Propery Setting Up Neural Network for Location to Location Analysis - artificial-intelligence

I am attempting to train a neural network for a system that can be thought of as a macro-level postal network. My inputs are two locations (one of the 50 US states) along with 1 to 3 other variables, and I want a numeric result out.
My first inclination was to represent the states as a numeric value from 0-49 and then then have a network with only 3 or so inputs. What I've found, however, is that my training never converges on a useful value. I am assuming that this is because the values for the states are wholly arbitrary - a value of 39 for MA has no relation to a value of 38 for CA, especially when 37 represents a jump back to CT.
Is there a better way for me to do this? Should I be creating a network with over 100 inputs, representing boolean values for origin and destination states?

I think that your intuition about the difficulty of representing different states as consecutive integers is correct -- that representation compresses a lot of information into each input. That means that your network might have to learn a lot about how to decode that information into facts that are actually useful in solving your problem.
One state per input, with boolean inputs, could help. It would make it easier for the network to figure out which two states you're talking about. Of course, that approach doesn't necessarily make it easy for the network to learn useful facts like which states are adjacent to eachother.
It might be useful to try to determine if there are any kinds of information out there that are both easy for you to provide and that also might make learning easier. For example, if the physical layout of the states is important to solving your problem (i.e. CT is adjacent to NY, which is adjacent to PA) then perhaps you could break the country into regions (e.g. northwest, southeast, midwest) and provide boolean inputs for each region.
Feeding a few input schemes like that into a single network could allow you to specify a single state using a (potentially) more useful representation: instead of saying "it's state #39", you could say (for example) "it's the northernmost state that touches more than five neighboring states in the eastern region".
If the network finds it useful to determine if two states are near eachother, this kind of representation might make learning go a bit faster -- the network could get a rough idea if two states are close by simply comparing the two "region" inputs for the states. Checking whether two region inputs are equal is a lot easier than memorizing the fact that state #39 is near states #38, #21, #7, and #42.

Related

How do I handle uncertainty/missing data in an Artifical Neural Network?

The context:
I'm experimenting with using a feed-forward artificial neural network to create AI for a video game, and I've run into the problem that some of my input features are dependent upon the existence or value of other input features.
The most basic, simplified example I can think of is this:
feature 1 is the number of players (range 2...5)
feature 2 to ? is the score of each player (range >=0)
The number of features needed to inform the ANN of the scores is dependent on the number of players.
The question: How can I represent this dynamic knowledge input to an ANN?
Things I've already considered:
Simply not using such features, or consolidating them into static input.
I.E using the sum of the players scores instead. I seriously doubt this is applicable to my problem, it would result in the loss of too much information and the ANN would fail to perform well.
Passing in an error value (eg -1) or default value (eg 0) for non-existant input
I'm not sure how well this would work, in theory the ANN could easily learn from this input and model the function appropriately. In practise I'm worried about the sheer number of non-existant input causing problems for the ANN. For example if the range of players was 2-10, if there were only 2 players, 80% of the input data would be non-existant and would introduce weird bias into the ANN resulting in a poor performance.
Passing in the mean value over the training set in place on non-existant input
Again, the amount of non-existant input would be a problem, and I'm worried this would introduce weird problems for discrete-valued inputs.
So, I'm asking this, does anybody have any other solutions I could think about? And is there a standard or commonly used method for handling this problem?
I know it's a rather niche and complicated question for SO, but I was getting bored of the "how do I fix this code?" and "how do I do this in PHP/Javascript?" questions :P, thanks guys.
It sounds like you have multiple data sets (for each number of players) that aren't really compatible with each other. Would lessons learned from a 5-player game really apply to a 2-player game? Try simplifying the problem, such as #1, and see how the program performs. In AI, absurd simplifications can sometimes give you a lot of traction, like bag of words in spam filters.
Try thinking about some model like the following:
Say xi (e.g. x1) is one of the inputs that a variable number of can exist. You can have n of these (x1 to xn). Let y be the rest of the inputs.
On your first hidden layer, pass x1 and y to the first c nodes, x1,x2 and y to the next c nodes, x1,x2,x3 and y to the next c nodes, and so on. This assumes x1 and x3 can't both be active without x2. The model will have to change appropriately if this needs to be possible.
The rest of the network is a standard feed-forward network with all nodes connected to all nodes of the next layer, or however you choose.
Whenever you have w active inputs, disable all but the wth set of c nodes (completely exclude them from training for that input set, don't include them when calculating the value for the nodes they output to, don't update the weights for their inputs or outputs). This will allow most of the network to train, but for the first hidden layer, only parts applicable to that number of inputs.
I suggest c is chosen such that c*n (the number of nodes in the first hidden layer) is greater than (or equal to) the number of nodes in the 2nd hidden layer (and have c be at the very least 10 for a moderately sized network (into the 100s is also fine)) and I also suggest the network have at least 2 other hidden layers (so 3 in total excluding input and output). This is not from experience, but just what my intuition tells me.
This working is dependent on a certain (possibly undefinable) similarity between the different numbers of inputs, and might not work well, if at all, if this similarity doesn't exist. This also probably requires quite a bit of training data for each number of inputs.
If you try it, let me / us know if it works.
If you're interested in Artificial Intelligence discussions, I suggest joining some Linked-In group dedicated to it, there are some that are quite active and have interesting discussions. There doesn't seem to be much happening on stackoverflow when it comes to Artificial Intelligence, or maybe we should just work to change that, or both.
UPDATE:
Here is a list of the names of a few decent Artificial Intelligence LinkedIn groups (unless they changed their policies recently, it should be easy enough to join):
'Artificial Intelligence Researchers, Faculty + Professionals'
'Artificial Intelligence Applications'
'Artificial Neural Networks'
'AGI — Artificial General Intelligence'
'Applied Artificial Intelligence' (not too much going on at the moment, and still dealing with some spam, but it is getting better)
'Text Analytics' (if you're interested in that)

nominal-value inputs for Neural Network

I have a set of training data, each item in this set consists of 4 numerical values and 1 nominal-value which is the name of the method that these values have been calculated with. (There are 8 methods)
I'm training a Neural Network with these. To get rid of the nominal-value I simply assigned a value from 1 to 8 to each method and used one input to pass it to Neural Network and 4 other inputs for numerical-values. It is sort of working, but the result is not as amazing as I want.
So my question is could it be because of this simple assignment of numbers to nominal-values? or maybe it is because of mixing two different categories of inputs which are not really at the same level (numbers and method types)
As a general note, a better way for coding nominal values would be a binary vector. In your case, in addition to the 4 continuous-valued inputs, you'd have 8 binary input neurons, where only one is activated (1) and the other 7 are inactive.
The way you did it implies an artificial relationship between the computation methods, which is almost certainly an artifact. For example, 1 and 2 are numerically (and from your network's point of view!) nearer than 1 and 8. But are the methods nr. 1 and 2 really more similar, or related, than the methods 1 and 8?
Since you don't provide much detail, my answer can't be very specific.
Generally speaking neural networks tend to perform worse when coding nominal values as numeric values since the transformation will impose a (probably) false ordering on the variables. Mixing inputs with very varied levels also tend to worsen the performance.
However, given the little information provided here there is no way of telling if this is the reason that the networks performance is "not as amazing" as you want. It could just as well be the case that you don't have enough training data, or that your training data contains a lot of noise. Perhaps you need to pre-scale your data, perhaps there is an error in your network code, perhaps you have chosen ill-suited values of constants for your learning algorithm...
The reasons a neural network doesn't perform as expected are many and diverse (on of them beeing unreasonably high expectations). Without much more information there is no way of knowing what the problem is in your case.
Mapping categories to numerical values is not a good practice in statistics. Especially in the case of neural networks. Bear in mind that neural networks tend to map similar inputs to similar outputs. If you map category A to 1 and category B to 2 (both as inputs), the NN will try to output similar values for both categories, even if they have nothing to do with each other.
A sparser representation is preferred. If you have 4 categories, map them like this:
A -> 0001
B -> 0010
etc
Take a look at the "Subject: How should categories be encoded?" in this link:
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_cat
The previous answers are right - do not map nominal values into arbitrary numeric ones. However, if the attribute has an ordinal nature ("Low", "Medium", High" for example), you can replace the nominal values by ascending numeric values. Note that this may not be the optimal solution - since there is no guarantee for example that "High"=3 by the nature of your data. Instead, use one-hot bit encoding as suggested.
The reason for this is that a neural network is very similar to regression in the sense that multiple numeric values go through some kind of an aggregating function - but this happens multiple times. Each input is also multiplied by a weight.
So when you enter a numeric value, it undergoes a series of mathematical manipulations that adjusts its weights in the network. So if you use numeric values for non-nomial data - nominal values that were mapped to closer numeric values will be treated about the same in the best case, in the worst case - it can harm your model.

Continuous output in Neural Networks

How can I set Neural Networks so they accept and output a continuous range of values instead of a discrete ones?
From what I recall from doing a Neural Network class a couple of years ago, the activation function would be a sigmoid, which yields a value between 0 and 1. If I want my neural network to yield a real valued scalar, what should I do? I thought maybe if I wanted a value between 0 and 10 I could just multiply the value by 10? What if I have negative values? Is this what people usually do or is there any other way? What about the input?
Thanks
Much of the work in the field of neuroevolution involves using neural networks with continuous inputs and outputs.
There are several common approaches:
One node per value
Linear activation functions - as others have noted, you can use non-sigmoid activation functions on output nodes if you are concerned about the limited range of sigmoid functions. However, this can cause your output to become arbitrarily large, which can cause problems during training.
Sigmoid activation functions - simply scaling sigmoid output (or shifting and scaling, if you want negative values) is a common approach in neuroevolution. However, it is worth making sure that your sigmoid function isn't too steep: a steep activation function means that the "useful" range of values is small, which forces network weights to be small. (This is mainly an issue with genetic algorithms, which use a fixed weight modification strategy that doesn't work well when small weights are desired.)
(source: natekohl.net)
(source: natekohl.net)
Multiple nodes per value - spreading a single continuous value over multiple nodes is a common strategy for representing continuous inputs. It has the benefit of providing more "features" for a network to play with, at the cost of increasing network size.
Binning - spread a single input over multiple nodes (e.g. RBF networks, where each node is a basis function with a different center that will be partially activated by the input). You get some of the benefits of discrete inputs without losing a smooth representation.
Binary representation - divide a single continuous value into 2N chunks, then feed that value into the network as a binary pattern to N nodes. This approach is compact, but kind of brittle and results in input that changes in a non-continuous manner.
There are no rules which require the output ( * ) to be any particular function. In fact we typically need to add some arithmetic operations at the end of the function per-se implemented in a given node, in order to scale and otherwise coerce the output to a particular form.
The advantage of working with all-or-nothing outputs and/or 0.0 to 1.0 normalized output is that it makes things more easily tractable, and also avoid issues of overflowing and such.
( * ) "Output" can be understood here as either the ouptut a given node (neuron) within the network or that of the network as a whole.
As indicated by Mark Bessey the input [to the network as a whole] and the output [of the network] typically receive some filtering/conversion. As hinted in this response and in Mark's comment, it may be preferable to have normalized/standard nodes in the "hidden" layers of the network, and apply some normalization/conversion/discretization as required for the input and/or for the output of the network; Such practice is however only a matter of practicality rather than an imperative requirement of Neural Networks in general.
You will typically need to do some filtering (level conversion, etc) on both the input and the output. Obviously, filtering the input will change the internal state, so some consideration needs to be given to not losing the signal you're trying to train on.

How are neural networks used when the number of inputs could be variable?

All the examples I have seen of neural networks are for a fixed set of inputs which works well for images and fixed length data. How do you deal with variable length data such sentences, queries or source code? Is there a way to encode variable length data into fixed length inputs and still get the generalization properties of neural networks?
I have been there, and I faced this problem.
The ANN was made for fixed feature vector length, and so are many other classifiers such as KNN, SVM, Bayesian, etc.
i.e. the input layer should be well defined and not varied, this is a design problem.
However, some researchers opt for adding zeros to fill the missing gap, I personally think that this is not a good solution because those zeros (unreal values) will affect the weights that the net will converge to. in addition there might be a real signal ending with zeros.
ANN is not the only classifier, there are more and even better such as the random forest. this classifier is considered the best among researchers, it uses a small number of random features, creating hundreds of decision trees using bootstrapping an bagging, this might work well, the number of the chosen features normally the sqrt of the feature vector size. those features are random. each decision tree converges to a solution, using majority rules the most likely class will chosen then.
Another solution is to use the dynamic time warping DTW, or even better to use Hidden Markov models HMM.
Another solution is the interpolation, interpolate (compensate for missing values along the small signal) all the small signals to be with the same size as the max signal, interpolation methods include and not limited to averaging, B-spline, cubic.....
Another solution is to use feature extraction method to use the best features (the most distinctive), this time make them fixed size, those method include PCA, LDA, etc.
another solution is to use feature selection (normally after feature extraction) an easy way to select the best features that give the best accuracy.
that's all for now, if non of those worked for you, please contact me.
You would usually extract features from the data and feed those to the network. It is not advisable to take just some data and feed it to net. In practice, pre-processing and choosing the right features will decide over your success and the performance of the neural net. Unfortunately, IMHO it takes experience to develop a sense for that and it's nothing one can learn from a book.
Summing up: "Garbage in, garbage out"
Some problems could be solved by a recurrent neural network.
For example, it is good for calculating parity over a sequence of inputs.
The recurrent neural network for calculating parity would have just one input feature.
The bits could be fed into it over time. Its output is also fed back to the hidden layer.
That allows to learn the parity with just two hidden units.
A normal feed-forward two-layer neural network would require 2**sequence_length hidden units to represent the parity. This limitation holds for any architecture with just 2 layers (e.g., SVM).
I guess one way to do it is to add a temporal component to the input (recurrent neural net) and stream the input to the net a chunk at a time (basically creating the neural network equivalent of a lexer and parser) this would allow the input to be quite large but would have the disadvantage that there would not necessarily be a stop symbol to seperate different sequences of input from each other (the equivalent of a period in sentances)
To use a neural net on images of different sizes, the images themselves are often cropped and up or down scaled to better fit the input of the network. I know that doesn't really answer your question but perhaps something similar would be possible with other types of input, using some sort of transformation function on the input?
i'm not entirely sure, but I'd say, use the maximum number of inputs (e.g. for words, lets say no word will be longer than 45 characters (longest word found in a dictionary according to wikipedia), and if a shorter word is encountered, set the other inputs to a whitespace character.
Or with binary data, set it to 0. the only problem with this approach is if an input filled with whitespace characters/zeros/whatever collides with a valid full length input (not so much a problem with words as it is with numbers).

How to program a neural network for chess?

I want to program a chess engine which learns to make good moves and win against other players. I've already coded a representation of the chess board and a function which outputs all possible moves. So I only need an evaluation function which says how good a given situation of the board is. Therefore, I would like to use an artificial neural network which should then evaluate a given position. The output should be a numerical value. The higher the value is, the better is the position for the white player.
My approach is to build a network of 385 neurons: There are six unique chess pieces and 64 fields on the board. So for every field we take 6 neurons (1 for every piece). If there is a white piece, the input value is 1. If there is a black piece, the value is -1. And if there is no piece of that sort on that field, the value is 0. In addition to that there should be 1 neuron for the player to move. If it is White's turn, the input value is 1 and if it's Black's turn, the value is -1.
I think that configuration of the neural network is quite good. But the main part is missing: How can I implement this neural network into a coding language (e.g. Delphi)? I think the weights for each neuron should be the same in the beginning. Depending on the result of a match, the weights should then be adjusted. But how? I think I should let 2 computer players (both using my engine) play against each other. If White wins, Black gets the feedback that its weights aren't good.
So it would be great if you could help me implementing the neural network into a coding language (best would be Delphi, otherwise pseudo-code). Thanks in advance!
In case somebody randomly finds this page. Given what we know now, what the OP proposes is almost certainly possible. In fact we managed to do it for a game with much larger state space - Go ( https://deepmind.com/research/case-studies/alphago-the-story-so-far ).
I don't see why you can't have a neural net for a static evaluator if you also do some classic mini-max lookahead with alpha-beta pruning. Lots of Chess engines use minimax with a braindead static evaluator that just adds up the pieces or something; it doesn't matter so much if you have enough levels of minimax. I don't know how much of an improvement the net would make but there's little to lose. Training it would be tricky though. I'd suggest using an engine that looks ahead many moves (and takes loads of CPU etc) to train the evaluator for an engine that looks ahead fewer moves. That way you end up with an engine that doesn't take as much CPU (hopefully).
Edit: I wrote the above in 2010, and now in 2020 Stockfish NNUE has done it. "The network is optimized and trained on the [classical Stockfish] evaluations of millions of positions at moderate search depth" and then used as a static evaluator, and in their initial tests they got an 80-elo improvement when using this static evaluator instead of their previous one (or, equivalently, the same elo with a little less CPU time). So yes it does work, and you don't even have to train the network at high search depth as I originally suggested: moderate search depth is enough, but the key is to use many millions of positions.
Been there, done that. Since there is no continuity in your problem (the value of a position is not closely related to an other position with only 1 change in the value of one input), there is very little chance a NN would work. And it never did in my experiments.
I would rather see a simulated annealing system with an ad-hoc heuristic (of which there are plenty out there) to evaluate the value of the position...
However, if you are set on using a NN, is is relatively easy to represent. A general NN is simply a graph, with each node being a neuron. Each neuron has a current activation value, and a transition formula to compute the next activation value, based on input values, i.e. activation values of all the nodes that have a link to it.
A more classical NN, that is with an input layer, an output layer, identical neurons for each layer, and no time-dependency, can thus be represented by an array of input nodes, an array of output nodes, and a linked graph of nodes connecting those. Each node possesses a current activation value, and a list of nodes it forwards to. Computing the output value is simply setting the activations of the input neurons to the input values, and iterating through each subsequent layer in turn, computing the activation values from the previous layer using the transition formula. When you have reached the last (output) layer, you have your result.
It is possible, but not trivial by any means.
https://erikbern.com/2014/11/29/deep-learning-for-chess/
To train his evaluation function, he utilized a lot of computing power to do so.
To summarize generally, you could go about it as follows. Your evaluation function is a feedforward NN. Let the matrix computations lead to a scalar output valuing how good the move is. The input vector for the network is the board state represented by all the pieces on the board so say white pawn is 1, white knight is 2... and empty space is 0. An example board state input vector is simply a sequence of 0-12's. This evaluation can be trained using grandmaster games (available at a fics database for example) for many games, minimizing loss between what the current parameters say is the highest valuation and what move the grandmasters made (which should have the highest valuation). This of course assumes that the grandmaster moves are correct and optimal.
What you need to train a ANN is either something like backpropagation learning or some form of a genetic algorithm. But chess is such an complex game that it is unlikly that a simple ANN will learn to play it - even more if the learning process is unsupervised.
Further, your question does not say anything about the number of layers. You want to use 385 input neurons to encode the current situation. But how do you want to decide what to do? On neuron per field? Highest excitation wins? But there is often more than one possible move.
Further you will need several hidden layers - the functions that can be represented with an input and an output layer without hidden layer are really limited.
So I do not want to prevent you from trying it, but chances for a successful implemenation and training within say one year or so a practically zero.
I tried to build and train an ANN to play Tic-tac-toe when I was 16 years or so ... and I failed. I would suggest to try such an simple game first.
The main problem I see here is one of training. You say you want your ANN to take the current board position and evaluate how good it is for a player. (I assume you will take every possible move for a player, apply it to the current board state, evaluate via the ANN and then take the one with the highest output - ie: hill climbing)
Your options as I see them are:
Develop some heuristic function to evaluate the board state and train the network off that. But that begs the question of why use an ANN at all, when you could just use your heuristic.
Use some statistical measure such as "How many games were won by white or black from this board configuration?", which would give you a fitness value between white or black. The difficulty with that is the amount of training data required for the size of your problem space.
With the second option you could always feed it board sequences from grandmaster games and hope there is enough coverage for the ANN to develop a solution.
Due to the complexity of the problem I'd want to throw the largest network (ie: lots of internal nodes) at it as I could without slowing down the training too much.
Your input algorithm is sound - all positions, all pieces, and both players are accounted for. You may need an input layer for every past state of the gameboard, so that past events are used as input again.
The output layer should (in some form) give the piece to move, and the location to move to.
Write a genetic algorithm using a connectome which contains all neuron weights and synapse strengths, and begin multiple separated gene pools with a large number of connectomes in each.
Make them play one another, keep the best handful, crossover and mutate the best connectomes to repopulate the pool.
Read blondie24 : http://www.amazon.co.uk/Blondie24-Playing-Kaufmann-Artificial-Intelligence/dp/1558607838.
It deals with checkers instead of chess but the principles are the same.
Came here to say what Silas said. Using a minimax algorithm, you can expect to be able to look ahead N moves. Using Alpha-beta pruning, you can expand that to theoretically 2*N moves, but more realistically 3*N/4 moves. Neural networks are really appropriate here.
Perhaps though a genetic algorithm could be used.

Resources