What does "bulk load" mean? - database

Jumping from article to article, I can see everywhere the expression "bulk loading".
What does it really (technically) mean?
What does it imply?
Explanation based on use-cases is welcome.

Indexes are usually optimized for inserting rows one at a time. When you are adding a great deal of data at once, inserting rows one at a time may be inefficient. For instance, with a B-Tree, the optimal way to insert a single key is very poor way of adding a bunch of data to an empty index.
Instead you pursue a different strategy with B-Trees. You presort all of the data, and group it in blocks. You can then build a new B-Tree by transforming the blocks into tree nodes. Although both techniques have the same asymptotic performance, O(n log(n)), the bulk-load operation has much smaller factor.

Bulk loading is a way to load data (typically into a database) in 'large chunks'. Where you might enter a customer or a purchase order or information about items in inventory one at a time into your system, bulk loading takes a file of this same sort of information and loads hundreds/thousands/millions of records in a short period of time.
If you convert from one kind of DBMS to another, you would hope not to enter all the information into the new DB from the old DB. Instead, you would dump the information from the old DB to a file in a format that can be easily read by the new DB and then import that data into the new DB.
That's what bulk loading entails (at the 35K foot level, anyway)

Bulk loading is used to import/export large amounts of data. Usually bulk operations are not logged and transactional integrity might not work as expected. Often bulk operations bypass triggers and integrity checks like constraints. This improves performance, for large amounts of data, quite significantly.

One thing to remember is that bulk loading implies that the data content from the source to target is the same, but this is only true if the source system is acquiesced. For any data source, and especially true of large data, the source data can change after it has been read and the data transfer is happening. Traditionally online systems either have to go off line or suspend updates if an exact point it time capture that matches the source is required.

Related

Possible bottlenecks when inserting and updating BYTEA rows?

The project requires storing binary data into PostgreSQL (project requirement) database. For that purpose we made a table with following columns:
id : integer, primary key, generated by client
data : bytea, for storing client binary data
The client is a C++ program, running on Linux.
The rows must be inserted (initialized with a chunk of binary data), and after that updated (concatenating additional binary data to data field).
Simple tests have shown that this yields better performance.
Depending on your inputs, we will make client use concurrent threads to insert / update data (with different DB connections), or a single thread with only one DB connection.
We haven't much experience with PostgreSQL, so could you help us with some pointers concerning possible bottlenecks, and whether using multiple threads to insert data is better than using a single thread.
Thank you :)
Edit 1:
More detailed information:
there will be only one client accessing the database, using only one Linux process
database and client are on the same high performance server, but this must not matter, client must be fast no matter the machine, without additional client configuration
we will get new stream of data every 10 seconds, stream will provide new 16000 bytes per 0.5 seconds (CBR, but we can use buffering and only do inserts every 4 seconds max)
stream will last anywhere between 10 seconds and 5 minutes
It makes extremely little sense that you should get better performance inserting a row then appending to it if you are using bytea.
PostgreSQL's MVCC design means that an UPDATE is logically equivalent to a DELETE and an INSERT. When you insert the row then update it, what's happening is that the original tuple you inserted is marked as deleted and new tuple is written that contains the concatentation of the old and added data.
I question your testing methodology - can you explain in more detail how you determined that insert-then-append was faster? It makes no sense.
Beyond that, I think this question is too broad as written to really say much of use. You've given no details or numbers; no estimates of binary data size, rowcount estimates, client count estimates, etc.
bytea insert performance is no different to any other insert performance tuning in PostgreSQL. All the same advice applies: Batch work into transactions, use multiple concurrent sessions (but not too many; rule of thumb is number_of_cpus + number_of_hard_drives) to insert data, avoid having transactions use each others' data so you don't need UPDATE locks, use async commit and/or a commit_delay if you don't have a disk subsystem with a safe write-back cache like a battery-backed RAID controller, etc.
Given the updated stats you provided in the main comments thread, the amount of data you want to consume sounds entirely practical with appropriate hardware and application design. Your peak load might be achievable even on a plain hard drive if you had to commit every block that came in, since it'd require about 60 transactions per second. You could use a commit_delay to achieve group commit and significantly lower fsync() overhead, or even use synchronous_commit = off if you can afford to lose a time window of transactions in case of a crash.
With a write-back caching storage device like a battery-backed cache RAID controller or an SSD with reliable power-loss-safe cache, this load should be easy to cope with.
I haven't benchmarked different scenarios for this, so I can only speak in general terms. If designing this myself, I'd be concerned about checkpoint stalls with PostgreSQL, and would want to make sure I could buffer a bit of data. It sounds like you can so you should be OK.
Here's the first approach I'd test, benchmark and load-test, as it's in my view probably the most practical:
One connection per data stream, synchronous_commit = off + a commit_delay.
INSERT each 16kb record as it comes in into a staging table (if possible UNLOGGED or TEMPORARY if you can afford to lose incomplete records) and let Pg synchronize and group up commits. When each stream ends, read the byte arrays, concatenate them, and write the record to the final table.
For absolutely best speed with this approach, implement a bytea_agg aggregate function for bytea as an extension module (and submit it to PostgreSQL for inclusion in future versions). In reality it's likely you can get away with doing the bytea concatenation in your application by reading the data out, or with the rather inefficient and nonlinearly scaling:
CREATE AGGREGATE bytea_agg(bytea) (SFUNC=byteacat,STYPE=bytea);
INSERT INTO final_table SELECT stream_id, bytea_agg(data_block) FROM temp_stream_table;
You would want to be sure to tune your checkpointing behaviour, and if you were using an ordinary or UNLOGGED table rather than a TEMPORARY table to accumulate those 16kb records, you'd need to make sure it was being quite aggressively VACUUMed.
See also:
Whats the fastest way to do a bulk insert into Postgres?
How to speed up insertion performance in PostgreSQL

Fast read-only embedded "database"?

I'm looking to distribute some information to different machines for efficient and extremely fast access without any network overhead. The data exists in a relational schema, and it is a requirement to "join" on relations between entities, but it is not a requirement to write to the database at all (it will be generated offline).
I had alot of confidence that SQLite would deliver on performance, but RDMBS seems to be unsuitable at a fundamental level: joins are very expensive due to cost of index lookups, and in my read-only context, are an unnecessary overhead, where entities could store direct references to each other in the form of file offsets. In this way, an index lookup is switched for a file seek.
What are my options here? Database doesn't really seem to describe what I'm looking for. I'm aware of Neo4j, but I can't embed Java in my app.
TIA!
Edit, to answer the comments:
The data will be up to 1gb in size, and I'm using PHP so keeping the data in memory is not really an option. I will rely on the OS buffer cache to avoid continually going to disk.
Example would be a Product table with 15 fields of mix type, and a query to list products with a certain make, joining on a Category table.
The solution will have to be some kind of flat file. I'm wondering if there already exists some software that meets my needs.
#Mark Wilkins:
The performance problem is measured. Essentially, it is unacceptable in my situation to replace a 2ms IO bound query to Memcache with an 5ms CPU bound call to SQLite... For example, the categories table has 500 records, containing parent and child categories. The following query takes ~8ms, with no disk IO: SELECT 1 FROM categories a INNER JOIN categories B on b.id = a.parent_id. Some simpler, join-less queries are very fast.
I may not be completely clear on your goals as to the types of queries you are needing. But the part about storing file offsets to other data seems like it would be a very brittle solution that is hard to maintain and debug. There might be some tool that would help with it, but my suspicion is that you would end up writing most of it yourself. If someone else had to come along later and debug and figure out a homegrown file format, it would be more work.
However, my first thought is to wonder if the described performance problem is estimated at this point or actually measured. Have you run the tests with the data in a relational format to see how fast it actually is? It is true that a join will almost always involve more file reads (do the binary search as you mentioned and then get the associated record information and then lookup that record). This could take 4 or 5 or more disk operations ... at first. But in the categories table (from the OP), it could end up cached if it is commonly hit. This is a complete guess on my part, but in many situations the number of categories is relatively small. If that is the case here, the entire category table and its index may stay cached in memory by the OS and thus result in very fast joins.
If the performance is indeed a real problem, another possibility might be to denormalize the data. In the categories example, just duplicate the category value/name and store it with each product record. The database size will grow as a result, but you could still use an embedded database (there are a number of possibilities). If done judiciously, it could still be maintained reasonably well and provide the ability to read full object with one lookup/seek and one read.
In general probably the fastest thing you can do at first is to denormalize your data thus avoiding JOINs and other mutli-table lookups.
Using SQLite you can certainly customize all sorts of things and tailor them to your needs. For example, disable all mutexing if you're only accessing via one thread, up the memory cache size, customize indexes (including getting rid of many), custom build to disable unnecessary meta data, debugging, etc.
Take a look at the following:
PRAGMA Statements: http://www.sqlite.org/pragma.html
Custom Builds of SQLite: http://www.sqlite.org/custombuild.html
SQLite Query Planner: http://www.sqlite.org/optoverview.html
SQLite Compile Options: http://www.sqlite.org/compile.html
This is all of course assuming a database is what you need.

How should I store extremely large amounts of traffic data for easy retrieval?

for a traffic accounting system I need to store large amounts of datasets about internet packets sent through our gateway router (containing timestamp, user id, destination or source ip, number of bytes, etc.).
This data has to be stored for some time, at least a few days. Easy retrieval should be possible as well.
What is a good way to do this? I already have some ideas:
Create a file for each user and day and append every dataset to it.
Advantage: It's probably very fast, and data is easy to find given a consistent file layout.
Disadvantage: It's not easily possible to see e.g. all UDP traffic of all users.
Use a database
Advantage: It's very easy to find specific data with the right SQL query.
Disadvantage: I'm not sure if there is a database engine that can efficiently handle a table with possibly hundreds of millions datasets.
Perhaps it's possible to combine the two approaches: Using an SQLite database file for each user.
Advantage: It would be easy to get information for one user using SQL queries on his file.
Disadvantage: Getting overall information would still be difficult.
But perhaps someone else has a very good idea?
Thanks very much in advance.
First, get The Data Warehouse Toolkit before you do anything.
You're doing a data warehousing job, you need to tackle it like a data warehousing job. You'll need to read up on the proper design patterns for this kind of thing.
[Note Data Warehouse does not mean crazy big or expensive or complex. It means Star Schema and smart ways to handle high volumes of data that's never updated.]
SQL databases are slow, but that slow is good for flexible retrieval.
The filesystem is fast. It's a terrible thing for updating, but you're not updating, you're just accumulating.
A typical DW approach for this is to do this.
Define the "Star Schema" for your data. The measurable facts and the attributes ("dimensions") of those facts. Your fact appear to be # of bytes. Everything else (address, timestamp, user id, etc.) is a dimension of that fact.
Build the dimensional data in a master dimension database. It's relatively small (IP addresses, users, a date dimension, etc.) Each dimension will have all the attributes you might ever want to know. This grows, people are always adding attributes to dimensions.
Create a "load" process that takes your logs, resolves the dimensions (times, addresses, users, etc.) and merges the dimension keys in with the measures (# of bytes). This may update the dimension to add a new user or a new address. Generally, you're reading fact rows, doing lookups and writing fact rows that have all the proper FK's associated with them.
Save these load files on the disk. These files aren't updated. They just accumulate. Use a simple notation, like CSV, so you can easily bulk load them.
When someone wants to do analysis, build them a datamart.
For the selected IP address or time frame or whatever, get all the relevant facts, plus the associated master dimension data and bulk load a datamart.
You can do all the SQL queries you want on this mart. Most of the queries will devolve to SELECT COUNT(*) and SELECT SUM(*) with various GROUP BY and HAVING and WHERE clauses.
I think the proper answer really depends on the definition of a "dataset". As you mention in your question you are storing individual sets of information for each record; timestamp, userid, destination ip, source ip, number of bytes etc..
SQL Server is perfectly capable of handing this type of data storage with hundreds of millions of records without any real difficulty. Granted this type of logging is going to require some good hardware to handle it, but it shouldn't be too complex.
Any other solution in my opinion is going to make reporting very hard, and from the sounds of it that is an important requirement.
So you are in one of the cases where you have much more write activity than read, you want your writes not to block you, and you want your reads to be "reasonably fast" but not critical. It's a typical business intelligence use case.
You should probably use a database and store your data in as a "denormalized" schema to avoid complex joins and multiple inserts for each record. Think of your table as a huge log file.
In this case, some of the "new and fancy" NoSQL databases are probably what you're looking for: they provide relaxed ACID constraints, which you should not terribly mind here (in case of crash, you can loose the last lines of your log), but they perform much better for insertion, because they don't have to sync journals on disk at each transaction.

Database scalability - performance vs. database size

I'm creating an app that will have to put at max 32 GB of data into my database. I am using B-tree indexing because the reads will have range queries (like from 0 < time < 1hr).
At the beginning (database size = 0GB), I will get 60 and 70 writes per millisecond. After say 5GB, the three databases I've tested (H2, berkeley DB, Sybase SQL Anywhere) have REALLY slowed down to like under 5 writes per millisecond.
Questions:
Is this typical?
Would I still see this scalability issue if I REMOVED indexing?
What are the causes of this problem?
Notes:
Each record consists of a few ints
Yes; indexing improves fetch times at the cost of insert times. Your numbers sound reasonable - without knowing more.
You can benchmark it. You'll need to have a reasonable amount of data stored. Consider whether or not to index based upon the queries - heavy fetch and light insert? index everywhere a where clause might use it. Light fetch, heavy inserts? Probably avoid indexes. Mixed workload; benchmark it!
When benchmarking, you want as real or realistic data as possible, both in volume and on data domain (distribution of data, not just all "henry smith" but all manner of names, for example).
It is typical for indexes to sacrifice insert speed for access speed. You can find that out from a database table (and I've seen these in the wild) that indexes every single column. There's nothing inherently wrong with that if the number of updates is small compared to the number of queries.
However, given that:
1/ You seem to be concerned that your writes slow down to 5/ms (that's still 5000/second),
2/ You're only writing a few integers per record; and
3/ You're queries are only based on time queries,
you may want to consider bypassing a regular database and rolling your own sort-of-database (my thoughts are that you're collecting real-time data such as device readings).
If you're only ever writing sequentially-timed data, you can just use a flat file and periodically write the 'index' information separately (say at the start of every minute).
This will greatly speed up your writes but still allow a relatively efficient read process - worst case is you'll have to find the start of the relevant period and do a scan from there.
This of course depends on my assumption of your storage being correct:
1/ You're writing records sequentially based on time.
2/ You only need to query on time ranges.
Yes, indexes will generally slow inserts down, while significantly speeding up selects (queries).
Do keep in mind that not all inserts into a B-tree are equal. It's a tree; if all you do is insert into it, it has to keep growing. The data structure allows for some padding, but if you keep inserting into it numbers that are growing sequentially, it has to keep adding new pages and/or shuffle things around to stay balanced. Make sure that your tests are inserting numbers that are well distributed (assuming that's how they will come in real life), and see if you can do anything to tell the B-tree how many items to expect from the beginning.
Totally agree with #Richard-t - it is quite common in offline/batch scenarios to remove indexes completely before bulk updates to a corpus, only to reapply them when update is complete.
The type of indices applied also influence insertion performance - for example with SQL Server clustered index update I/O is used for data distribution as well as index update, where as nonclustered indexes are updated in seperate (and therefore more expensive) I/O operations.
As with any engineering project - best advice is to measure with real datasets (skews page distribution, tearing etc.)
I think somewhere in the BDB docs they mention that page size greatly affects this behavior in btree's. Assuming you arent doing much in the way of concurrency and you have fixed record sizes, you should try increasing your page size

What slows down growing database performance?

I'm creating a database, and prototyping and benchmarking first. I am using H2, an open-source, commercially free, embeddable, relational, java database. I am not currently indexing on any column.
After the database grew to about 5GB, its batch write speed doubled (the rate of writing was slowed 2x the original rate). I was writing roughly 25 rows per milliseconds with a fresh, clean database and now at 7GB I'm writing roughly 7 rows/ms. My rows consist of a short, an int, a float, and a byte[5].
I do not know much about database internals or even how H2 was programmed. I would also like to note I'm not badmouthing H2, since this is a problem with other DBMSs I've tested.
What factors might slow down the database like this if there's no indexing overhead? Does it mainly have something to do with the file system structure? From my results, I assume the way windows XP and ntfs handle files makes it slower to append data to the end of a file as the file grows.
One factor that can complicate inserts as a database grows is the number of indexes on the table, and the depth of those indexes if they are B-trees or similar. There's simply more work to do, and it may be that you're causing index nodes to split, or you may simply have moved from, say, a 5-level B-tree to a 6-level one (or. more generally, from N to N+1 levels).
Another factor could be disk space usage -- if you are using cooked files (that's the normal kind for most people most of the time; some DBMS use 'raw files' on Unix, but it is unlikely that your embedded system would do so, and you'd know if it did because you'd have to tell it to do so), it could be that your bigger tables are now fragmented across the disk, leading to worse performance.
If the problem was on SELECT performance, there could be many other factors also affecting your system's performance.
This sounds about right. Database performance usually drops significantly as the data can no longer be held in memory and operations become disk bound. If you are using normal insert operations, and want a significant performance improvement, I suggest using some sort of a bulk load API if H2 supports it (like Oracle sqlldr, Sybase BCP, Mysql 'load data infile'). This type of API writes data directly to the data-file bypassing many of the database subsystems.
This is most likely caused by variable width fields. I don't know if H2 allows this, but in MySQL, you have to create your table with all fixed width fields, then explicitly declare it as a fixed width field table. This allows MySQL to calculate exactly where it needs to go in the database file to do the insert. If you aren't using a fixed width table, then it has to read through the table to find the end of the last row.
Appending data (if done right) is an O(n) operation, where n is the length of the data to be written. It doesn't depend on the file length, there are seek operations to skip over that easily.
For most databases, appending to a database file is definitely slower than pre-growing the file and then adding rows. See if H2 supports pre-growing the file.
Another cause is whether the entire database is held in memory or if the OS has to do a lot of disk swapping to find the location to store the record.
I would blame it on I/O, specially if you're running your database on a normal PC with a normal hard disk (by that I mean not in server with super fast hard drives, etc).
Many database engines create an implicit integer primary key for each update, so even if you haven't declared any indexes, your table is still indexed. This may be a factor.
Using H2 for 7G datafile is a wrong choice from technological point of view. As you said, embeddable. What kind of "embedded" application do you have, if you need to store so much data.
Are you performing incremental commits? Since H2 is an ACID compliant database, if you are not performing incremental commits, then there is some type of redo log so that in the case of some accidental failure (say, power outage) or rollback, the deletes can be rolled back.
In that case, your redo log may be growing large and overflowing memory buffers and needing to write out your redo log to disk, as well as your actual data, adding to your I/O overhead.

Resources