Quantum tic-tac-toe with alpha-beta pruning - best representation of states? - artificial-intelligence

For my AI class, I have to make a quantum tic-tac-toe game using alpha-beta pruning.
I'm thinking about the best way to represent a state of the board - my first intuition is to use a sort of neighborhood matrix, that is, a 9x9 matrix, and on M[i,j] is the integer which represents the move in which (tic-tac-toe) squares i and j are marked (if there is no such connection - M[i,j] is zero). M[i,i] is not 0 if square i is collapsed. Then, I would create a game tree of such matrices and use classical minimax with alpha-beta pruning.
However, it seems that this approach would be quite expensive - there would be a relatively big branching factor plus the basic operations for every node - checking for cycles and finding all equivalent states for 9x9 matrix.
I have a feeling that there's got to be a smarter solution - maybe something along the line as seeing a quantum game as a set of classical tic-tac-toe games and use a kind of generalized minimax search, so it would all regress to a (small) set of classical tic-tac-toe problems? I can't see how that would work exactly.
Does anyone have experience with this (or similar) problem, and could you point me in the right direction?

If anyone is still interested in this
I ended up using two seperate data structures:
classical tic-tac-toe board (3x3 matrix) for collapsed nodes
list of graphs for entangled nodes. Nodes of each graph are board coordinates (in a 3x3 matrix), and the graph is fully connected.
When we entangle nodes A and B:
if neither are in an existing graph, create a new graph [A,B] (NEW_GRAPH)
of one (A for example) is in an existing graph [..., A, ...] (EXISTING_GRAPH)
if B is not in an existing graph, add B to the EXISTING_GRAPH
if B is in an existing graph we know we closed a cycle, and we do a collapse (graphs are removed from the list, and new nodes are added to the classic board)

If your problem is just Tic-Tac-Toe, than you can represent your board the way this program of mine does http://pastie.org/1715115
It is a ternary based number matrix. A board is a 9-digit number where each digit has one of 3 possible values: 0 for empty, 1 for x and 2 for o.
This approach is excellent for minimax as a board can be set in a single integer! The matrix has a form of:
int suc[TOTAL][2]={ { 0, 10000}, { 1, 20001}, { 10, 20010}, { 12, 1012}, { 21, 1021},
{ 100, 20100}, { 102, 100102}, ...
where each pair of numbers corresponds to (a) the present position, and (b), the next better position calculated beforehand by a minimax. So, if the board is empty (suc[0][0]==0) the next better position is to put an 'x' into the position 5, i.e. the center (suc[0][1]==000010000)
Actually, with this program you even don't need to create a minimax as this program already calculated all possible answers in the ad-hoc matrix. The most important function, to chose the next move, is done simple looking into the suc (successor) matrix:
/* find and return the next board after the given board terno */
int move(int terno)
{
int i;
for (i=0; i<TOTAL; i++)
if (suc[i][0]==terno)
return suc[i][1];
return 0;
}
It is a good approach for quantum algorithms (and embedded systems). I hope this helps you.
Take care

Related

Pseudo code for a greedy algorithm for the influence maximization under the independent cascade mode

I understand the concept behind a greedy algorithm but am still confused about the influence maximization under the independent cascade model and how I would implement the greedy algorithm.
read in the data in a loop
stick it into a data structure (i.e. arrays for nodes & edges, variables for the node count, edge count, probability, etc),
loop through the nodes and edges using the algorithm storing the output values into another array, and finally
loop to print out the results of your output array.
I am looking for pseudo code to understand the overall approach to creating this program.
I had found pseudo code for a greedy algorithm but I'm not sure I'm hoping to be able to create a working project once I am pushed in the right direction.
Link to prompt
Link to Greedy Algorithm Pseudo code
I have this as far as the greedy algorithm goes:
{
Open file (graph.txt)
Readln (n, m, k)
i = 1
while (i <= n)
   
Readln(nodes[i], vert[i], probability[i])
end
}

How come random weight initiation is better then just using 0 as weights in ANN?

In a trained neural net the weight distribution will fall close around zero. So it makes sense for me to initiate all weights to zero. However there are methods such as random assignment for -1 to 1 and Nguyen-Widrow that outperformes zero initiation. How come these random methods are better then just using zero?
Activation & learning:
Additionally to the things cr0ss said, in a normal MLP (for example) the activation of layer n+1 is the dot product of the output of layer n and the weights between layer n and n + 1...so basically you get this equation for the activation a of neuron i in layer n:
Where w is the weight of the connection between neuron j (parent layer n-1) to current neuron i (current layer n), o is the output of neuron j (parent layer) and b is the bias of current neuron i in the current layer.
It is easy to see initializing weights with zero would practically "deactivate" the weights because weights by output of parent layer would equal zero, therefore (in the first learning steps) your input data would not be recognized, the data would be negclected totally.
So the learning would only have the data supplied by the bias in the first epochs.
This would obviously render the learning more challenging for the network and enlarge the needed epochs to learn heavily.
Initialization should be optimized for your problem:
Initializing your weights with a distribution of random floats with -1 <= w <= 1 is the most typical initialization, because overall (if you do not analyze your problem / domain you are working on) this guarantees some weights to be relatively good right from the start. Besides, other neurons co-adapting to each other happens faster with fixed initialization and random initialization ensures better learning.
However -1 <= w <= 1 for initialization is not optimal for every problem. For example: biological neural networks do not have negative outputs, so weights should be positive when you try to imitate biological networks. Furthermore, e.g. in image processing, most neurons have either a fairly high output or send nearly nothing. Considering this, it is often a good idea to initialize weights between something like 0.2 <= w <= 1, sometimes even 0.5 <= w <= 2 showed good results (e.g. in dark images).
So the needed epochs to learn a problem properly is not only dependent on the layers, their connectivity, the transfer functions and learning rules and so on but also to the initialization of your weights.
You should try several configurations. In most situations you can figure out what solutions are adequate (like higher, positive weights for processing dark images).
Reading the Nguyen article, I'd say it is because when you assign the weight from -1 to 1, you are already defining a "direction" for the weight, and it will learn if the direction is correct and it's magnitude to go or not the other way.
If you assign all the weights to zero (in a MLP neural network), you don't know which direction it might go to. Zero is a neutral number.
Therefore, if you assign a small value to the node's weight, the network will learn faster.
Read Picking initial weights to speed training section of the article. It states:
First, the elements of Wi are assigned values from a uniform random distributation between -1 and 1 so that its direction is random. Next, we adjust the magnitude of the weight vectors Wi, so that each hidden node is linear over only a small interval.
Hope it helps.

A* search algorithm heuristic function

I am trying to find the optimal solution to a Sliding Block Puzzle of any length using the A* algorithm.
The Sliding Block Puzzle is a game with white (W) and black tiles (B) arranged on a linear game board with a single empty space(-). Given the initial state of the board, the aim of the game is to arrange the tiles into a target pattern.
For example my current state on the board is BBW-WWB and I have to achieve BBB-WWW state.
Tiles can move in these ways :
1. slide into an adjacent empty space with a cost of 1.
2. hop over another tile into the empty space with a cost of 1.
3. hop over 2 tiles into the empty space with a cost of 2.
I have everything implemented, but I am not sure about the heuristic function. It computes the shortest distance (minimal cost) possible for a misplaced tile in current state to a closest placed same color tile in goal state.
Considering the given problem for the current state BWB-W and goal state BB-WW the heuristic function gives me a result of 3. (according to minimal distance: B=0 + W=2 + B=1 + W=0). But the actual cost of reaching the goal is not 3 (moving the misplaced W => cost 1 then the misplaced B => cost 1) but 2.
My question is: should I compute the minimal distance this way and don't care about the overestimation, or should I divide it by 2? According to the ways tiles can move, one tile can for the same cost overcome twice as much(see moves 1 and 2).
I tried both versions. While the divided distance gives better final path cost to the achieved goal, it visits more nodes => takes more time than the not divided one. What is the proper way to compute it? Which one should I use?
It is not obvious to me what an admissible heuristic function for this problem looks like, so I won't commit to saying, "Use the divided by two function." But I will tell you that the naive function you came up with is not admissible, and therefore will not give you good performance. In order for A* to work properly, the heuristic used must be admissible; in order to be admissible, the heuristic must absolutely always give an optimistic estimate. This one doesn't, for exactly the reason you highlight in your example.
(Although now that I think about it, dividing by two does seem like a reasonable way to force admissibility. I'm just not going to commit to it.)
Your heuristic is not admissible, so your A* is not guaranteed to find the optimal answer every time. An admissible heuristic must never overestimate the cost.
A better heuristic than dividing your heuristic cost by 3, would be: instead of adding the distance D of each letter to its final position, add ceil(D/2). This way, a letter 1 or 2 away, gets a 1 value, 3 or 4 away, gets a 2 value, an so on.

Most mutually distant k elements (clustering?)

I have a simple machine learning question:
I have n (~110) elements, and a matrix of all the pairwise distances. I would like to choose the 10 elements that are most far apart. That is, I want to
Maximize:
Choose 10 different elements.
Return min distance over (all pairings within the 10).
My distance metric is symmetric and respects the triangle inequality.
What kind of algorithm can I use? My first instinct is to do the following:
Cluster the n elements into 20
clusters.
Replace each cluster with just the
element of that cluster that is
furthest from the mean element of
the original n.
Use brute force to solve the
problem on the remaining 20
candidates. Luckily, 20 choose 10 is
only 184,756.
Edit: thanks to etarion's insightful comment, changed "Return sum of (distances)" to "Return min distance" in the optimization problem statement.
Here's how you might approach this combinatorial optimization problem by taking the convex relaxation.
Let D be an upper triangular matrix with your distances on the upper triangle. I.e. where i < j, D_i,j is the distance between elements i and j. (Presumably, you'll have zeros on the diagonal, as well.)
Then your objective is to maximize x'*D*x, where x is binary valued with 10 elements set to 1 and the rest to 0. (Setting the ith entry in x to 1 is analogous to selecting the ith element as one of your 10 elements.)
The "standard" convex optimization thing to do with a combinatorial problem like this is to relax the constraints such that x need not be discrete valued. Doing so gives us the following problem:
maximize y'*D*y
subject to: 0 <= y_i <= 1 for all i, 1'*y = 10
This is (morally) a quadratic program. (If we replace D with D + D', it'll become a bona fide quadratic program and the y you get out should be no different.) You can use an off-the-shelf QP solver, or just plug it in to the convex optimization solver of your choice (e.g. cvx).
The y you get out need not be (and probably won't be) a binary vector, but you can convert the scalar values to discrete ones in a bunch of ways. (The simplest is probably to let x be 1 in the 10 entries where y_i is highest, but you might need to do something a little more complicated.) In any case, y'*D*y with the y you get out does give you an upper bound for the optimal value of x'*D*x, so if the x you construct from y has x'*D*x very close to y'*D*y, you can be pretty happy with your approximation.
Let me know if any of this is unclear, notation or otherwise.
Nice question.
I'm not sure if it can be solved exactly in an efficient manner, and your clustering based solution seems reasonable. Another direction to look at would be local search method such as simulated annealing and hill climbing.
Here's an obvious baseline I would compare any other solution against:
Repeat 100 times:
Greedily select the datapoint that whose removal decreases the objective function the least and remove it.

Spatial Data Structures in C

I do work in theoretical chemistry on a high performance cluster, often involving molecular dynamics simulations. One of the problems my work addresses involves a static field of N-dimensional (typically N = 2-5) hyper-spheres, that a test particle may collide with. I'm looking to optimize (read: overhaul) the the data structure I use for representing the field of spheres so I can do rapid collision detection. Currently I use a dead simple array of pointers to an N-membered struct (doubles for each coordinate of the center) and a nearest-neighbor list. I've heard of oct- and quad- trees but haven't found a clear explanation of how they work, how to efficiently implement one, or how to then do fast collision detection with one. Given the size of my simulations, memory is (almost) no object, but cycles are.
How best to approach this for your problem depends on several factors that you have not described:
- Will the same hypersphere arrangement be used for many particle collision calculations?
- Are the hyperspheres uniform size?
- What is the movement of the particle (e.g. straight line/curve) and is that movement affected by the spheres?
- Do you consider the particle to have zero volume?
I assume that the particle does not have simple straight line movement as that would be the relatively fast calculation of finding the closest point between a line and a point, which is likely going to be about the same speed as finding which of the boxes the line intersects with (to determine where in the n-tree to examine).
If your hypersphere positions are fixed for a lot of particle collisions then computing a voronoi decomposition/Dirichlet tessellation would give you a fast way of later finding exactly which sphere is closest to your particle for any given point in the space.
However to answer your original question about octrees/quadtrees/2^n-trees, in n dimensions you start with a (hyper)-cube that contains the area of space that you are interested in. This will be subdivided into 2^n hypercubes if you deem the contents to be too complicated. This continues recursively until you have only simple elements (e.g. one hypersphere centroid) in the leaf nodes.
Now that the n-tree is built you use it for collision detection by taking the path of your particle and intersecting it with the outer hypercube. The intersection position will tell you which hypercube in the next level down of the tree to visit next, and you determine the position of intersection with all 2^n hypercubes at that level, following downwards until you reach a leaf node. Once you reach the leaf you can examine interactions between your particle path and the hypersphere stored at that leaf. If you have collision you have finished, otherwise you have to find the exit point of the particle path from the current hypercube leaf and determine which hypercube it moves to next. Continue until you find a collision or entirely leave the overall bounding hypercube.
Efficiently finding the neighbouring hypercube when exiting a hypercube is one of the most challenging parts of this approach. For 2^n trees Samet's approaches {1, 2} can be adapted. For kd-trees (binary trees) an approach is suggested in {3} section 4.3.3.
Efficient implementation can be as simple as storing a list of 8 pointers from each hypercube to its children hypercubes, and marking the hypercube in a special way if it is a leaf (e.g. make all pointers NULL).
A description of dividing space to create a quadtree (which you can generalise to n-tree) can be found in Klinger & Dyer {4}
As others have mentioned kd-trees may be more suited than 2^n-trees as extension to an arbitrary number of dimensions is more straightforward, however they will result in a deeper tree. It is also easier to adapt the split positions to match the geometry of your
hyperspheres with a kd-tree. The description above of collision detection in a 2^n tree is equally applicable to a kd-tree.
{1} Connected Component Labeling, Hanan Samet, Using Quadtrees Journal of the ACM Volume 28 , Issue 3 (July 1981)
{2} Neighbor finding in images represented by octrees, Hanan Samet, Computer Vision, Graphics, and Image Processing Volume 46 , Issue 3 (June 1989)
{3} Convex hull generation, connected component labelling, and minimum distance
calculation for set-theoretically defined models, Dan Pidcock, 2000
{4} Experiments in picture representation using regular decomposition, Klinger, A., and Dyer, C.R. E, Comptr. Graphics and Image Processing 5 (1976), 68-105.
It sounds like you'd want to implement a kd-tree, which would allow you to more quickly search the N-dimensional space. There's some more information and links to implementations at the Stony Brook Algorithm Repository.
Since your field is static (by which I'm assuming you mean that the hyper spheres don't move), then the fastest solution I know of is a Kdtree.
You can either make your own, or use someone else's, like this one:
http://libkdtree.alioth.debian.org/
A Quad tree is a 2 dimensional tree, in which at each level a node has 4 children, each of which covers 1/4 of the area of the parent node.
An Oct tree is a 3 dimensional tree, in which at each level a node has 8 children, each of which contains 1/8th of the volume of the parent node. Here is picture to help you visualize it: http://en.wikipedia.org/wiki/Octree
If you're doing N dimensional intersection tests, you could generalize this to an N tree.
Intersection algorithms work by starting at the top of the tree and recursively traversing into any child nodes that intersect the object being tested, at some point you get to leaf nodes, which contain the actual objects.
An octree will work as long as you can specify the spheres by their centres - it hierarchically bins points into cubic regions with eight children. Working out neighbours in an octree data structure will require you to do sphere-intersecting-cube calculations (to some extent easier than they look) to work out which cubic regions in an octree are within the sphere.
Finding the nearest neighbours means walking back up the tree until you get a node with more than one populated child and all surrounding nodes included (this ensures the query gets all sides).
From memory, this is the (somewhat naive) basic algorithm for sphere-cube intersection:
i. Is the centre within the cube (this gets the eponymous situation)
ii. Are any of the corners of the cube within radius r of the centre (corners within the sphere)
iii. For each surface of the cube (you can eliminate some of the surfaces by working out which side of the surface the centre lies on) work out (this is all first-year vector arithmetic):
a. A normal of the surface that goes to the centre of the sphere
b. The distance from the centre of the sphere to the intersection of the normal with the plane of the surface (chord intersets plane the surface of the cube)
c. Intersection of the plane lies within the side of the cube (one condition of chord intersection to the cube)
iv. Calculate the size of the chord (Sin of Cos^-1 of ratio of normal length to radius of sphere)
v. If the nearest point on the line is less than the distance of the chord and the point lies between the ends of the line the chord intersects one of the edges of the cube (chord intersects cube surface somewhere along one of the edges).
Slightly dimly remembered but this is something I did for a situation involving spherical regions using an octee data structure (many years ago). You may also wish to check out KD-trees as some of the other posters suggest but your initial question sounds very similar to what I did.

Resources