Given a list of spheres described by (xi, yi, ri), meaning the center of sphere i is at the point (xi, yi, 0) in three-dimensional space and its radius is ri, I want to compute all zi where zi = max { z | (xi, yi, z) is a point on any sphere }. In other words, zi is the highest point over the center of sphere i that is in any of the spheres.
I have two arrays
int **vs = (int **)malloc(num * sizeof(int *));
double **vh = (double **)malloc(num * sizeof(double *));
for (int i = 0; i < num; i++){
vs[i] = (int *)malloc(2 * sizeof(int)); // x,y
vh[i] = (double *)malloc(2 * sizeof(double)); r,z
}
The objective is to calculate the maximum z for each point. Thus, we should check if there are larger spheres over each x,y point.
Initially we see vh[i][1]=vh[i][0] for all points, which means that z is the r of each sphere. Then, we check if these z values are inside larger spheres to maximize the z value.
for (int i = 0; i < v; i++) {
double a = vh[i][0] * vh[i][0]; // power of the radius of sphere #1
for (int j = 0; j < v; j++) {
if (vh[i][0] > vh[j][1]) { // check only if r of sphere #1 is larger than the current z of #2
double b = a - (vs[j][0] - vs[i][0]) * (vs[j][0] - vs[i][0])
- (vs[j][1] - vs[i][1]) * (vs[j][1] - vs[i][1]);
// calculating the maximum z value of sphere #2 crossing sphere #1
// (r of sphere #1)**2 = (z of x_j,y_j)**2 + (distance of two centers)**2
if (b > vh[j][1] * vh[j][1]) {
vh[j][1] = sqrt(b);// update the z value if it is larger than the current value
}
}
}
}
it works perfectly, but the nested loop is very slow when the number of points increases. I look for a way to speed up the process.
An illustration for the clarification of the task
When you say
The objective is to calculate the maximum z for each point.
I take you to mean, for the center C of each sphere, the maximum z coordinate among all the points lying directly above C (along the z axis) on any of the spheres. This is fundamentally an O(n2) problem -- there is nothing you can do to prevent the computational expense scaling with the square of the number of spheres.
But there may be some things you can do to reduce the scaling coeffcient. Here are some possibilities:
Use bona fide 2D arrays (== arrays of arrays) instead arrays of pointers. It's easier to implement, more memory-efficient, and better for locality of reference:
int (*vs)[2] = malloc(num * sizeof(*vs));
double (*vh)[2] = malloc(num * sizeof(*h));
// no other allocations needed
Alternatively, it may help to use an array of structures, one per sphere, instead of two 2D arrays of numbers. It would certainly make your code clearer, but it might also help give a slight speed boost by improving locality of reference:
struct sphere {
int x, y;
double r, z;
};
struct sphere *spheres = malloc(num * sizeof(*spheres));
Store z2 instead of z, at least for the duration of the computation. This will reduce the number of somewhat-expensive sqrt calls from O(v2) to O(v), supposing you make a single pass at the end to convert all the results to zs, and it will save you O(v2) multiplications, too. (More if you could get away without ever converting from z2 to z.)
Pre-initialize each vh[i][1] value to the radius of sphere i (or the square of the radius if you are exercising the previous option, too), and add j != i to the condition around the inner-loop body.
Sorting the spheres in decreasing order by radius may help you find larger provisional z values earlier, and therefore to make the radius test in the inner loop more effective at culling unnecessary computations.
You might get some improvement by checking each distinct pair only once. That is, for each unordered pair i, j, you can compute the inter-center distance once only, determine from the relative radii which height to check for a possible update, and go from there. The extra logic involved might or might not pay off through a reduction in other computations.
Additionally, if you are doing this for large enough inputs, then you might be able to reduce the wall time consumed by parallelizing the computation.
Note, by the way, that this comment is incorrect:
// (r of sphere #1)**2 = (r of sphere #2)**2 + (distance of two centers)**2
. However, it also not what you are relying upon. What you are relying upon is that if sphere 1 covers the center of sphere 2 at all, then its height, z, above the center of sphere 2 satisfies the relationship
r12 = z2 + d1,22
. That is, where you wrote r of sphere #2 in the comment, you appear to have meant z.
From the man page for XFillPolygon:
If shape is Complex, the path may self-intersect. Note that contiguous coincident points in the path are not treated as self-intersection.
If shape is Convex, for every pair of points inside the polygon, the line segment connecting them does not intersect the path. If known by the client, specifying Convex can improve performance. If you specify Convex for a path that is not convex, the graphics results are undefined.
If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly convex. If known by the client, specifying Nonconvex instead of Complex may improve performance. If you specify Nonconvex for a self-intersecting path, the graphics results are undefined.
I am having performance problems with fill XFillPolygon and, as the man page suggests, the first step I want to take is to specify the correct shape of the polygon. I am currently using Complex to be on the safe side.
Is there an efficient algorithm to determine if a polygon (defined by a series of coordinates) is convex, non-convex or complex?
You can make things a lot easier than the Gift-Wrapping Algorithm... that's a good answer when you have a set of points w/o any particular boundary and need to find the convex hull.
In contrast, consider the case where the polygon is not self-intersecting, and it consists of a set of points in a list where the consecutive points form the boundary. In this case it is much easier to figure out whether a polygon is convex or not (and you don't have to calculate any angles, either):
For each consecutive pair of edges of the polygon (each triplet of points), compute the z-component of the cross product of the vectors defined by the edges pointing towards the points in increasing order. Take the cross product of these vectors:
given p[k], p[k+1], p[k+2] each with coordinates x, y:
dx1 = x[k+1]-x[k]
dy1 = y[k+1]-y[k]
dx2 = x[k+2]-x[k+1]
dy2 = y[k+2]-y[k+1]
zcrossproduct = dx1*dy2 - dy1*dx2
The polygon is convex if the z-components of the cross products are either all positive or all negative. Otherwise the polygon is nonconvex.
If there are N points, make sure you calculate N cross products, e.g. be sure to use the triplets (p[N-2],p[N-1],p[0]) and (p[N-1],p[0],p[1]).
If the polygon is self-intersecting, then it fails the technical definition of convexity even if its directed angles are all in the same direction, in which case the above approach would not produce the correct result.
This question is now the first item in either Bing or Google when you search for "determine convex polygon." However, none of the answers are good enough.
The (now deleted) answer by #EugeneYokota works by checking whether an unordered set of points can be made into a convex polygon, but that's not what the OP asked for. He asked for a method to check whether a given polygon is convex or not. (A "polygon" in computer science is usually defined [as in the XFillPolygon documentation] as an ordered array of 2D points, with consecutive points joined with a side as well as the last point to the first.) Also, the gift wrapping algorithm in this case would have the time-complexity of O(n^2) for n points - which is much larger than actually needed to solve this problem, while the question asks for an efficient algorithm.
#JasonS's answer, along with the other answers that follow his idea, accepts star polygons such as a pentagram or the one in #zenna's comment, but star polygons are not considered to be convex. As
#plasmacel notes in a comment, this is a good approach to use if you have prior knowledge that the polygon is not self-intersecting, but it can fail if you do not have that knowledge.
#Sekhat's answer is correct but it also has the time-complexity of O(n^2) and thus is inefficient.
#LorenPechtel's added answer after her edit is the best one here but it is vague.
A correct algorithm with optimal complexity
The algorithm I present here has the time-complexity of O(n), correctly tests whether a polygon is convex or not, and passes all the tests I have thrown at it. The idea is to traverse the sides of the polygon, noting the direction of each side and the signed change of direction between consecutive sides. "Signed" here means left-ward is positive and right-ward is negative (or the reverse) and straight-ahead is zero. Those angles are normalized to be between minus-pi (exclusive) and pi (inclusive). Summing all these direction-change angles (a.k.a the deflection angles) together will result in plus-or-minus one turn (i.e. 360 degrees) for a convex polygon, while a star-like polygon (or a self-intersecting loop) will have a different sum ( n * 360 degrees, for n turns overall, for polygons where all the deflection angles are of the same sign). So we must check that the sum of the direction-change angles is plus-or-minus one turn. We also check that the direction-change angles are all positive or all negative and not reverses (pi radians), all points are actual 2D points, and that no consecutive vertices are identical. (That last point is debatable--you may want to allow repeated vertices but I prefer to prohibit them.) The combination of those checks catches all convex and non-convex polygons.
Here is code for Python 3 that implements the algorithm and includes some minor efficiencies. The code looks longer than it really is due to the the comment lines and the bookkeeping involved in avoiding repeated point accesses.
TWO_PI = 2 * pi
def is_convex_polygon(polygon):
"""Return True if the polynomial defined by the sequence of 2D
points is 'strictly convex': points are valid, side lengths non-
zero, interior angles are strictly between zero and a straight
angle, and the polygon does not intersect itself.
NOTES: 1. Algorithm: the signed changes of the direction angles
from one side to the next side must be all positive or
all negative, and their sum must equal plus-or-minus
one full turn (2 pi radians). Also check for too few,
invalid, or repeated points.
2. No check is explicitly done for zero internal angles
(180 degree direction-change angle) as this is covered
in other ways, including the `n < 3` check.
"""
try: # needed for any bad points or direction changes
# Check for too few points
if len(polygon) < 3:
return False
# Get starting information
old_x, old_y = polygon[-2]
new_x, new_y = polygon[-1]
new_direction = atan2(new_y - old_y, new_x - old_x)
angle_sum = 0.0
# Check each point (the side ending there, its angle) and accum. angles
for ndx, newpoint in enumerate(polygon):
# Update point coordinates and side directions, check side length
old_x, old_y, old_direction = new_x, new_y, new_direction
new_x, new_y = newpoint
new_direction = atan2(new_y - old_y, new_x - old_x)
if old_x == new_x and old_y == new_y:
return False # repeated consecutive points
# Calculate & check the normalized direction-change angle
angle = new_direction - old_direction
if angle <= -pi:
angle += TWO_PI # make it in half-open interval (-Pi, Pi]
elif angle > pi:
angle -= TWO_PI
if ndx == 0: # if first time through loop, initialize orientation
if angle == 0.0:
return False
orientation = 1.0 if angle > 0.0 else -1.0
else: # if other time through loop, check orientation is stable
if orientation * angle <= 0.0: # not both pos. or both neg.
return False
# Accumulate the direction-change angle
angle_sum += angle
# Check that the total number of full turns is plus-or-minus 1
return abs(round(angle_sum / TWO_PI)) == 1
except (ArithmeticError, TypeError, ValueError):
return False # any exception means not a proper convex polygon
The following Java function/method is an implementation of the algorithm described in this answer.
public boolean isConvex()
{
if (_vertices.size() < 4)
return true;
boolean sign = false;
int n = _vertices.size();
for(int i = 0; i < n; i++)
{
double dx1 = _vertices.get((i + 2) % n).X - _vertices.get((i + 1) % n).X;
double dy1 = _vertices.get((i + 2) % n).Y - _vertices.get((i + 1) % n).Y;
double dx2 = _vertices.get(i).X - _vertices.get((i + 1) % n).X;
double dy2 = _vertices.get(i).Y - _vertices.get((i + 1) % n).Y;
double zcrossproduct = dx1 * dy2 - dy1 * dx2;
if (i == 0)
sign = zcrossproduct > 0;
else if (sign != (zcrossproduct > 0))
return false;
}
return true;
}
The algorithm is guaranteed to work as long as the vertices are ordered (either clockwise or counter-clockwise), and you don't have self-intersecting edges (i.e. it only works for simple polygons).
Here's a test to check if a polygon is convex.
Consider each set of three points along the polygon--a vertex, the vertex before, the vertex after. If every angle is 180 degrees or less you have a convex polygon. When you figure out each angle, also keep a running total of (180 - angle). For a convex polygon, this will total 360.
This test runs in O(n) time.
Note, also, that in most cases this calculation is something you can do once and save — most of the time you have a set of polygons to work with that don't go changing all the time.
To test if a polygon is convex, every point of the polygon should be level with or behind each line.
Here's an example picture:
The answer by #RoryDaulton
seems the best to me, but what if one of the angles is exactly 0?
Some may want such an edge case to return True, in which case, change "<=" to "<" in the line :
if orientation * angle < 0.0: # not both pos. or both neg.
Here are my test cases which highlight the issue :
# A square
assert is_convex_polygon( ((0,0), (1,0), (1,1), (0,1)) )
# This LOOKS like a square, but it has an extra point on one of the edges.
assert is_convex_polygon( ((0,0), (0.5,0), (1,0), (1,1), (0,1)) )
The 2nd assert fails in the original answer. Should it?
For my use case, I would prefer it didn't.
This method would work on simple polygons (no self intersecting edges) assuming that the vertices are ordered (either clockwise or counter)
For an array of vertices:
vertices = [(0,0),(1,0),(1,1),(0,1)]
The following python implementation checks whether the z component of all the cross products have the same sign
def zCrossProduct(a,b,c):
return (a[0]-b[0])*(b[1]-c[1])-(a[1]-b[1])*(b[0]-c[0])
def isConvex(vertices):
if len(vertices)<4:
return True
signs= [zCrossProduct(a,b,c)>0 for a,b,c in zip(vertices[2:],vertices[1:],vertices)]
return all(signs) or not any(signs)
I implemented both algorithms: the one posted by #UriGoren (with a small improvement - only integer math) and the one from #RoryDaulton, in Java. I had some problems because my polygon is closed, so both algorithms were considering the second as concave, when it was convex. So i changed it to prevent such situation. My methods also uses a base index (which can be or not 0).
These are my test vertices:
// concave
int []x = {0,100,200,200,100,0,0};
int []y = {50,0,50,200,50,200,50};
// convex
int []x = {0,100,200,100,0,0};
int []y = {50,0,50,200,200,50};
And now the algorithms:
private boolean isConvex1(int[] x, int[] y, int base, int n) // Rory Daulton
{
final double TWO_PI = 2 * Math.PI;
// points is 'strictly convex': points are valid, side lengths non-zero, interior angles are strictly between zero and a straight
// angle, and the polygon does not intersect itself.
// NOTES: 1. Algorithm: the signed changes of the direction angles from one side to the next side must be all positive or
// all negative, and their sum must equal plus-or-minus one full turn (2 pi radians). Also check for too few,
// invalid, or repeated points.
// 2. No check is explicitly done for zero internal angles(180 degree direction-change angle) as this is covered
// in other ways, including the `n < 3` check.
// needed for any bad points or direction changes
// Check for too few points
if (n <= 3) return true;
if (x[base] == x[n-1] && y[base] == y[n-1]) // if its a closed polygon, ignore last vertex
n--;
// Get starting information
int old_x = x[n-2], old_y = y[n-2];
int new_x = x[n-1], new_y = y[n-1];
double new_direction = Math.atan2(new_y - old_y, new_x - old_x), old_direction;
double angle_sum = 0.0, orientation=0;
// Check each point (the side ending there, its angle) and accum. angles for ndx, newpoint in enumerate(polygon):
for (int i = 0; i < n; i++)
{
// Update point coordinates and side directions, check side length
old_x = new_x; old_y = new_y; old_direction = new_direction;
int p = base++;
new_x = x[p]; new_y = y[p];
new_direction = Math.atan2(new_y - old_y, new_x - old_x);
if (old_x == new_x && old_y == new_y)
return false; // repeated consecutive points
// Calculate & check the normalized direction-change angle
double angle = new_direction - old_direction;
if (angle <= -Math.PI)
angle += TWO_PI; // make it in half-open interval (-Pi, Pi]
else if (angle > Math.PI)
angle -= TWO_PI;
if (i == 0) // if first time through loop, initialize orientation
{
if (angle == 0.0) return false;
orientation = angle > 0 ? 1 : -1;
}
else // if other time through loop, check orientation is stable
if (orientation * angle <= 0) // not both pos. or both neg.
return false;
// Accumulate the direction-change angle
angle_sum += angle;
// Check that the total number of full turns is plus-or-minus 1
}
return Math.abs(Math.round(angle_sum / TWO_PI)) == 1;
}
And now from Uri Goren
private boolean isConvex2(int[] x, int[] y, int base, int n)
{
if (n < 4)
return true;
boolean sign = false;
if (x[base] == x[n-1] && y[base] == y[n-1]) // if its a closed polygon, ignore last vertex
n--;
for(int p=0; p < n; p++)
{
int i = base++;
int i1 = i+1; if (i1 >= n) i1 = base + i1-n;
int i2 = i+2; if (i2 >= n) i2 = base + i2-n;
int dx1 = x[i1] - x[i];
int dy1 = y[i1] - y[i];
int dx2 = x[i2] - x[i1];
int dy2 = y[i2] - y[i1];
int crossproduct = dx1*dy2 - dy1*dx2;
if (i == base)
sign = crossproduct > 0;
else
if (sign != (crossproduct > 0))
return false;
}
return true;
}
For a non complex (intersecting) polygon to be convex, vector frames obtained from any two connected linearly independent lines a,b must be point-convex otherwise the polygon is concave.
For example the lines a,b are convex to the point p and concave to it below for each case i.e. above: p exists inside a,b and below: p exists outside a,b
Similarly for each polygon below, if each line pair making up a sharp edge is point-convex to the centroid c then the polygon is convex otherwise it’s concave.
blunt edges (wronged green) are to be ignored
N.B
This approach would require you compute the centroid of your polygon beforehand since it doesn’t employ angles but vector algebra/transformations
Adapted Uri's code into matlab. Hope this may help.
Be aware that Uri's algorithm only works for simple polygons! So, be sure to test if the polygon is simple first!
% M [ x1 x2 x3 ...
% y1 y2 y3 ...]
% test if a polygon is convex
function ret = isConvex(M)
N = size(M,2);
if (N<4)
ret = 1;
return;
end
x0 = M(1, 1:end);
x1 = [x0(2:end), x0(1)];
x2 = [x0(3:end), x0(1:2)];
y0 = M(2, 1:end);
y1 = [y0(2:end), y0(1)];
y2 = [y0(3:end), y0(1:2)];
dx1 = x2 - x1;
dy1 = y2 - y1;
dx2 = x0 - x1;
dy2 = y0 - y1;
zcrossproduct = dx1 .* dy2 - dy1 .* dx2;
% equality allows two consecutive edges to be parallel
t1 = sum(zcrossproduct >= 0);
t2 = sum(zcrossproduct <= 0);
ret = t1 == N || t2 == N;
end
Is a there a neat algorithm that I can use to fill in random positions in a huge 2D n x n array with m number of integers without filling in an occupied position? Where , and
Kind of like this pseudo code:
int n;
int m;
void init(int new_n, int new_m) {
n = new_n;
m = new_m;
}
void create_grid() {
int grid[n][n];
int x, y;
for(x = 1; x <= n; x ++) {
for(y = 1; y <= n; y ++) {
grid[x][y] = 0;
}
}
populate_grid(grid);
}
void populate_grid(int grid[][]) {
int i = 1;
int x, y;
while(i <= m) {
x = get_pos();
y = get_pos();
if(grid[x][y] == 0) {
grid[x][y] = i;
i ++;
}
}
}
int get_pos() {
return random() % n + 1;
}
... but more efficient for bigger n's and m's. Specially if m is bigger and more positions are being occupied, it would take longer to generate a random position that isn't occupied.
Unless the filling factor really gets large, you shouldn't worry about hitting occupied positions.
Assuming for instance that half of the cells are already filled, you have 50% of chances to first hit a filled cell; and 25% to hit two filled ones in a row; 12.5% of hitting three... On average, it takes... two attempts to find an empty place ! (More generally, if there is only a fraction 1/M of free cells, the average number of attempts raises to M.)
If you absolutely want to avoid having to test the cells, you can work by initializing an array with the indexes of the free cells. Then instead of choosing a random cell, you choose a random entry in the array, between 1 and L (the lenght of the list, initially N²).
After having chosen an entry, you set the corresponding cell, you move the last element in the list to the random position, and set L= L-1. This way, the list of free positions is kept up-to-date.
Note the this process is probably less efficient than blind attempts.
To generate pseudo-random positions without repeats, you can do something like this:
for (int y=0; y<n; ++y) {
for(int x=0; x<n; ++x) {
int u=x,v=y;
u = (u+hash(v))%n;
v = (v+hash(u))%n;
u = (u+hash(v))%n;
output(u,v);
}
}
for this to work properly, hash(x) needs to be a good pseudo-random hash function that produces positive numbers that won't overflow when you add to a number between 0 and n.
This is a version of the Feistel structure (https://en.wikipedia.org/wiki/Feistel_cipher), which is commonly used to make cryptographic ciphers like DES.
The trick is that each step like u = (u+hash(v))%n; is invertible -- you can get your original u back by doing u = (u-hash(v))%n (I mean you could if the % operator worked with negative numbers the way everyone wishes it did)
Since you can invert the operations to get the original x,y back from each u,v output, each distinct x,y MUST produce a distinct u,v.
So, I wanted to have some fun with graphs and now it's driving me crazy.
First, I generate a connected graph with a given number of edges. This is the easy part, which became my curse. Basically, it works as intended, but the results I'm getting are quite bizarre (well, maybe they're not, and I'm the issue here). The algorithm for generating the graph is fairly simple.
I have two arrays, one of them is filled with numbers from 0 to n - 1, and the other is empty.
At the beginning I shuffle the first one move its last element to the empty one.
Then, in a loop, I'm creating an edge between the last element of the first array and a random element from the second one and after that I, again, move the last element from the first array to the other one.
After that part is done, I have to create random edges between the vertexes until I get as many as I need. This is, again, very easy. I just random two numbers in the range from 0 to n - 1 and if there is no edge between these vertexes, I create one.
This is the code:
void generate(int n, double d) {
initMatrix(n); // <- creates an adjacency matrix n x n, filled with 0s
int *array1 = malloc(n * sizeof(int));
int *array2 = malloc(n * sizeof(int));
int j = n - 1, k = 0;
for (int i = 0; i < n; ++i) {
array1[i] = i;
array2[i] = 0;
}
shuffle(array1, 0, n); // <- Fisher-Yates shuffle
array2[k++] = array1[j--];
int edges = d * n * (n - 1) * .5;
if (edges % 2) {
++edges;
}
while (j >= 0) {
int r = rand() % k;
createEdge(array1[j], array2[r]);
array2[k++] = array1[j--];
--edges;
}
free(array1);
free(array2);
while (edges) {
int a = rand() % n;
int b = rand() % n;
if (a == b || checkEdge(a, b)) {
continue;
}
createEdge(a, b);
--edges;
}
}
Now, if I print it out, it's a fine graph. Then I want to find a Hammiltonian cycle. This part works. Then I get to my bane - Eulerian cycle. What's the problem?
Well, first I check if all vertexes are even. And they are not. Always. Every single time, unless I choose to generate a complete graph.
I now feel destroyed by my own code. Is something wrong? Or is it supposed to be like this? I knew that Eulerian circuits would be rare, but not that rare. Please, help.
Let's analyze the probability for having euleran cycle, and for simplicity - let's do it for all graphs with n vertices, no matter number of edges.
Given a graph G of size n, choose one arbitrary vertex. The probability of it's degree being even is roughly 1/2 (assuming for each u1,u2, P((v,u1) exists) = P((v,u2) exists)).
Now, remove v from G, and create a new graph G' with n-1 vertices, and without all edges connected to v.
Similarly, for any arbitrary vertex v' in G' - if (v,v') was an edge on G', we need d(v') to be odd. Otherwise, we need d(v') to be even (both in G'). Either way, probability of it is still roughly ~1/2. (independent from previous degree of v).
....
For the ith round, let #(v) be the number of discarded edges until reaching the current graph that are connected to v. If #(v) is odd, the probability of its current degree being odd is ~1/2, and if #(v) is even, the probability of its current degree being even is also ~1/2, and we remain with current probability of ~1/2
We can now understand how it works, and make a recurrence formula for the probability of the graph being eulerian cyclic:
P(n) ~= 1/2*P(n-1)
P(1) = 1
This is going to give us P(n) ~= 2^-n, which is very unlikely for reasonable n.
Note, 1/2 is just a rough estimation (and is correct when n->infinity), probability is in fact a bit higher, but it is still exponential in -n - which makes it very unlikely for reasonable size graphs.
I have a Path and when user click on a segment I have to split it into two segments.
I have the point where user click but I can't find a method to get the LineSegment that contains that point.
I don't have to find the Path element... but the LineSegment of a collection of Segment that create the PathGeometry of the Path clicked.
How can i do?
I have some code that does this. Each of my points are stored in a Points collection rather than being stored as LineSegments, but it should work for you I think. The thickness parameter is the thickness of the line.
public int HitTestSegments(Point point, double thickness)
{
for (int i = 0; i < Points.Count; ++i)
{
Point p0 = Points[i];
Point p1 = (i + 1 < Points.Count) ? Points[i + 1] : Points[0];
Vector v = p1 - p0;
Vector w = point - p0;
double c1 = w * v;
double c2 = v * v;
double b = c1 / c2;
Point pb = p0 + b * v;
double distance = (point - pb).Length;
if (distance < thickness)
{
return i;
}
}
return -1;
}
I hacked this together from various samples on the internet, and my maths isn't amazing. It may not be the best code - if not, please suggest improvements.
But you have Point property, so basically you've got a Collecion of n+1 Points. Line between points is a simple linien equation. You have to check if your mouse's point solve this equation (interates through the collection for all lines).
The equation: 0 = Ax + By + C or simply y = ax + b
There are many ways to get the parameters of it.
From geometry we know, that (y1 - y2) * x + (x2 - x1) * y + (x1*y2 - x2*y1) = 0, where x1, y1 is the firs point of your line segment and x2, y2 is the second one. This is the formula of the line. To determine, if a given point P(X, Y) belongs to the line, you have to substitute it's coordinates to your line formula's left side and the result on the right side should be 0, or 0 +- \epsilon.
But you have not a line, you have it's segment, so you will have to add more checks, for instance, Px should not be less than x1, and no more than x2, etc.
To expand on what Shaman & lukas have said - what you really want to do is find the line segment that is nearest to to click point (As the user could not be expected to click exactly on the line)
To do this,go through each of the line segments and apply the `(y1 - y2) * x + (x2 - x1) * y + (x1*y2 - x2*y1)' formula to it and remove the sign of the answer - the line segmet that produces the smallest result is the one that is nearest to the click point.
If you have a lot of segments in your path, this might take a long time to execute, so there are probably some optimisations to be done - but that, as they say, is a whole new story.