How to find number of Multiples of 3 - c

This was a contest Q:
There are N numbers a[0],a[1]..a[N - 1]. Initally all are 0. You have to perform two types of operations :
Increase the numbers between indices A and B by 1. This is represented by the command "0 A B"
Answer how many numbers between indices A and B are divisible by 3. This is represented by the command "1 A B".
Input : The first line contains two integers, N and Q.
Each of the next Q lines are either of the form "0 A B" or "1 A B" as mentioned above.
Output : Output 1 line for each of the queries of the form "1 A B" containing the required answer for the corresponding query.
Sample Input :
4 7 1 0 3 0 1 2 0 1 3 1
0 0 0 0 3 1 3 3 1 0 3
Sample Output :
4 1 0 2
Constraints :
1 <= N <= 100000 1 <= Q <= 100000 0 <= A <= B <= N - 1
I have no idea how to solve this. can you help please?
The time limit is 1 second. I tried brute force and i also tried saving number of divisors of 3 coming before ith element for each i.
here's my C code:
#include <stdio.h>
int nums[100*1000+20];
int d[100*1000+20];
int e[100*1000+20];
int dah[100*1000+20];
int main()
{
int n,q;
scanf("%d%d",&n,&q);
int h;
for(h=0;h<n;h++)
{d[h/100]++; e[h/1000]++; dah[h/10]++;}
int test;
for(test=0;test<q;test++)
{
int op,start,end;
scanf("%d%d%d",&op,&start,&end);
if(0==op)
{
int x;
for(x=start;x<=end;x++)
{
nums[x]++;
nums[x]%=3;
if(nums[x]==0)
{
d[x/100]++;
e[x/1000]++;
dah[x/10]++;
}
else if(nums[x]==1)
{
d[x/100]--;
e[x/1000]--;
dah[x/10]--;
}
}
}
else if(1==op)
{
int f;
int ans=0;
for(f=start;f<=end;)
{
if(f%1000==0&&f+1000<end)
{
ans+=e[f/1000];
f+=1000;
}
else if(f%100==0&&f+100<end)
{
ans+=d[f/100];
f+=100;
}
else if(f%10==0&&f+10<end)
{
ans+=dah[f/10];
f+=10;
}
else
{
ans+=(nums[f]==0);
f++;
}
}
printf("%d\n",ans);
}
}
return 0;
}
In this approach I save number of multiples of 3 between k*1000 and (k+1)*1000 and also the same thing for k*100 and (k+1)*100 and also for 10. this helps me query faster. but this yet gives me time limit exceed.

Hint #1:
Think about how you might use the MODULUS operator to help you. Initially, you have N numbers, let's say N is 5.
So we can store the remainders for each number (i.e. store 0 MOD 3, 1 MOD 3, 2 MOD 3, and so on):
a[0] = 0
a[1] = 1
a[2] = 2
a[3] = 0
a[4] = 1
a[5] = 2
Each time you increment a range of numbers between A and B, you really only need to store a 0, 1, or 2 in the array. For example, if we are incrementing 2, then the new number will be 3. That is now divisible by 3, so we store 0 in the array. So in cases where we have 0 and we increment, we store 1, if we have 1 we store 2, and if we have 2 we store 0.
This optimization eliminates the need to do any division except for the initial step. Division is a very expensive operation, which is why we want to eliminate it where we can.
So after incrementing 0 through 5, the array would look like this:
a[0] = 1
a[1] = 2
a[2] = 0
a[3] = 1
a[4] = 2
a[5] = 0
The amount of numbers between A and B that are divisible by 3 is just the number of elements that have 0 (2 in this case).
Now you have to think about how to query a range A through B efficiently to find the amount of numbers divisible by 3.
Hint #2:
To find out how many numbers over the interval [A,B] are divisible by 3, one algorithm/data structure you can consider using is a segment tree. Read about it here. What this buys you is that now you can compute the amount of numbers divisible by 3 for any such interval [A,B] very quickly, instead of looping over the array and having to count them.

Hint #3:
Good suggestion by dcp. Though it doesn't reveal how to solve the problem. It's not necessary to store all numbers MOD 3 in the array. If the numbers are updated every time in the array the complexity is O(Q * N) which is obviously too much for given N, Q and 1 sec. in the worst case. That is the point of Ali in the comment to dcp suggestion.
The number of integers with MOD%0, MOD%1, MOD%2 can be stored in each node of the segment tree. Hence the updates can be done in O(log N), which results in O(Q log N) for updates only. For each query the same complexity O(log N) applies. Since you know the number of integers MOD%3 for each residue, it's not necessary to go down to all leaves (each leave in segment tree corresponds to array element) to figure how many numbers are divisible by 3. Once you understand how segment tree works that should be obvious why it is necessary to store residues in each node of the segment tree. Overall complexity of the algorithm is O(Q log N) which will fit nicely in 1 sec. time limit.
When going down the segment tree be sure to accumulate number of integers per residue, for each segment that you visit on the way down the tree.

what's the upper bound for your array? first, figure that out. Then, plan on reading lines of input in one of those two forms. The lines in format 0 A B are easy to handle, can you code at least that much? If so, post it and then worry about the lines in format 1 A B.

If, as your title suggests, you aren't sure how to tell if a number is divisible by three then I suggest you have a look into the modulus operation, in the languages I'm most familiar with it is represented using a %.

Related

Interesting Powers Of 2 - algorithm/ Math (from Hackerrank ACM APC)

I came across a problem from a recent competition.
I was unable to figure out a solution, and no editorial for the question is yet available.
Question Link
I am quoting the problem statement here also in case the link doesn't work.
Find the number of integers n which are greater than or equal to A and less than or equal to B (A<= n <=B) and the decimal representation of 2^n ends in n.
Ex: 2^36 = 68719476736 which ends in “36”.
INPUT
The first line contains an integer T i.e. number of test cases. T lines follow, each containing two integers A and B.
Constraints
1 <= T <= 10^5
A<=B
A,B <= 10^150
OUTPUT
Print T lines each containing the answer to the corresponding testcase.
Sample Input
2
36 36
100 500
Sample Output
1
0
As often happens on programming competitions I have come up with an heuristics I have not proven, but seems plausible. I have written a short program to find the numbers up to 1000000 and they are:
36
736
8736
48736
948736
Thus my theory is the following - each consecutive number is suffixed with the previous one and only adds one digit. Hope this will set you on the right track for the problem. Note that if my assumption is right than you only need to find 150 numbers and finding each consecutive number requires checking 9 digits that may be added.
A general advice for similar problems - always try to find the first few numbers and think of some relation.
Also often it happens on a competition that you come up with a theory like the one I propose above, but have no time to prove it. You can't afford the time to prove it. Simply hope you are right and code.
EDIT: I believe I was able to prove my conjecture above(in fact I have missed some numbers -see end of the post). First let me point out that as v3ga states in a comment the algorithm above works up until 75353432948736 as no digit can be prepended to make the new number "interesting" as per the definition you give. However I completely missed another option - you may prepend some number of 0 and then add a non-zero digit.
I will now proof a lemma:
Lemma: if a1a2...an is an interesting number and n is more than 3, then a2...an also is interesting.
Proof:
2a1a2...an = 2a1*10n - 1*2a2a2...an
Now I will prove that 2a1*10n - 1*2a2a2...an is comparable to 2a2a2...an modulo 10n-1.
To do that lets prove that 2a1*10n - 1*2a2a2...an - 2a2a2...an is divisible by 10n-1.
2a1*10n - 1*2a2a2...an - 2a2a2...an =
2a2a2...an * (2a1*10n - 1 - 1)
a2a2...an is more than n-1 for the values we consider.
Thus all that's left to prove to have 10n-1 dividing the difference is that 5n-1 divides 2a1*10n - 1 - 1.
For this I will use Euler's theorem:
2phi(5n-1) = 1 (modulo 5n-1).
Now phi(5n-1) = 4*(5n-2) and for n >= 3 4*(5n-2) will divide a1*10n - 1(actually even solely 10n - 1).
Thus 2a1*10n - 1 gives remainder 1 modulo 5n-1 and so 5n-1 divides 2a1*10n - 1 - 1.
Consequently 10n-1 divides 2a2a2...an * (2a1*10n - 1 - 1) and so the last n - 1 digits of 2a1a2a2...an and 2a2a3a4...an are the same.
Now as a1a2a2...an is interesting the last n digits of 2a1a2a2...an are a1a2a2...an and so the last n-1 digits of 2a2a3a4...an are a2a3a4...an and consequently a2a3a4...an is also interesting. QED.
Use this lemma and you will be able to solve the problem. Please note that you may also prepend some zeros and then add a non-zero number.
In general, you can try solving these problems by finding some pattern in the output. Our team got this problem accepted at the contest. Our approach was to find a general pattern in the values that satisfy the criteria. If you print the first few such digits, then you will find the following pattern
36
736
8736
48736
948736
Thus the next number after 948736 should be of 7 digits and can be any one of 1948736, 2948736, 3948736, 4948736, 5948736, 6948736, 7948736, 8948736, 9948736. Thus check which value is valid and you have the next number. Continuing in this fashion you can back yourself to get all the 150 numbers.
But there is a problem here. There will be some numbers that do not immediately follow from the previous number by appending '1' to '9'. To counter this you can now start appending values from 10 to 99 and now check if there is a valid number or not. If there is still no valid number, then again try appending numbers from 100 to 999.
Now employing this hack, you will get all the 137 values that satisfy the criterion given in the question and easily answer all the queries. For example, working java code that implements this is shown here. It prints all the 137 values.
import java.io.*;
import java.math.*;
import java.util.*;
class Solution
{
public static void main(String[] args)throws java.lang.Exception{
new Solution().run();
}
void run()throws java.lang.Exception{
BigInteger[] powers = new BigInteger[152];
powers[0] = one;
for(int i=1; i<=150; i++){
powers[i] = powers[i-1].multiply(ten);
}
BigInteger[] answers = new BigInteger[152];
answers[2] = BigInteger.valueOf(36);
answers[3] = BigInteger.valueOf(736);
int last = 3;
for(int i=4; i<=150; i++){
int dif = i-last;
BigInteger start = ten.pow(dif-1);
BigInteger end = start.multiply(ten);
while(start.compareTo(end) < 0){
BigInteger newVal = powers[last].multiply(start);
newVal = newVal.add(answers[last]);
BigInteger modPow = pow(two, newVal, powers[i]);
if(modPow.equals(newVal)){
answers[i] = newVal;
System.out.println(answers[i]);
last = i;
break;
}
start = start.add(one);
}
}
}
BigInteger pow(BigInteger b, BigInteger e, BigInteger mod){
if(e.equals(zero)){
return one;
}
if(e.mod(two).equals(zero)){
BigInteger x = pow(b, e.divide(two), mod);
x = x.multiply(x).mod(mod);
return x;
}else{
BigInteger x = pow(b, e.divide(two), mod);
x = x.multiply(x).mod(mod);
x = x.multiply(two).mod(mod);
return x;
}
}
BigInteger ten = BigInteger.valueOf(10);
BigInteger zero = BigInteger.ZERO;
BigInteger one = BigInteger.ONE;
BigInteger two = BigInteger.valueOf(2);
}
This is very interesting property. During the contest, I found that 36 was the only number under 500 checking with python...
The property is : 2^36 last two digits are 36, last three digits are 736, so next number is 736. 2^736 has last three digits as 736, and next number is 8376...
And the series is : 36 , 736 , 8736 , 48736 , 948736 ...
And then started with BigInt class in C++.
But alas there was no time, and 4th problem wasn't solved. But after the contest, we did it in python.
here's link : Ideone it!
def powm(i):
j = 10
a = 1
while i:
if i % 2:
a = a * j
i /= 2
j *= j
return a
def power(n, i):
m = powm(i)
y = 1
x = 2
while n:
if n % 2 == 1:
y = y * x % m
x = x * x % m
n /= 2
return y
mylist = []
mylist.append(power(36, 2))
n = mylist[0]
print(n)
for i in range(3, 170):
p = power(n, i)
print p
if p != n:
mylist.append(p)
n = p
t = input()
while t:
x = raw_input().split(" ")
a = int(x[0])
b = int(x[1])
i = 0
#while i <= 150:
#print mylist[i]
#i += 1
#print power(8719476736,14)
while mylist[i] < a:
i += 1
ans = 0
while mylist[i] <= b:
i += 1
ans += 1
print ans
t -= 1
The final digits start to repeat after 20 increments. So for any n with the final digit 1, the final digit of the answer will be 2. So most values of n can be eliminated immediately.
2^1 = 2
2^21 = 2097152
2^101 = 2535301200456458802993406410752
2^2 = 4
2^22 = 4194304
2^42 = 4398046511104
In fact only two possibilities share a final digit:
2^14 = 16384
2^16 = 65536
2^34 = 17179869184
2^36 = 68719476736
If n is 14+20x or 16+20x, then it might work, so you'll need to check it. Otherwise, it cannot work.
I am not very good with such problems. But modular exponentiation appears to be key in your case.
Repeat for all n in the range A to B:
1. Find k, the no of digits in n. This can be done in O(logn)
2. Find 2^n (mod 10^k) using modular exponentiation and check if it is equal to n. This'll take O(n) time. (actually, O(n) multiplications)
EDIT
Actually, don't repeat the whole process for each n. Given 2^n (mod 10^k), we can find 2^(n+1) (mod 10^k) in constant time. Use this fact to speed it up further
EDIT - 2
This doesn't work for such large range.

How does this Codechef Factorial Solution in C work?

I'm trying to understand how this code:
#include<stdio.h>
int main()
{
int j,p,k;
long long int n,i;
scanf("%lld",&n);
for(k=n;k>=1;k--)
{
p=0;
scanf("%lld",&i);
for (j=5;j<=i;j*=5)
{
p=p+i/j;
}
printf("%d\n",p);
}
return 0;
}
solves this Codechef problem: http://www.codechef.com/problems/FCTRL
What I'm having troubles understanding is how this loop works:
for (j=5;j<=i;j*=5)
{
p=p+i/j;
}
Why is the j variable set to 5 and could someone walk me trough this loop if I would give the value of 60 to the i variable?
Thanks so much!
In short the problem is to find the number of zeroes of a factorial of number between 1 to 1000000000.
Now take a pencil and a paper. Start with 1. From 1 to 4 there is no 0. First 0 occurs at 5!. The next is at 10! and then at 15!, 20!, ...... This means that number of zeroes increases at the interval of 5.
Coming to the loop
for (j=5;j<=i;j*=5)
{
p=p+i/j;
}
See the i is stand for N here (see the question). Since number of zeroes increases at the interval of 5, j is initialized to 5 and j will be incremented as a multiple of 5 .
Now the simple rule is that the number of trailing zeros in the decimal representation of N! is simply the multiplicity of the prime factor 5 in N!.
In the statement p=p+i/j;, same rule is followed. The author of the program incremented j by 5 till N/j >= 5 leaving N (i.e i) here as it is.
N = i = 30
p = 30/5 + 30/(5*5) = 6 // 30/25 is 1 and does not satisfying the condition N/j >= 5
This algorithm makes more sense if you understand the method they are using to find the number of trailing zeros of a factorial which is outlined in Trailing zero Factorial and in Factorials and Trailing Zeroes. Basically relies on the insight that you need to account for all the products of 5 and 2 in the factorial expansion to discover how many zeros there will be in the end.
The algorithm to finding the number of trailing zeros in x! boils down to to:
Finding successive powers of 5
Dividing x by the result add the truncated result to the total
Stop when the result of division is less than 1 or in this specific case we know this will happen when the result is greater than x
So if go back to the code we can find the following steps:
step 3
| step 1
V V
for (j=5;j<=i;j*=5)
{
p=p+i/j; // step 2
}
This piece of code:
p=0;
scanf("%lld",&i);
for (j=5;j<=i;j*=5)
{
p=p+i/j;
}
counts the number of factor 5 in all the integers in [1, i] and stores the result in p.
Loop 1: j=5, p+=i/5 counts numbers that are divisible by 5 in the range [1, i]
Loop 2: j=25, p+=i/25 counts numbers that are divisible by 25 in the range [1, i] (notice that such numbers have been already counted once in loop 1)
Loop 3: j=125, p+=i/125 counts numbers that are divisible by 125 in the range [1, i] (notice that such numbers have been already counted twice in loop 1 and 2)
....

Find pairs that sum to X in an array of integers of size N having element in the range 0 to N-1

It is an interview question. We have an array of integers of size N containing element between 0 to N-1. It may be possible that a number can occur more than two times. The goal is to find pairs that sum to a given number X.
I did it using an auxiliary array having count of elements of primary array and then rearranging primary according auxiliary array so that primary is sorted and then searched for pairs.
But interviewer wanted space complexity constant, so I told him to sort the array but it is nlogn time complexity solution. He wanted O(n) solution.
Is there any method available to do it in O(n) without any extra space?
No, I don't believe so. You either need extra space to be able to "sort" the data in O(n) by assigning to buckets, or you need to sort in-place which will not be O(n).
Of course, there are always tricks if you can make certain assumptions. For example, if N < 64K and your integers are 32 bits wide, you can multiplex the space required for the count array on top of the current array.
In other words, use the lower 16 bits for storing the values in the array and then use the upper 16 bits for your array where you simply store the count of values matching the index.
Let's use a simplified example where N == 8. Hence the array is 8 elements in length and the integers at each element are less than 8, though they're eight bits wide. That means (initially) the top four bits of each element are zero.
0 1 2 3 4 5 6 7 <- index
(0)7 (0)6 (0)2 (0)5 (0)3 (0)3 (0)7 (0)7
The pseudo-code for an O(n) adjustment which stores the count into the upper four bits is:
for idx = 0 to N:
array[array[idx] % 16] += 16 // add 1 to top four bits
By way of example, consider the first index which stores 7. That assignment statement will therefore add 16 to index 7, upping the count of sevens. The modulo operator is to ensure that values which have already been increased only use the lower four bits to specify the array index.
So the array eventually becomes:
0 1 2 3 4 5 6 7 <- index
(0)7 (0)6 (1)2 (2)5 (0)3 (1)3 (1)7 (3)7
Then you have your new array in constant space and you can just use int (array[X] / 16) to get the count of how many X values there were.
But, that's pretty devious and requires certain assumptions as mentioned before. It may well be that level of deviousness the interviewer was looking for, or they may just want to see how a prospective employee handle the Kobayashi Maru of coding :-)
Once you have the counts, it's a simple matter to find pairs that sum to a given X, still in O(N). The basic approach would be to get the cartestian product. For example, again consider that N is 8 and you want pairs that sum to 8. Ignore the lower half of the multiplexed array above (since you're only interested in the counts, you have:
0 1 2 3 4 5 6 7 <- index
(0) (0) (1) (2) (0) (1) (1) (3)
What you basically do is step through the array one by one getting the product of the counts of numbers that sum to 8.
For 0, you would need to add 8 (which doesn't exist).
For 1, you need to add 7. The product of the counts is 0 x 3, so that gives nothing.
For 2, you need to add 6. The product of the counts is 1 x 1, so that gives one occurrence of (2,6).
For 3, you need to add 5. The product of the counts is 2 x 1, so that gives two occurrences of (3,5).
For 4, it's a special case since you can't use the product. In this case it doesn't matter since there are no 4s but, if there was one, that couldn't become a pair. Where the numbers you're pairing are the same, the formula is (assuming there are m of them) 1 + 2 + 3 + ... + m-1. With a bit of mathematical widardry, that turns out to be m(m-1)/2.
Beyond that, you're pairing with values to the left, which you've already done so you stop.
So what you have ended up with from
a b c d e f g h <- identifiers
7 6 2 5 3 3 7 7
is:
(2,6) (3,5) (3,5)
(c,b) (e,d) (f,d) <- identifiers
No other values add up to 8.
The following program illustrates this in operation:
#include <stdio.h>
int arr[] = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 4, 4, 4, 4};
#define SZ (sizeof(arr) / sizeof(*arr))
static void dumpArr (char *desc) {
int i;
printf ("%s:\n Indexes:", desc);
for (i = 0; i < SZ; i++) printf (" %2d", i);
printf ("\n Counts :");
for (i = 0; i < SZ; i++) printf (" %2d", arr[i] / 100);
printf ("\n Values :");
for (i = 0; i < SZ; i++) printf (" %2d", arr[i] % 100);
puts ("\n=====\n");
}
That bit above is just for debugging. The actual code to do the bucket sort is below:
int main (void) {
int i, j, find, prod;
dumpArr ("Initial");
// Sort array in O(1) - bucket sort.
for (i = 0; i < SZ; i++) {
arr[arr[i] % 100] += 100;
}
And we finish with the code to do the pairings:
dumpArr ("After bucket sort");
// Now do pairings.
find = 8;
for (i = 0, j = find - i; i <= j; i++, j--) {
if (i == j) {
prod = (arr[i]/100) * (arr[i]/100-1) / 2;
if (prod > 0) {
printf ("(%d,%d) %d time(s)\n", i, j, prod);
}
} else {
if ((j >= 0) && (j < SZ)) {
prod = (arr[i]/100) * (arr[j]/100);
if (prod > 0) {
printf ("(%d,%d) %d time(s)\n", i, j, prod);
}
}
}
}
return 0;
}
The output is:
Initial:
Indexes: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Counts : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Values : 3 1 4 1 5 9 2 6 5 3 5 8 9 4 4 4 4
=====
After bucket sort:
Indexes: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Counts : 0 2 1 2 5 3 1 0 1 2 0 0 0 0 0 0 0
Values : 3 1 4 1 5 9 2 6 5 3 5 8 9 4 4 4 4
=====
(2,6) 1 time(s)
(3,5) 6 time(s)
(4,4) 10 time(s)
and, if you examine the input digits, you'll find the pairs are correct.
This may be done by converting the input array to the list of counters "in-place" in O(N) time. Of course this assumes input array is not immutable. There is no need for any additional assumptions about unused bits in each array element.
Start with the following pre-processing: try to move each array's element to the position determined by element's value; move element on this position also to the position determined by its value; continue until:
next element is moved to the position from where this cycle was started,
next element cannot be moved because it is already on the position corresponding to its value (in this case put current element to the position from where this cycle was started).
After pre-processing every element either is located at its "proper" position or "points" to its "proper" position. In case we have an unused bit in each element, we could convert each properly positioned element into a counter, initialize it with "1", and allow each "pointing" element to increase appropriate counter. Additional bit allows to distinguish counters from values. The same thing may be done without any additional bits but with less trivial algorithm.
Count how may values in the array are equal to 0 or 1. If there are any such values, reset them to zero and update counters at positions 0 and/or 1. Set k=2 (size of the array's part that has values less than k replaced by counters). Apply the following procedure for k = 2, 4, 8, ...
Find elements at positions k .. 2k-1 which are at their "proper" position, replace them with counters, initial value is "1".
For any element at positions k .. 2k-1 with values 2 .. k-1 update corresponding counter at positions 2 .. k-1 and reset value to zero.
For any element at positions 0 .. 2k-1 with values k .. 2k-1 update corresponding counter at positions k .. 2k-1 and reset value to zero.
All iterations of this procedure together have O(N) time complexity. At the end the input array is completely converted to the array of counters. The only difficulty here is that up to two counters at positions 0 .. 2k-1 may have values greater than k-1. But this could be mitigated by storing two additional indexes for each of them and processing elements at these indexes as counters instead of values.
After an array of counters is produced, we could just multiply pairs of counters (where corresponding pair of indexes sum to X) to get the required counts of pairs.
String sorting is n log n however if you can assume the numbers are bounded (and you can because you're only interested in numbers that sum to a certain value) you can use a Radix sort. Radix sort takes O(kN) time, where "k" is the length of the key. That's a constant in your case, so I think it's fair to say O(N).
Generally I would however solve this using a hash e.g.
http://41j.com/blog/2012/04/find-items-in-an-array-that-sum-to-15/
Though that is of course not a linear time solution.

Convert Each Element Of Array with max element [duplicate]

Given an array A with n
integers. In one turn one can apply the
following operation to any consecutive
subarray A[l..r] : assign to all A i (l <= i <= r)
median of subarray A[l..r] .
Let max be the maximum integer of A .
We want to know the minimum
number of operations needed to change A
to an array of n integers each with value
max.
For example, let A = [1, 2, 3] . We want to change it to [3, 3, 3] . We
can do this in two operations, first for
subarray A[2..3] (after that A equals to [1,
3, 3] ), then operation to A[1..3] .
Also,median is defined for some array A as follows. Let B be the same
array A , but sorted in non-decreasing
order. Median of A is B m (1-based
indexing), where m equals to (n div 2)+1 .
Here 'div' is an integer division operation.
So, for a sorted array with 5 elements,
median is the 3rd element and for a sorted
array with 6 elements, it is the 4th element.
Since the maximum value of N is 30.I thought of brute forcing the result
could there be a better solution.
You can double the size of the subarray containing the maximum element in each iteration. After the first iteration, there is a subarray of size 2 containing the maximum. Then apply your operation to a subarray of size 4, containing those 2 elements, giving you a subarray of size 4 containing the maximum. Then apply to a size 8 subarray and so on. You fill the array in log2(N) operations, which is optimal. If N is 30, five operations is enough.
This is optimal in the worst case (i.e. when only one element is the maximum), since it sets the highest possible number of elements in each iteration.
Update 1: I noticed I messed up the 4s and 8s a bit. Corrected.
Update 2: here's an example. Array size 10, start state:
[6 1 5 9 3 2 0 7 4 8]
To get two nines, run op on subarray of size two containing the nine. For instance A[4…5] gets you:
[6 1 5 9 9 2 0 7 4 8]
Now run on size four subarray that contains 4…5, for instance on A[2…5] to get:
[6 9 9 9 9 2 0 7 4 8]
Now on subarray of size 8, for instance A[1…8], get:
[9 9 9 9 9 9 9 9 4 8]
Doubling now would get us 16 nines, but we have only 10 positions, so round of with A[1…10], get:
[9 9 9 9 9 9 9 9 9 9]
Update 3: since this is only optimal in the worst case, it is actually not an answer to the original question, which asks for a way of finding the minimal number of operations for all inputs. I misinterpreted the sentence about brute forcing to be about brute forcing with the median operations, rather than in finding the minimum sequence of operations.
This is the problem from codechef Long Contest.Since the contest is already over,so awkwardiom ,i am pasting the problem setter approach (Source : CC Contest Editorial Page).
"Any state of the array can be represented as a binary mask with each bit 1 means that corresponding number is equal to the max and 0 otherwise. You can run DP with state R[mask] and O(n) transits. You can proof (or just believe) that the number of statest will be not big, of course if you run good DP. The state of our DP will be the mask of numbers that are equal to max. Of course, it makes sense to use operation only for such subarray [l; r] that number of 1-bits is at least as much as number of 0-bits in submask [l; r], because otherwise nothing will change. Also you should notice that if the left bound of your operation is l it is good to make operation only with the maximal possible r (this gives number of transits equal to O(n)). It was also useful for C++ coders to use map structure to represent all states."
The C/C++ Code is::
#include <cstdio>
#include <iostream>
using namespace std;
int bc[1<<15];
const int M = (1<<15) - 1;
void setMin(int& ret, int c)
{
if(c < ret) ret = c;
}
void doit(int n, int mask, int currentSteps, int& currentBest)
{
int numMax = bc[mask>>15] + bc[mask&M];
if(numMax == n) {
setMin(currentBest, currentSteps);
return;
}
if(currentSteps + 1 >= currentBest)
return;
if(currentSteps + 2 >= currentBest)
{
if(numMax * 2 >= n) {
setMin(currentBest, 1 + currentSteps);
}
return;
}
if(numMax < (1<<currentSteps)) return;
for(int i=0;i<n;i++)
{
int a = 0, b = 0;
int c = mask;
for(int j=i;j<n;j++)
{
c |= (1<<j);
if(mask&(1<<j)) b++;
else a++;
if(b >= a) {
doit(n, c, currentSteps + 1, currentBest);
}
}
}
}
int v[32];
void solveCase() {
int n;
scanf(" %d", &n);
int maxElement = 0;
for(int i=0;i<n;i++) {
scanf(" %d", v+i);
if(v[i] > maxElement) maxElement = v[i];
}
int mask = 0;
for(int i=0;i<n;i++) if(v[i] == maxElement) mask |= (1<<i);
int ret = 0, p = 1;
while(p < n) {
ret++;
p *= 2;
}
doit(n, mask, 0, ret);
printf("%d\n",ret);
}
main() {
for(int i=0;i<(1<<15);i++) {
bc[i] = bc[i>>1] + (i&1);
}
int cases;
scanf(" %d",&cases);
while(cases--) solveCase();
}
The problem setter approach has exponential complexity. It is pretty good for N=30. But not so for larger sizes. I think, it's more interesting to find an exponential time solution. And I found one, with O(N4) complexity.
This approach uses the fact that optimal solution starts with some group of consecutive maximal elements and extends only this single group until whole array is filled with maximal values.
To prove this fact, take 2 starting groups of consecutive maximal elements and extend each of them in optimal way until they merge into one group. Suppose that group 1 needs X turns to grow to size M, group 2 needs Y turns to grow to the same size M, and on turn X + Y + 1 these groups merge. The result is a group of size at least M * 4. Now instead of turn Y for group 2, make an additional turn X + 1 for group 1. In this case group sizes are at least M * 2 and at most M / 2 (even if we count initially maximal elements, that might be included in step Y). After this change, on turn X + Y + 1 the merged group size is at least M * 4 only as a result of the first group extension, add to this at least one element from second group. So extending a single group here produces larger group in same number of steps (and if Y > 1, it even requires less steps). Since this works for equal group sizes (M), it will work even better for non-equal groups. This proof may be extended to the case of several groups (more than two).
To work with single group of consecutive maximal elements, we need to keep track of only two values: starting and ending positions of the group. Which means it is possible to use a triangular matrix to store all possible groups, allowing to use a dynamic programming algorithm.
Pseudo-code:
For each group of consecutive maximal elements in original array:
Mark corresponding element in the matrix and clear other elements
For each matrix diagonal, starting with one, containing this element:
For each marked element in this diagonal:
Retrieve current number of turns from this matrix element
(use indexes of this matrix element to initialize p1 and p2)
p2 = end of the group
p1 = start of the group
Decrease p1 while it is possible to keep median at maximum value
(now all values between p1 and p2 are assumed as maximal)
While p2 < N:
Check if number of maximal elements in the array is >= N/2
If this is true, compare current number of turns with the best result \
and update it if necessary
(additional matrix with number of maximal values between each pair of
points may be used to count elements to the left of p1 and to the
right of p2)
Look at position [p1, p2] in the matrix. Mark it and if it contains \
larger number of turns, update it
Repeat:
Increase p1 while it points to maximal value
Increment p1 (to skip one non-maximum value)
Increase p2 while it is possible to keep median at maximum value
while median is not at maximum value
To keep algorithm simple, I didn't mention special cases when group starts at position 0 or ends at position N, skipped initialization and didn't make any optimizations.

How to tell if an array is a permutation in O(n)?

Input: A read-only array of N elements containing integer values from 1 to N (some integer values can appear more than once!). And a memory zone of a fixed size (10, 100, 1000 etc - not depending on N).
How to tell in O(n) if the array represents a permutation?
--What I achieved so far (an answer proved that this was not good):--
I use the limited memory area to store the sum and the product of the array.
I compare the sum with N*(N+1)/2 and the product with N!
I know that if condition (2) is true I might have a permutation. I'm wondering if there's a way to prove that condition (2) is sufficient to tell if I have a permutation. So far I haven't figured this out ...
I'm very slightly skeptical that there is a solution. Your problem seems to be very close to one posed several years ago in the mathematical literature, with a summary given here ("The Duplicate Detection Problem", S. Kamal Abdali, 2003) that uses cycle-detection -- the idea being the following:
If there is a duplicate, there exists a number j between 1 and N such that the following would lead to an infinite loop:
x := j;
do
{
x := a[x];
}
while (x != j);
because a permutation consists of one or more subsets S of distinct elements s0, s1, ... sk-1 where sj = a[sj-1] for all j between 1 and k-1, and s0 = a[sk-1], so all elements are involved in cycles -- one of the duplicates would not be part of such a subset.
e.g. if the array = [2, 1, 4, 6, 8, 7, 9, 3, 8]
then the element in bold at position 5 is a duplicate because all the other elements form cycles: { 2 -> 1, 4 -> 6 -> 7 -> 9 -> 8 -> 3}. Whereas the arrays [2, 1, 4, 6, 5, 7, 9, 3, 8] and [2, 1, 4, 6, 3, 7, 9, 5, 8] are valid permutations (with cycles { 2 -> 1, 4 -> 6 -> 7 -> 9 -> 8 -> 3, 5 } and { 2 -> 1, 4 -> 6 -> 7 -> 9 -> 8 -> 5 -> 3 } respectively).
Abdali goes into a way of finding duplicates. Basically the following algorithm (using Floyd's cycle-finding algorithm) works if you happen across one of the duplicates in question:
function is_duplicate(a, N, j)
{
/* assume we've already scanned the array to make sure all elements
are integers between 1 and N */
x1 := j;
x2 := j;
do
{
x1 := a[x1];
x2 := a[x2];
x2 := a[x2];
} while (x1 != x2);
/* stops when it finds a cycle; x2 has gone around it twice,
x1 has gone around it once.
If j is part of that cycle, both will be equal to j. */
return (x1 != j);
}
The difficulty is I'm not sure your problem as stated matches the one in his paper, and I'm also not sure if the method he describes runs in O(N) or uses a fixed amount of space. A potential counterexample is the following array:
[3, 4, 5, 6, 7, 8, 9, 10, ... N-10, N-9, N-8, N-7, N-2, N-5, N-5, N-3, N-5, N-1, N, 1, 2]
which is basically the identity permutation shifted by 2, with the elements [N-6, N-4, and N-2] replaced by [N-2, N-5, N-5]. This has the correct sum (not the correct product, but I reject taking the product as a possible detection method since the space requirements for computing N! with arbitrary precision arithmetic are O(N) which violates the spirit of the "fixed memory space" requirement), and if you try to find cycles, you will get cycles { 3 -> 5 -> 7 -> 9 -> ... N-7 -> N-5 -> N-1 } and { 4 -> 6 -> 8 -> ... N-10 -> N-8 -> N-2 -> N -> 2}. The problem is that there could be up to N cycles, (identity permutation has N cycles) each taking up to O(N) to find a duplicate, and you have to keep track somehow of which cycles have been traced and which have not. I'm skeptical that it is possible to do this in a fixed amount of space. But maybe it is.
This is a heavy enough problem that it's worth asking on mathoverflow.net (despite the fact that most of the time mathoverflow.net is cited on stackoverflow it's for problems which are too easy)
edit: I did ask on mathoverflow, there's some interesting discussion there.
This is impossible to do in O(1) space, at least with a single-scan algorithm.
Proof
Suppose you have processed N/2 of the N elements. Assuming the sequence is a permutation then, given the state of the algorithm, you should be able to figure out the set of N/2 remaining elements. If you can't figure out the remaining elements, then the algorithm can be fooled by repeating some of the old elements.
There are N choose N/2 possible remaining sets. Each of them must be represented by a distinct internal state of the algorithm, because otherwise you couldn't figure out the remaining elements. However, it takes logarithmic space to store X states, so it takes BigTheta(log(N choose N/2)) space to store N choose N/2 states. That values grows with N, and therefore the algorithm's internal state can not fit in O(1) space.
More Formal Proof
You want to create a program P which, given the final N/2 elements and the internal state of the linear-time-constant-space algorithm after it has processed N/2 elements, determines if the entire sequence is a permutation of 1..N. There is no time or space bound on this secondary program.
Assuming P exists we can create a program Q, taking only the internal state of the linear-time-constant-space algorithm, which determines the necessary final N/2 elements of the sequence (if it was a permutation). Q works by passing P every possible final N/2 elements and returning the set for which P returns true.
However, because Q has N choose N/2 possible outputs, it must have at least N choose N/2 possible inputs. That means the internal state of the original algorithm must store at least N choose N/2 states, requiring BigTheta(log N choose N/2), which is greater than constant size.
Therefore the original algorithm, which does have time and space bounds, also can't work correctly if it has constant-size internal state.
[I think this idea can be generalized, but thinking isn't proving.]
Consequences
BigTheta(log(N choose N/2)) is equal to BigTheta(N). Therefore just using a boolean array and ticking values as you encounter them is (probably) space-optimal, and time-optimal too since it takes linear time.
I doubt you would be able to prove that ;)
(1, 2, 4, 4, 4, 5, 7, 9, 9)
I think that more generally, this problem isn't solvable by processing the numbers in order. Suppose you are processing the elements in order and you are halfway the array. Now the state of your program has to somehow reflect which numbers you've encountered so far. This requires at least O(n) bits to store.
This isn't going to work due to the complexity being given as a function of N rather than M, implying that N >> M
This was my shot at it, but for a bloom filter to be useful, you need a big M, at which point you may as well use simple bit toggling for something like integers
http://en.wikipedia.org/wiki/Bloom_filter
For each element in the array
Run the k hash functions
Check for inclusion in the bloom filter
If it is there, there is a probability you've seen the element before
If it isn't, add it
When you are done, you may as well compare it to the results of a 1..N array in order, as that'll only cost you another N.
Now if I haven't put enough caveats in. It isn't 100%, or even close since you specified complexity in N, which implies that N >> M, so fundamentally it won't work as you have specified it.
BTW, the false positive rate for an individual item should be
e = 2^(-m/(n*sqrt(2)))
Which monkeying around with will give you an idea how big M would need to be to be acceptable.
I don't know how to do it in O(N), or even if it can be done in O(N). I know that it can be done in O(N log N) if you (use an appropriate) sort and compare.
That being said, there are many O(N) techniques that can be done to show that one is NOT a permutation of the other.
Check the length. If unequal, obviously not a permutation.
Create an XOR fingerprint. If the value of all the elements XOR'ed together does not match, then it can not be a permutation. A match would however be inconclusive.
Find the sum of all elements. Although the result may overflow, that should not be a worry when matching this 'fingerprint'. If however, you did a checksum that involved multiplying then overflow would be an issue.
Hope this helps.
You might be able to do this in randomized O(n) time and constant space by computing sum(x_i) and product(x_i) modulo a bunch of different randomly chosen constants C of size O(n). This basically gets you around the problem that product(x_i) gets too large.
There's still a lot of open questions, though, like if sum(x_i)=N(N+1)/2 and product(x_i)=N! are sufficient conditions to guarantee a permutation, and what is the chance that a non-permutation generates a false positive (I would hope ~1/C for each C you try, but maybe not).
it's a permutation if and only if there are no duplicate values in the array, should be easy to check that in O(N)
Depending on how much space you have, relative to N, you might try using hashing and buckets.
That is, iterate over the entire list, hash each element, and store it in a bucket. You'll need to find a way to reduce bucket collisions from the hashes, but that is a solved problem.
If an element tries to go into a bucket with an item identical to it, it is a permutation.
This type of solution would be O(N) as you touch each element only once.
However, the problem with this is whether space M is larger than N or not. If M > N, this solution will be fine, but if M < N, then you will not be able to solve the problem with 100% accuracy.
First, an information theoretic reason why this may be possible. We can trivially check that the numbers in the array are in bounds in O(N) time and O(1) space. To specify any such array of in-bounds numbers requires N log N bits of information. But to specify a permutation requires approximately (N log N) - N bits of information (Stirling's approximation). Thus, if we could acquire N bits of information during testing, we might be able to know the answer. This is trivial to do in N time (in fact, with M static space we can pretty easily acquire log M information per step, and under special circumstances we can acquire log N information).
On the other hand, we only get to store something like M log N bits of information in our static storage space, which is presumably much less than N, so it depends greatly what the shape of the decision surface is between "permutation" and "not".
I think that this is almost possible but not quite given the problem setup. I think one is "supposed" to use the cycling trick (as in the link that Iulian mentioned), but the key assumption of having a tail in hand fails here because you can index the last element of the array with a permutation.
The sum and the product will not guarantee the correct answer, since these hashes are subject to collisions, i.e. different inputs might potentially produce identical results. If you want a perfect hash, a single-number result that actually fully describes the numerical composition of the array, it might be the following.
Imagine that for any number i in [1, N] range you can produce a unique prime number P(i) (for example, P(i) is the i-th prime number). Now all you need to do is calculate the product of all P(i) for all numbers in your array. The product will fully and unambiguously describe the composition of your array, disregarding the ordering of values in it. All you need to do is to precalculate the "perfect" value (for a permutation) and compare it with the result for a given input :)
Of course, the algorithm like this does not immediately satisfy the posted requirements. But at the same time it is intuitively too generic: it allows you to detect a permutation of absolutely any numerical combination in an array. In your case you need to detect a permutation of a specific combination 1, 2, ..., N. Maybe this can somehow be used to simplify things... Probably not.
Alright, this is different, but it appears to work!
I ran this test program (C#):
static void Main(string[] args) {
for (int j = 3; j < 100; j++) {
int x = 0;
for (int i = 1; i <= j; i++) {
x ^= i;
}
Console.WriteLine("j: " + j + "\tx: " + x + "\tj%4: " + (j % 4));
}
}
Short explanation: x is the result of all the XORs for a single list, i is the element in a particular list, and j is the size of the list. Since all I'm doing is XOR, the order of the elements don't matter. But I'm looking at what correct permutations look like when this is applied.
If you look at j%4, you can do a switch on that value and get something like this:
bool IsPermutation = false;
switch (j % 4) {
case 0:
IsPermutation = (x == j);
break;
case 1:
IsPermutation = (x == 1);
break;
case 2:
IsPermutation = (x == j + 1);
break;
case 3:
IsPermutation = (x == 0);
break;
}
Now I acknowledge that this probably requires some fine tuning. It's not 100%, but it's a good easy way to get started. Maybe with some small checks running throughout the XOR loop, this could be perfected. Try starting somewhere around there.
it looks like asking to find duplicate in array with stack machine.
it sounds impossible to know the full history of the stack , while you extract each number and have limited knowledge of the numbers that were taken out.
Here's proof it can't be done:
Suppose by some artifice you have detected no duplicates in all but the last cell. Then the problem reduces to checking if that last cell contains a duplicate.
If you have no structured representation of the problem state so far, then you are reduced to performing a linear search over the entire previous input, for EACH cell. It's easy to see how this leaves you with a quadratic-time algorithm.
Now, suppose through some clever data structure that you actually know which number you expect to see last. Then certainly that knowledge takes at least enough bits to store the number you seek -- perhaps one memory cell? But there is a second-to-last number and a second-to-last sub-problem: then you must similarly represent a set of two possible numbers yet-to-be-seen. This certainly requires more storage than encoding only for one remaining number. By a progression of similar arguments, the size of the state must grow with the size of the problem, unless you're willing to accept a quadratic-time worst-case.
This is the time-space trade-off. You can have quadratic time and constant space, or linear time and linear space. You cannot have linear time and constant space.
Check out the following solution. It uses O(1) additional space.
It alters the array during the checking process, but returns it back to its initial state at the end.
The idea is:
Check if any of the elements is out of the range [1, n] => O(n).
Go over the numbers in order (all of them are now assured to be in the range [1, n]), and for each number x (e.g. 3):
go to the x'th cell (e.g. a[3]), if it's negative, then someone already visited it before you => Not permutation. Otherwise (a[3] is positive), multiply it by -1.
=> O(n).
Go over the array and negate all negative numbers.
This way, we know for sure that all elements are in the range [1, n], and that there are no duplicates => The array is a permutation.
int is_permutation_linear(int a[], int n) {
int i, is_permutation = 1;
// Step 1.
for (i = 0; i < n; ++i) {
if (a[i] < 1 || a[i] > n) {
return 0;
}
}
// Step 2.
for (i = 0; i < n; ++i) {
if (a[abs(a[i]) - 1] < 0) {
is_permutation = 0;
break;
}
a[i] *= -1;
}
// Step 3.
for (i = 0; i < n; ++i) {
if (a[i] < 0) {
a[i] *= -1;
}
}
return is_permutation;
}
Here is the complete program that tests it:
/*
* is_permutation_linear.c
*
* Created on: Dec 27, 2011
* Author: Anis
*/
#include <stdio.h>
int abs(int x) {
return x >= 0 ? x : -x;
}
int is_permutation_linear(int a[], int n) {
int i, is_permutation = 1;
for (i = 0; i < n; ++i) {
if (a[i] < 1 || a[i] > n) {
return 0;
}
}
for (i = 0; i < n; ++i) {
if (a[abs(a[i]) - 1] < 0) {
is_permutation = 0;
break;
}
a[abs(a[i]) - 1] *= -1;
}
for (i = 0; i < n; ++i) {
if (a[i] < 0) {
a[i] *= -1;
}
}
return is_permutation;
}
void print_array(int a[], int n) {
int i;
for (i = 0; i < n; i++) {
printf("%2d ", a[i]);
}
}
int main() {
int arrays[9][8] = { { 1, 2, 3, 4, 5, 6, 7, 8 },
{ 8, 6, 7, 2, 5, 4, 1, 3 },
{ 0, 1, 2, 3, 4, 5, 6, 7 },
{ 1, 1, 2, 3, 4, 5, 6, 7 },
{ 8, 7, 6, 5, 4, 3, 2, 1 },
{ 3, 5, 1, 6, 8, 4, 7, 2 },
{ 8, 3, 2, 1, 4, 5, 6, 7 },
{ 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 8, 4, 2, 1, 3, 5, 6 } };
int i;
for (i = 0; i < 9; i++) {
printf("array: ");
print_array(arrays[i], 8);
printf("is %spermutation.\n",
is_permutation_linear(arrays[i], 8) ? "" : "not ");
printf("after: ");
print_array(arrays[i], 8);
printf("\n\n");
}
return 0;
}
And its output:
array: 1 2 3 4 5 6 7 8 is permutation.
after: 1 2 3 4 5 6 7 8
array: 8 6 7 2 5 4 1 3 is permutation.
after: 8 6 7 2 5 4 1 3
array: 0 1 2 3 4 5 6 7 is not permutation.
after: 0 1 2 3 4 5 6 7
array: 1 1 2 3 4 5 6 7 is not permutation.
after: 1 1 2 3 4 5 6 7
array: 8 7 6 5 4 3 2 1 is permutation.
after: 8 7 6 5 4 3 2 1
array: 3 5 1 6 8 4 7 2 is permutation.
after: 3 5 1 6 8 4 7 2
array: 8 3 2 1 4 5 6 7 is permutation.
after: 8 3 2 1 4 5 6 7
array: 1 1 1 1 1 1 1 1 is not permutation.
after: 1 1 1 1 1 1 1 1
array: 1 8 4 2 1 3 5 6 is not permutation.
after: 1 8 4 2 1 3 5 6
Java solution below answers question partly. Time complexity I believe is O(n). (This belief based on the fact that solution doesn't contains nested loops.) About memory -- not sure. Question appears first on relevant requests in google, so it probably can be useful for somebody.
public static boolean isPermutation(int[] array) {
boolean result = true;
array = removeDuplicates(array);
int startValue = 1;
for (int i = 0; i < array.length; i++) {
if (startValue + i != array[i]){
return false;
}
}
return result;
}
public static int[] removeDuplicates(int[] input){
Arrays.sort(input);
List<Integer> result = new ArrayList<Integer>();
int current = input[0];
boolean found = false;
for (int i = 0; i < input.length; i++) {
if (current == input[i] && !found) {
found = true;
} else if (current != input[i]) {
result.add(current);
current = input[i];
found = false;
}
}
result.add(current);
int[] array = new int[result.size()];
for (int i = 0; i < array.length ; i ++){
array[i] = result.get(i);
}
return array;
}
public static void main (String ... args){
int[] input = new int[] { 4,2,3,4,1};
System.out.println(isPermutation(input));
//output true
input = new int[] { 4,2,4,1};
System.out.println(isPermutation(input));
//output false
}
int solution(int A[], int N) {
int i,j,count=0, d=0, temp=0,max;
for(i=0;i<N-1;i++) {
for(j=0;j<N-i-1;j++) {
if(A[j]>A[j+1]) {
temp = A[j+1];
A[j+1] = A[j];
A[j] = temp;
}
}
}
max = A[N-1];
for(i=N-1;i>=0;i--) {
if(A[i]==max) {
count++;
}
else {
d++;
}
max = max-1;
}
if(d!=0) {
return 0;
}
else {
return 1;
}
}

Resources