work well enough.
Well, you could do something like this:
PickListContent
IdList IdPick Text
1 1 Apples
1 2 Oranges
1 3 Pears
2 1 Dogs
2 2 Cats
and optionally..
PickList
Id Description
1 Fruit
2 Pets
I've found that creating individual tables is the best idea.
I've been down the road of trying to create one master table of all pick lists and then filtering out based on type. While it works, it has invariably created headaches down the line. For example you may find that something you presumed to be a simple pick list is not so simple and requires an extra field, do you now split this data into an additional table or extend you master list?
From a database perspective, having individual tables makes it much easier to manage your relational integrity and it makes it easier to interpret the data in the database when you're not using the application
We have followed the pattern of a new table for each pick list. For example:
Table FRUIT has columns ID, NAME, and DESCRIPTION.
Values might include:
15000, Apple, Red fruit
15001, Banana, yellow and yummy
...
If you have a need to reference FRUIT in another table, you would call the column FRUIT_ID and reference the ID value of the row in the FRUIT table.
Create one table for lists and one table for list_options.
# Put in the name of the list
insert into lists (id, name) values (1, "Country in North America");
# Put in the values of the list
insert into list_options (id, list_id, value_text) values
(1, 1, "Canada"),
(2, 1, "United States of America"),
(3, 1, "Mexico");
To answer the second question first: yes, I would create a separate table for each pick list in most cases. Especially if they are for completely different types of values (e.g. states and cities). The general table format I use is as follows:
id - identity or UUID field (I actually call the field xxx_id where xxx is the name of the table).
name - display name of the item
display_order - small int of order to display. Default this value to something greater than 1
If you want you could add a separate 'value' field but I just usually use the id field as the select box value.
I generally use a select that orders first by display order, then by name, so you can order something alphabetically while still adding your own exceptions. For example, let's say you have a list of countries that you want in alpha order but have the US first and Canada second you could say "SELECT id, name FROM theTable ORDER BY display_order, name" and set the display_order value for the US as 1, Canada as 2 and all other countries as 9.
You can get fancier, such as having an 'active' flag so you can activate or deactivate options, or setting a 'x_type' field so you can group options, description column for use in tooltips, etc. But the basic table works well for most circumstances.
Two tables. If you try to cram everything into one table then you break normalization (if you care about that). Here are examples:
LIST
---------------
LIST_ID (PK)
NAME
DESCR
LIST_OPTION
----------------------------
LIST_OPTION_ID (PK)
LIST_ID (FK)
OPTION_NAME
OPTION_VALUE
MANUAL_SORT
The list table simply describes a pick list. The list_ option table describes each option in a given list. So your queries will always start with knowing which pick list you'd like to populate (either by name or ID) which you join to the list_ option table to pull all the options. The manual_sort column is there just in case you want to enforce a particular order other than by name or value. (BTW, whenever I try to post the words "list" and "option" connected with an underscore, the preview window goes a little wacky. That's why I put a space there.)
The query would look something like:
select
b.option_name,
b.option_value
from
list a,
list_option b
where
a.name="States"
and
a.list_id = b.list_id
order by
b.manual_sort asc
You'll also want to create an index on list.name if you think you'll ever use it in a where clause. The pk and fk columns will typically automatically be indexed.
And please don't create a new table for each pick list unless you're putting in "relationally relevant" data that will be used elsewhere by the app. You'd be circumventing exactly the relational functionality that a database provides. You'd be better off statically defining pick lists as constants somewhere in a base class or a properties file (your choice on how to model the name-value pair).
Depending on your needs, you can just have an options table that has a list identifier and a list value as the primary key.
select optionDesc from Options where 'MyList' = optionList
You can then extend it with an order column, etc. If you have an ID field, that is how you can reference your answers back... of if it is often changing, you can just copy the answer value to the answer table.
If you don't mind using strings for the actual values, you can simply give each list a different list_id in value and populate a single table with :
item_id: int
list_id: int
text: varchar(50)
Seems easiest unless you need multiple things per list item
We actually created entities to handle simple pick lists. We created a Lookup table, that holds all the available pick lists, and a LookupValue table that contains all the name/value records for the Lookup.
Works great for us when we need it to be simple.
I've done this in two different ways:
1) unique tables per list
2) a master table for the list, with views to give specific ones
I tend to prefer the initial option as it makes updating lists easier (at least in my opinion).
Try turning the question around. Why do you need to pull it from the database? Isn't the data part of your model but you really want to persist it in the database? You could use an OR mapper like linq2sql or nhibernate (assuming you're in the .net world) or depending on the data you could store it manually in a table each - there are situations where it would make good sense to put it all in the same table but do consider this only if you feel it makes really good sense. Normally putting different data in different tables makes it a lot easier to (later) understand what is going on.
There are several approaches here.
1) Create one table per pick list. Each of the tables would have the ID and Name columns; the value that was picked by the user would be stored based on the ID of the item that was selected.
2) Create a single table with all pick lists. Columns: ID; list ID (or list type); Name. When you need to populate a list, do a query "select all items where list ID = ...". Advantage of this approach: really easy to add pick lists; disadvantage: a little more difficult to write group-by style queries (for example, give me the number of records that picked value X".
I personally prefer option 1, it seems "cleaner" to me.
You can use either a separate table for each (my preferred), or a common picklist table that has a type column you can use to filter on from your application. I'm not sure that one has a great benefit over the other generally speaking.
If you have more than 25 or so, organizationally it might be easier to use the single table solution so you don't have several picklist tables cluttering up your database.
Performance might be a hair better using separate tables for each if your lists are very long, but this is probably negligible provided your indexes and such are set up properly.
I like using separate tables so that if something changes in a picklist - it needs and additional attribute for instance - you can change just that picklist table with little effect on the rest of your schema. In the single table solution, you will either have to denormalize your picklist data, pull that picklist out into a separate table, etc. Constraints are also easier to enforce in the separate table solution.
This has served us well:
SQL> desc aux_values;
Name Type
----------------------------------------- ------------
VARIABLE_ID VARCHAR2(20)
VALUE_SEQ NUMBER
DESCRIPTION VARCHAR2(80)
INTEGER_VALUE NUMBER
CHAR_VALUE VARCHAR2(40)
FLOAT_VALUE FLOAT(126)
ACTIVE_FLAG VARCHAR2(1)
The "Variable ID" indicates the kind of data, like "Customer Status" or "Defect Code" or whatever you need. Then you have several entries, each one with the appropriate data type column filled in. So for a status, you'd have several entries with the "CHAR_VALUE" filled in.

Designing an 'Order' schema in which there are disparate product definition tables

This is a scenario I've seen in multiple places over the years; I'm wondering if anyone else has run across a better solution than I have...
My company sells a relatively small number of products, however the products we sell are highly specialized (i.e. in order to select a given product, a significant number of details must be provided about it). The problem is that while the amount of detail required to choose a given product is relatively constant, the kinds of details required vary greatly between products. For instance:
Product X might have identifying characteristics like (hypothetically)
'Color',
'Material'
'Mean Time to Failure'
but Product Y might have characteristics
'Thickness',
'Diameter'
'Power Source'
The problem (one of them, anyway) in creating an order system that utilizes both Product X and Product Y is that an Order Line has to refer, at some point, to what it is "selling". Since Product X and Product Y are defined in two different tables - and denormalization of products using a wide table scheme is not an option (the product definitions are quite deep) - it's difficult to see a clear way to define the Order Line in such a way that order entry, editing and reporting are practical.
Things I've Tried In the Past
Create a parent table called 'Product' with columns common to Product X and Product Y, then using 'Product' as the reference for the OrderLine table, and creating a FK relationship with 'Product' as the primary side between the tables for Product X and Product Y. This basically places the 'Product' table as the parent of both OrderLine and all the disparate product tables (e.g. Products X and Y). It works fine for order entry, but causes problems with order reporting or editing since the 'Product' record has to track what kind of product it is in order to determine how to join 'Product' to its more detailed child, Product X or Product Y. Advantages: key relationships are preserved. Disadvantages: reporting, editing at the order line/product level.
Create 'Product Type' and 'Product Key' columns at the Order Line level, then use some CASE logic or views to determine the customized product to which the line refers. This is similar to item (1), without the common 'Product' table. I consider it a more "quick and dirty" solution, since it completely does away with foreign keys between order lines and their product definitions. Advantages: quick solution. Disadvantages: same as item (1), plus lost RI.
Homogenize the product definitions by creating a common header table and using key/value pairs for the customized attributes (OrderLine [n] <- [1] Product [1] <- [n] ProductAttribute). Advantages: key relationships are preserved; no ambiguity about product definition. Disadvantages: reporting (retrieving a list of products with their attributes, for instance), data typing of attribute values, performance (fetching product attributes, inserting or updating product attributes etc.)
If anyone else has tried a different strategy with more success, I'd sure like to hear about it.
Thank you.
The first solution you describe is the best if you want to maintain data integrity, and if you have relatively few product types and seldom add new product types. This is the design I'd choose in your situation. Reporting is complex only if your reports need the product-specific attributes. If your reports need only the attributes in the common Products table, it's fine.
The second solution you describe is called "Polymorphic Associations" and it's no good. Your "foreign key" isn't a real foreign key, so you can't use a DRI constraint to ensure data integrity. OO polymorphism doesn't have an analog in the relational model.
The third solution you describe, involving storing an attribute name as a string, is a design called "Entity-Attribute-Value" and you can tell this is a painful and expensive solution. There's no way to ensure data integrity, no way to make one attribute NOT NULL, no way to make sure a given product has a certain set of attributes. No way to restrict one attribute against a lookup table. Many types of aggregate queries become impossible to do in SQL, so you have to write lots of application code to do reports. Use the EAV design only if you must, for instance if you have an unlimited number of product types, the list of attributes may be different on every row, and your schema must accommodate new product types frequently, without code or schema changes.
Another solution is "Single-Table Inheritance." This uses an extremely wide table with a column for every attribute of every product. Leave NULLs in columns that are irrelevant to the product on a given row. This effectively means you can't declare an attribute as NOT NULL (unless it's in the group common to all products). Also, most RDBMS products have a limit on the number of columns in a single table, or the overall width in bytes of a row. So you're limited in the number of product types you can represent this way.
Hybrid solutions exist, for instance you can store common attributes normally, in columns, but product-specific attributes in an Entity-Attribute-Value table. Or you could store product-specific attributes in some other structured way, like XML or YAML, in a BLOB column of the Products table. But these hybrid solutions suffer because now some attributes must be fetched in a different way
The ultimate solution for situations like this is to use a semantic data model, using RDF instead of a relational database. This shares some characteristics with EAV but it's much more ambitious. All metadata is stored in the same way as data, so every object is self-describing and you can query the list of attributes for a given product just as you would query data. Special products exist, such as Jena or Sesame, implementing this data model and a special query language that is different than SQL.
There's no magic bullet that you've overlooked.
You have what are sometimes called "disjoint subclasses". There's the superclass (Product) with two subclasses (ProductX) and (ProductY). This is a problem that -- for relational databases -- is Really Hard. [Another hard problem is Bill of Materials. Another hard problem is Graphs of Nodes and Arcs.]
You really want polymorphism, where OrderLine is linked to a subclass of Product, but doesn't know (or care) which specific subclass.
You don't have too many choices for modeling. You've pretty much identified the bad features of each. This is pretty much the whole universe of choices.
Push everything up to the superclass. That's the uni-table approach where you have Product with a discriminator (type="X" and type="Y") and a million columns. The columns of Product are the union of columns in ProductX and ProductY. There will be nulls all over the place because of unused columns.
Push everything down into the subclasses. In this case, you'll need a view which is the union of ProductX and ProductY. That view is what's joined to create a complete order. This is like the first solution, except it's built dynamically and doesn't optimize well.
Join Superclass instance to subclass instance. In this case, the Product table is the intersection of ProductX and ProductY columns. Each Product has a reference to a key either in ProductX or ProductY.
There isn't really a bold new direction. In the relational database world-view, those are the choices.
If, however, you elect to change the way you build application software, you can get out of this trap. If the application is object-oriented, you can do everything with first-class, polymorphic objects. You have to map from the kind-of-clunky relational processing; this happens twice: once when you fetch stuff from the database to create objects and once when you persist objects back to the database.
The advantage is that you can describe your processing succinctly and correctly. As objects, with subclass relationships.
The disadvantage is that your SQL devolves to simplistic bulk fetches, updates and inserts.
This becomes an advantage when the SQL is isolated into an ORM layer and managed as a kind of trivial implementation detail. Java programmers use iBatis (or Hibernate or TopLink or Cocoon), Python programmers use SQLAlchemy or SQLObject. The ORM does the database fetches and saves; your application directly manipulate Orders, Lines and Products.
This might get you started. It will need some refinement
Table Product ( id PK, name, price, units_per_package)
Table Product_Attribs (id FK ref Product, AttribName, AttribValue)
Which would allow you to attach a list of attributes to the products. -- This is essentially your option 3
If you know a max number of attributes, You could go
Table Product (id PK, name, price, units_per_package, attrName_1, attrValue_1 ...)
Which would of course de-normalize the database, but make queries easier.
I prefer the first option because
It supports an arbitrary number of attributes.
Attribute names can be stored in another table, and referential integrity enforced so that those damn Canadians don't stick a "colour" in there and break reporting.
Does your product line ever change?
If it does, then creating a table per product will cost you dearly, and the key/value pairs idea will serve you well. That's the kind of direction down which I am naturally drawn.
I would create tables like this:
Attribute(attribute_id, description, is_listed)
-- contains values like "colour", "width", "power source", etc.
-- "is_listed" tells us if we can get a list of valid values:
AttributeValue(attribute_id, value)
-- lists of valid values for different attributes.
Product (product_id, description)
ProductAttribute (product_id, attribute_id)
-- tells us which attributes apply to which products
Order (order_id, etc)
OrderLine (order_id, order_line_id, product_id)
OrderLineProductAttributeValue (order_line_id, attribute_id, value)
-- tells us things like: order line 999 has "colour" of "blue"
The SQL to pull this together is not trivial, but it's not too complex either... and most of it will be write once and keep (either in stored procedures or your data access layer).
We do similar things with a number of types of entity.
Chris and AJ: Thanks for your responses. The product line may change, but I would not term it "volatile".
The reason I dislike the third option is that it comes at the cost of metadata for the product attribute values. It essentially turns columns into rows, losing most of the advantages of the database column in the process (data type, default value, constraints, foreign key relationships etc.)
I've actually been involved in a past project where the product definition was done in this way. We essentially created a full product/product attribute definition system (data types, min/max occurrences, default values, 'required' flags, usage scenarios etc.) The system worked, ultimately, but came with a significant cost in overhead and performance (e.g. materialized views to visualize products, custom "smart" components to represent and validate data entry UI for product definition, another "smart" component to represent the product instance's customizable attributes on the order line, blahblahblah).
Again, thanks for your replies!

Resources