Flagging possible identical users in an account management system - database

I am working on a possible architecture for an abuse detection mechanism on an account management system. What I want is to detect possible duplicate users based on certain correlating fields within a table. To make the problem simplistic, lets say I have a USER table with the following fields:
Name
Nationality
Current Address
Login
Interests
It is quite possible that one user has created multiple records within this table. There might be a certain pattern in which this user has created his/her accounts. What would it take to mine this table to flag records that may be possible duplicates. Another concern is scale. If we have lets say a million users, taking one user and matching it against the remaining users is unrealistic computationally. What if these records are distributed across various machines in various geographic locations?
What are some of the techniques, that I can use, to solve this problem? I have tried to pose this question in a technologically agnostic manner with the hopes that people can provide me with multiple perspectives.
Thanks

The answer really depends upon how you model your users and what constitutes a duplicate.
There could be a user that uses names from all harry potter characters. Good luck finding that pattern :)
If you are looking for records that are approximately similar try this simple approach:
Hash each word in the doc and pick the min shingle. Do this for k different hash functions. Concatenate these min hashes. What you have is a near duplicate.
To be clear, lets say a record has words w1....wn. Lets say your hash functions are h1...hk.
let m_i = min_j (h_i(w_j)
and the signature is S = m1.m2.m3....mk
The cool thing with this signature is that if two documents contain 90% same words then there is a good 90% chance that good chance that the signatures would be the same for the two documents. Hence, instead of looking for near duplicates, you look for exact duplicates in the signatures. If you want to increase the number of matches then you decrease the value of k, if you are getting too many false positives then you increase the number of k.
Of course there is the approach of implicit features of users such as thier IP addresses and cookie etc.

Related

Common ways for pair matching of users in a database?

hope you are safe and well!
I have a question about regular or common ways of pair-matching if there is a database of users: say there are a few properties of each user, and when matching, each user could change the filtering options to only match those who fit their own requirement(so there is mutual selection between users), and we want to efficiently match 1000 users as precisely as possible.
For example, let's say there are 3 properties of every user: gender(female/male/other), study level(elementary/mediate/advanced), and grade(freshman/sophomore/junior/senior), and when matching, each user could choose to only match with people with their selected gender, study level and grade.
When focusing on 1 user, I could guess, on the perspective of database, we could use the filtering options in commands and get a list of those who satisfy both "my requirement" and "I fit their requirement"? However, I think this would be slow and asynchronous problems when there are 1000+ users in the matching phase at the same time?
I saw another post here discussed the blossom algorithm or greedy algorithm, which seem cool since if looking in a graph. Are they doable in this case? I guess if two users mutually fit both requirements, they would have an edge between the two nodes, and the value of edge could be comprehensive matching scores of 3 properties all together?
Anyway, I'm wondering is there a common way to do the pair matching precisely with at least 1000+ users at the same time?
Thank you so much!
If the requirement is that each match has to have the exact same properties, then the solution is fairly simple; just do a multiple criteria sort (ex. first sort by gender, then within each gender category sort by study level, etc.) and pair the identical users.
However, in a random dataset you're very unlikely to have perfect matches for all users. In that case you would want score pairs by how closely each category matches and use a more complex algorithm to maximize your overall matches. What you would do depends heavily on your use case and userbase size. Honestly, 1000 users is a very small number for modern computers; pretty much any polynomial time method (including blossom as you mentioned) would work fine.

Auto incrementing from two different points on the same table?

Each customer has an ID. For every new customer it's incremented by 1.
My company is wanting to start selling to a new type of customer (lets call it customer B), and have their ID start at 30k.
Is this a poor design? Our system has an option to set the customer type, so there is no need for this. We're not expected to reach this number for our other type of customers until 2050 (it's currently at 10k).
I'm trying to convince them that this is a bad idea... It also doesn't help the third party trying to implement this is ok with it.
Confusing the technical and functional keys is the really bad idea. Technical keys are designed to be unchanged, to maintain the referential integrity and to speed up the joins. Technical keys are also to avoid of exposing at the application level (i.e. in the screen forms).
Functional keys are visible to application users and may be a subject to change accordingly to new requirements.
Other bad idea is to use number parts to separate data partitions (customer groups in your case). The character code having a complex structure like a social security number is a more strong and scalable solution (however it's a sort of denormalization, too).
The recommended solution is to have a technical ID as an auto-incremental number but also add a functional customer code.
If the identifier is customer-facing or business user-facing then it makes sense to design it with readability and usability in mind. Most people find it very natural work with identification schemes that have information encoded within them: think of phone numbers, vehicle licence plate numbers, airline flight numbers. There is evidence that a well structured identification scheme can improve usability and reduce the rate of errors in day to day use. You could expect that a well-designed "meaningful" identification scheme will result in fewer errors than an arbitrary incrementing number with no identifiable features.
There's nothing inherently wrong with doing this. Whether it makes sense in your business context depends a lot on how the number will be used. Technically speaking it isn't difficult to build multiple independent sequences, e.g. using the SEQUENCE feature in SQL. You may want to consider including other features as well, like check digits.

Tricky duplicate control: meeting criterias in Excel array formulas

A bit of a tricky question - I might just have to do it through VBA with a proper script, however if someone actually has a complicated answer, (let's be honest I don't think there's a super simple formula for this) I'm taker. I'd rather do as much as I can through formulas. I've attached a sample.
The data: I have data that relates to countries. In each country, you can have multiple sites. For each site, you may or not have different distributions. When those distributions meet a given criteria, I want to tally up that as a "break" & count how many by countries, sites, etc.
How it works: I'm using array formulas with sumproduct() for this. The nice thing is that you can easily add criteria, each criteria returns your 0/1 so when you multiply them it gives you the array you need to sum up to see how many breaks you have.
The problem: I am unable to format the formula so that I can account for each site being counted only once in the case where the same site has 2 different distribution types and both meet the break criteria. If both distributions meet the break criteria, I don't want to record that as 2 breaks, otherwise I may end up with more sites with breaks recorded than the number of sites. Part of the problem is how I account for the unicness of sites:
(tdata[siteid]>"")/COUNTIF(tdata[siteid],tdata[siteid] &"")
This is actually a bit of a hack, in the sense that as opposed to other formulas it doesn't return 0/1 but possibly fractions. They do add up correctly and do allow me to, say, count the number of sites correctly, but the array isn't formated as 0/1 therefore when multiplied with other 0/1 arrays it messes up the results....
I control the data, so I have some leeway. I work with tables (as can be seen) and VBA is already used. I could sort the source tables if that helps. Source data:
1 row = 1 distribution for 1 site on 1 month
The summary table per country I linked is based on those source data.
Any idea?
EDIT - Filtering for distribution is not really an option. I do already have an event-based filters for the source data, and I can already calculate rightly the indicator for filtered data by distributions. But I also need to display global data (which is currently not working). Also there are other indicators that need to be calculate which won't work if I filter the data (it's big dashboard).
EDIT2: In other words, I need to find some way to account for the fact that if the same criteria (break or not) is found in 2 sites with the same siteid but 2 different distributions, I want to count that as 1 break only. While keeping in mind that if one distribution has a break (and the other not), I still want to record it as 1 site with break in that country.
EDIT3: I've decided to make a new table, that summarizes the data for each site individually (each of which may have more than once distribution). Then I can calculate global stuff from that.
My take home message from this: I think that when you have many level of data (e.g. countries, sites, with some kind of a sub-level with distributions) in Excel formulas, it's difficult NOT to summarize the data in intermediate tables for the level of analysis at which you want to focus. E.g. in my case, I am interested in country-level analysis, which is 2 "levels" above the distribution level. This means that there will be "duplication" of data from a site-level perspective. You may be able to navigate around this, but I think by far the simpler solution is to suck it up and make an intermediate table. I does shorten significantly your formulas as well.
I don't mark this as a solution because it's not what I was looking for. Still open to better suggestions allowing to work only with formulas....
File: https://www.dropbox.com/sh/4ofctha6qhfgtqw/AAD0aPJXr__tononRTpKc1oka?dl=0
Maybe the following can help.
First, you filter the entries which don't meet the criteria regarding the distribution.
In a second step, you sort the table from A to Z based on the column siteid.
Then you add an extra column after the last on with the formula =C3<>C4, where column C contains the siteid entries. In that way all duplicates are denoted by a FALSE value in the helper column.
After that you filter the FALSE values in this column.
You then get unique site ids.
In case I got your question wrong, I would be glad about an update in order to try to help you.

Determining the Similarity Between Items in a Database

We have a database with hundreds of millions of records of log data. We're attempting to 'group' this log data as being likely to be of the same nature as other entries in the log database. For instance:
Record X may contain a log entry like:
Change Transaction ABC123 Assigned To Server US91
And Record Y may contain a log entry like:
Change Transaction XYZ789 Assigned To Server GB47
To us humans those two log entries are easily recognizable as being likely related in some way. Now, there may be 10 million rows between Record X and Record Y. And there may be thousands of other entries that are similar to X and Y, and some that are totally different but that have other records they are similar to.
What I'm trying to determine is the best way to group the similar items together and say that with XX% certainty Record X and Record Y are probably of the same nature. Or perhaps a better way of saying it would be that the system would look at Record Y and say based on your content you're most like Record X as apposed to all other records.
I've seen some mentions of Natural Language Processing and other ways to find similarity between strings (like just brute-forcing some Levenshtein calculations) - however for us we have these two additional challenges:
The content is machine generated - not human generated
As opposed to a search engine approach where we determine results for a given query - we're trying to classify a giant repository and group them by how alike they are to one another.
Thanks for your input!
Interesting problem. Obviously, there's a scale issue here because you don't really want to start comparing each record to every other record in the DB. I believe I'd look at growing a list of "known types" and scoring records against the types in that list to see if each record has a match in that list.
The "scoring" part will hopefully draw some good answers here -- your ability to score against known types is key to getting this to work well, and I have a feeling you're in a better position than we are to get that right. Some sort of soundex match, maybe? Or if you can figure out how to "discover" which parts of new records change, you could define your known types as regex expressions.
At that point, for each record, you can hopefully determine that you've got a match (with high confidence) or a match (with lower confidence) or very likely no match at all. In this last case, it's likely that you've found a new "type" that should be added to your "known types" list. If you keep track of the score for each record you matched, you could also go back for low-scoring matches and see if a better match showed up later in your processing.
I would suggest indexing your data using a text search engine like Lucene to split your log entries into terms. As your data is machine generated use also word bigrams and tigrams, even higher order n-grams. A bigram is just a sequence of consecutive words, in your example you would have the following bigrams:
Change_Transaction, Transaction_XYZ789, XYZ789_Assigned, Assigned_To, To_Server, Server_GB47
For each log prepare queries in a similar way, the search engine may give you the most similar results. You may need to tweek the similarity function a bit to obtain best results but I believe this is a good start.
Two main strategies come to my mind here:
the ad-hoc one. Use an information retrieval approach. Build an index for the log entries, eventually using a specialized tokenizer/parser, by feeding them into a regular text search engine. I've heard people do this with Xapian and Lucene. Then you can "search" for a new log record and the text search engine will (hopefully) return some related log entries to compare it with. Usually the "information retrieval" approach is however only interested in finding the 10 most similar results.
the clustering approach. You will usually need to turn the data into numerical vectors (that may however be sparse) e.g. as TF-IDF. Then you can apply a clustering algorithm to find groups of closely related lines (such as the example you gave above), and investigate their nature. You might need to tweak this a little, so it doesn't e.g. cluster on the server ID.
Both strategies have their ups and downs. The first one is quite fast, however it will always just return you some similar existing log lines, without much quantities on how common this line is. It's mostly useful for human inspection.
The second strategy is more computationally intensive, and depending on your parameters could fail completely (so maybe test it on a subset first), but could also give more useful results by actually building large groups of log entries that are very closely related.
It sounds like you could take the lucene approach mentioned above, then use that as a source for input vectors into the machine learning library Mahout (http://mahout.apache.org/). Once there you can train a classifier, or just use one of their clustering algorithms.
If your DBMS has it, take a look at SOUNDEX().

Designing tables for storing various requirements and stats for multiplayer game

Original Question:
Hello,
I am creating very simple hobby project - browser based multiplayer game. I am stuck at designing tables for storing information about quest / skill requirements.
For now, I designed my tables in following way:
table user (basic information about users)
table stat (variety of stats)
table user_stats (connecting each user with stats)
Another example:
table monsters (basic information about npc enemies)
table monster_stats (connecting monsters with stats, using the same stat table from above)
Those were the simple cases. I must admit, that I am stuck while designing requirements for different things, e.g quests. Sample quest A might have only minimum character level requirement (and that is easy to implement) - but another one, quest B has multitude of other reqs (finished quests, gained skills, possessing specific items, etc) - what is a good way of designing tables for storing this kind of information?
In a similar manner - what is an efficient way of storing information about skill requirements? (specific character class, min level, etc).
I would be grateful for any help or information about creating database driven games.
Edit:
Thank You for the answers, yet I would like to receive more. As I am having some problems designing an rather complicated database layout for craftable items, I am starting a max bounty for this question.
I would like to receive links to articles / code snippets / anything connected with best practices of designing databases for storing game data (an good example of this kind of information is availibe on buildingbrowsergames.com).
I would be grateful for any help.
I'll edit this to add as many other pertinent issues as I can, although I wish the OP would address my comment above. I speak from several years as a professional online game developer and many more years as a hobbyist online game developer, for what it's worth.
Online games imply some sort of persistence, which means that you have broadly two types of data - one is designed by you, the other is created by the players in the course of play. Most likely you are going to store both in your database. Make sure you have different tables for these and cross-reference them properly via the usual database normalisation rules. (eg. If your player crafts a broadsword, you don't create an entire new row with all the properties of a sword. You create a new row in the player_items table with the per-instance properties, and refer to the broadsword row in the item_types table which holds the per-itemtype properties.) If you find a row of data is holding some things that you designed and some things that the player is changing during play, you need to normalise it out into two tables.
This is really the typical class/instance separation issue, and applies to many things in such games: a goblin instance doesn't need to store all the details of what it means to be a goblin (eg. green skin), only things pertinent to that instance (eg. location, current health). Some times there is a subtlety to the act of construction, in that instance data needs to be created based on class data. (Eg. setting a goblin instance's starting health based upon a goblin type's max health.) My advice is to hard-code these into your code that creates the instances and inserts the row for it. This information only changes rarely since there are few such values in practice. (Initial scores of depletable resources like health, stamina, mana... that's about it.)
Try and find a consistent terminology to separate instance data from type data - this will make life easier later when you're patching a live game and trying not to trash the hard work of your players by editing the wrong tables. This also makes caching a lot easier - you can typically cache your class/type data with impunity because it only ever changes when you, the designer, pushes new data up there. You can run it through memcached, or consider loading it all at start up time if your game has a continuous process (ie. is not PHP/ASP/CGI/etc), etc.
Remember that deleting anything from your design-side data is risky once you go live, since player-generated data may refer back to it. Test everything thoroughly locally before deploying to the live server because once it's up there, it's hard to take it down. Consider ways to be able to mark rows of such data as removed in a safe fashion - maybe a boolean 'live' column which, if set to false, means it just won't show up in the typical query. Think about the impact on players if you disable items they earned (and doubly if these are items they paid for).
The actual crafting side can't really be answered without knowing how you want to design your game. The database design must follow the game design. But I'll run through a trivial idea. Maybe you will want to be able to create a basic object and then augment it with runes or crystals or whatever. For that, you just need a one-to-many relationship between item instance and augmentation instance. (Remember, you might have item type and augmentation type tables too.) Each augmentation can specify a property of an item (eg. durability, max damage done in combat, weight) and a modifier (typically as a multiplier, eg. 1.1 to add a 10% bonus). You can see my explanation for how to implement these modifying effects here and here - the same principles apply for temporary skill and spell effects as apply for permanent item modification.
For character stats in a database driven game, I would generally advise to stick with the naïve approach of one column (integer or float) per statistic. Adding columns later is not a difficult operation and since you're going to be reading these values a lot, you might not want to be performing joins on them all the time. However, if you really do need the flexibility, then your method is fine. This strongly resembles the skill level table I suggest below: lots of game data can be modelled in this way - map a class or instance of one thing to a class or instance of other things, often with some additional data to describe the mapping (in this case, the value of the statistic).
Once you have these basic joins set up - and indeed any other complex queries that result from the separation of class/instance data in a way that may not be convenient for your code - consider creating a view or a stored procedure to perform them behind the scenes so that your application code doesn't have to worry about it any more.
Other good database practices apply, of course - use transactions when you need to ensure multiple actions happen atomically (eg. trading), put indices on the fields you search most often, use VACUUM/OPTIMIZE TABLE/whatever during quiet periods to keep performance up, etc.
(Original answer below this point.)
To be honest I wouldn't store the quest requirement information in the relational database, but in some sort of script. Ultimately your idea of a 'requirement' takes on several varying forms which could draw on different sorts of data (eg. level, class, prior quests completed, item possession) and operators (a level might be a minimum or a maximum, some quests may require an item whereas others may require its absence, etc) not to mention a combination of conjunctions and disjunctions (some quests require all requirements to be met, whereas others may only require 1 of several to be met). This sort of thing is much more easily specified in an imperative language. That's not to say you don't have a quest table in the DB, just that you don't try and encode the sometimes arbitrary requirements into the schema. I'd have a requirement_script_id column to reference an external script. I suppose you could put the actual script into the DB as a text field if it suits, too.
Skill requirements are suited to the DB though, and quite trivial given the typical game system of learning skills as you progress through levels in a certain class:
table skill_levels
{
int skill_id FOREIGN KEY;
int class_id FOREIGN KEY;
int min_level;
}
myPotentialSkillList = SELECT * FROM skill_levels INNER JOIN
skill ON skill_levels.skill_id = skill.id
WHERE class_id = my_skill
ORDER BY skill_levels.min_level ASC;
Need a skill tree? Add a column prerequisite_skill_id. And so on.
Update:
Judging by the comments, it looks like a lot of people have a problem with XML. I know it's cool to bash it now and it does have its problems, but in this case I think it works. One of the other reasons that I chose it is that there are a ton of libraries for parsing it, so that can make life easier.
The other key concept is that the information is really non-relational. So yes, you could store the data in any particular example in a bunch of different tables with lots of joins, but that's a pain. But if I kept giving you a slightly different examples I bet you'd have to modify your design ad infinitum. I don't think adding tables and modifying complicated SQL statements is very much fun. So it's a little frustrating that #scheibk's comment has been voted up.
Original Post:
I think the problem you might have with storing quest information in the database is that it isn't really relational (that is, it doesn't really fit easily into a table). That might be why you're having trouble designing tables for the data.
On the other hand, if you put your quest information directly into code, that means you'll have to edit the code and recompile each time you want to add a quest. Lame.
So if I was you I might consider storing my quest information in an XML file or something similar. I know that's the generic solution for just about anything, but in this case it sounds right to me. XML is really made for storing non-relation and/or hierarchical data, just like the stuff you need to store for your quest.
Summary: You could come up with your own schema, create your XML file, and then load it at run time somehow (or even store the XML in the database).
Example XML:
<quests>
<quest name="Return Ring to Mordor">
<characterReqs>
<level>60</level>
<finishedQuests>
<quest name="Get Double Cheeseburger" />
<quest name="Go to Vegas for the Weekend" />
</finishedQuests>
<skills>
<skill name="nunchuks" />
<skill name="plundering" />
</skills>
<items>
<item name="genie's lamp" />
<item name="noise cancelling headphones for robin williams' voice />
</items>
</characterReqs>
<steps>
<step number="1">Get to Mordor</step>
<step number="2">Throw Ring into Lava</step>
<step number="3">...</step>
<step number="4">Profit</step>
</steps>
</quest>
</quests>
It sounds like you're ready for general object oriented design (OOD) principles. I'm going to purposefully ignore the context (gaming, MMO, etc) because that really doesn't matter to how you do a design process. And me giving you links is less useful than explaining what terms will be most helpful to look up yourself, IMO; I'll put those in bold.
In OOD, the database schema comes directly from your system design, not the other way around. Your design will tell you what your base object classes are and which properties can live in the same table (the ones in 1:1 relationship with the object) versus which to make mapping tables for (anything with 1:n or n:m relationships - for exmaple, one user has multiple stats, so it's 1:n). In fact, if you do the OOD correctly, you will have zero decisions to make regarding the final DB layout.
The "correct" way to do any OO mapping is learned as a multi-step process called "Database Normalization". The basics of which is just as I described: find the "arity" of the object relationships (1:1, 1:n,...) and make mapping tables for the 1:n's and n:m's. For 1:n's you end up with two tables, the "base" table and a "base_subobjects" table (eg. your "users" and "user_stats" is a good example) with the "foreign key" (the Id of the base object) as a column in the subobject mapping table. For n:m's, you end up with three tables: "base", "subobjects", and "base_subobjects_map" where the map has one column for the base Id and one for the subobject Id. This might be necessary in your example for N quests that can each have M requirements (so the requirement conditions can be shared among quests).
That's 85% of what you need to know. The rest is how to handle inheritance, which I advise you to just skip unless you're masochistic. Now just go figure out how you want it to work before you start coding stuff up and the rest is cake.
The thread in #Shea Daniel's answer is on the right track: the specification for a quest is non-relational, and also includes logic as well as data.
Using XML or Lua are examples, but the more general idea is to develop your own Domain-Specific Language to encode quests. Here are a few articles about this concept, related to game design:
The Whimsy Of Domain-Specific Languages
Using a Domain Specific Language for Behaviors
Using Domain-Specific Modeling towards Computer Games Development Industrialization
You can store the block of code for a given quest into a TEXT field in your database, but you won't have much flexibility to use SQL to query specific parts of it. For instance, given the skills a character currently has, which quests are open to him? This won't be easy to query in SQL, if the quest prerequisites are encoded in your DSL in a TEXT field.
You can try to encode individual prerequisites in a relational manner, but it quickly gets out of hand. Relational and object-oriented just don't go well together. You can try to model it this way:
Chars <--- CharAttributes --> AllAttributes <-- QuestPrereqs --> Quests
And then do a LEFT JOIN looking for any quests for which no prereqs are missing in the character's attributes. Here's pseudo-code:
SELECT quest_id
FROM QuestPrereqs
JOIN AllAttributes
LEFT JOIN CharAttributes
GROUP BY quest_id
HAVING COUNT(AllAttributes) = COUNT(CharAttributes);
But the problem with this is that now you have to model every aspect of your character that could be a prerequisite (stats, skills, level, possessions, quests completed) as some kind of abstract "Attribute" that fits into this structure.
This solves this problem of tracking quest prerequisites, but it leaves you with another problem: the character is modeled in a non-relational way, essentially an Entity-Attribute-Value architecture which breaks a bunch of relational rules and makes other types of queries incredibly difficult.
Not directly related to the design of your database, but a similar question was asked a few weeks back about class diagram examples for an RPG
I'm sure you can find something useful in there :)
Regarding your basic structure, you may (depending on the nature of your game) want to consider driving toward convergence of representation between player character and non-player characters, so that code that would naturally operate the same on either doesn't have to worry about the distinction. This would suggest, instead of having user and monster tables, having a character table that represents everything PCs and NPCs have in common, and then a user table for information unique to PCs and/or user accounts. The user table would have a character_id foreign key, and you could tell a player character row by the fact that a user row exists corresponding to it.
For representing quests in a model like yours, the way I would do it would look like:
quest_model
===============
id
name ['Quest for the Holy Grail', 'You Killed My Father', etc.]
etc.
quest_model_req_type
===============
id
name ['Minimum Level', 'Skill', 'Equipment', etc.]
etc.
quest_model_req
===============
id
quest_id
quest_model_req_type_id
value [10 (for Minimum Level), 'Horseback Riding' (for Skill), etc.]
quest
===============
id
quest_model_id
user_id
status
etc.
So a quest_model is the core definition of the quest structure; each quest_model can have 0..n associated quest_model_req rows, which are requirements specific to that quest model. Every quest_model_req is associated with a quest_model_req_type, which defines the general type of requirement: achieving a Minimum Level, having a Skill, possessing a piece of Equipment, and so on. The quest_model_req also has a value, which configures the requirement for this specific quest; for example, a Minimum Level type requirement might have a value of 20, meaning you must be at least level 20.
The quest table, then, is individual instances of quests that players are undertaking or have undertaken. The quest is associated with a quest_model and a user (or perhaps character, if you ever want NPCs to be able to do quests!), and has a status indicating where the progress of the quest stands, and whatever other tracking turns out useful.
This is a bare-bones structure that would, of course, have to be built out to accomodate the needs of particular games, but it should illustrate the direction I'd recommend.
Oh, and since someone else threw around their credentials, mine are that I've been a hobbyist game developer on live, public-facing projects for 16 years now.
I'd be extremely careful of what you actually store in a DB, especially for an MMORPG. Keep in mind, these things are designed to be MASSIVE with thousands of users, and game code has to execute excessively quickly and send a crap-ton of data over the network, not only to the players on their home connections but also between servers on the back-end. You're also going to have to scale out eventually and databases and scaling out are not two things that I feel mix particularly well, particularly when you start sharding into different regions and then adding instance servers to your shards and so on. You end up with a whole lot of servers talking to databases and passing a lot of data, some of which isn't even relevant to the game at all (SQL text going to a SQL server is useless network traffic that you should cut down on).
Here's a suggestion: Limit your SQL database to storing only things that will change as players play the game. Monsters and monster stats will not change. Items and item stats will not change. Quest goals will not change. Don't store these things in a SQL database, instead store them in the code somewhere.
Doing this means that every server that ever lives will always know all of this information without ever having to query a database. Now, you don't store quests at all, you just store accomplishments of the player and the game programatically determines the affects of those quests being completed. You don't waste data transferring information between servers because you're only sending event ID's or something of that nature (you can optimize the data you pass by only using just enough bits to represent all the event ID's and this will cut down on network traffic. May seem insignificant but nothing is insignificant in massive network apps).
Do the same thing for monster stats and item stats. These things don't change during gameplay so there's no need to keep them in a DB at all and therefore this information NEVER needs to travel over the network. The only thing you store is the ID of the items or monster kills or anything like that which is non-deterministic (i.e. it can change during gameplay in a way which you can't predict). You can have dedicated item servers or monster stat servers or something like that and you can add those to your shards if you end up having huge numbers of these things that occupy too much memory, then just pass the data that's necessary for a particular quest or area to the instance server that is handling that thing to cut down further on space, but keep in mind that this will up the amount of data you need to pass down the network to spool up a new instance server so it's a trade-off. As long as you're aware of the consequences of this trade-off, you can use good judgement and decide what you want to do. Another possibility is to limit instance servers to a particular quest/region/event/whatever and only equip it with enough information to the thing it's responsible for, but this is more complex and potentially limits your scaling out since resource allocation will become static instead of dynamic (if you have 50 servers of each quest and suddenly everyone goes on the same quest, you'll have 49 idle servers and one really swamped server). Again, it's a trade-off so be sure you understand it and make good choices for your application.
Once you've identified exactly what information in your game is non-deterministic, then you can design a database around that information. That becomes a bit easier: players have stats, players have items, players have skills, players have accomplishments, etc, all fairly easy to map out. You don't need descriptions for things like skills, accomplishments, items, etc, or even their effects or names or anything since the server can determine all that stuff for you from the ID's of those things at runtime without needing a database query.
Now, a lot of this probably sounds like overkill to you. After all, a good database can do queries very rapidly. However, your bandwidth is extremely precious, even in the data center, so you need to limit your use of it to only what is absolutely necessary to send and only send that data when it's absolutely necessary that it be sent.
Now, for representing quests in code, I would consider the specification pattern (http://en.wikipedia.org/wiki/Specification_pattern). This will allow you to easily build up quest goals in terms of what events are needed to ensure that the specification for completing that quest is met. You can then use LUA (or something) to define your quests as you build the game so that you don't have to make massive code changes and rebuild the whole damn thing to make it so that you have to kill 11 monsters instead of 10 to get the Sword of 1000 truths in a particular quest. How to actually do something like that I think is beyond the scope of this answer and starts to hit the edge of my knowledge of game programming so maybe someone else on here can help you out if you choose to go that route.
Also, I know I used a lot of terms in this answer, please ask if there are any that you are unfamiliar with and I can explain them.
Edit: didn't notice your addition about craftable items. I'm going to assume that these are things that a player can create specifically in the game, like custom items. If a player can continually change these items, then you can just combine the attributes of what they're crafted as at runtime but you'll need to store the ID of each attribute in the DB somewhere. If you make a finite number of things you can add on (like gems in Diablo II) then you can eliminate a join by just adding that number of columns to the table. If there are a finite number of items that can be crafted and a finite number of ways that differnet things can be joined together into new items, then when certain items are combined, you needn't store the combined attributes; it just becomes a new item which has been defined at some point by you already. Then, they just have that item instead of its components. If you clarify the behavior your game is to have I can add additional suggestions if that would be useful.
I would approach this from an Object Oriented point of view, rather than a Data Centric point of view. It looks like you might have quite a lot of (poss complex) objects - I would recommend getting them modeled (with their relationships) first, and relying on an ORM for persistence.
When you have a data-centric problem, the database is your friend. What you have done so far seems to be quite right.
On the other hand, the other problems you mention seem to be behaviour-centric. In this case, an object-oriented analisys and solution will work better.
For example:
Create a quest class with specificQuest child classes. Each child should implement a bool HasRequirements(Player player) method.
Another option is some sort of rules engine (Drools, for example if you are using Java).
If i was designing a database for such a situation, i might do something like this:
Quest
[quest properties like name and description]
reqItemsID
reqSkillsID
reqPlayerTypesID
RequiredItems
ID
item
RequiredSkills
ID
skill
RequiredPlayerTypes
ID
type
In this, the ID's map to the respective tables then you retrieve all entries under that ID to get the list of required items, skills, what have you. If you allow dynamic creation of items then you should have a mapping to another table that contains all possible items.
Another thing to keep in mind is normalization. There's a long article here but i've condensed the first three levels into the following more or less:
first normal form means that there are no database entries where a specific field has more than one item in it
second normal form means that if you have a composite primary key all other fields are fully dependent on the entire key not just parts of it in each table
third normal is where you have no non-key fields that are dependent on other non-key fields in any table
[Disclaimer: i have very little experience with SQL databases, and am new to this field. I just hope i'm of help.]
I've done something sort of similar and my general solution was to use a lot of meta data. I'm using the term loosely to mean that any time I needed new data to make a given decision(allow a quest, allow using an item etc.) I would create a new attribute. This was basically just a table with an arbitrary number of values and descriptions. Then each character would have a list of these types of attributes.
Ex: List of Kills, Level, Regions visited, etc.
The two things this does to your dev process are:
1) Every time there's an event in the game you need to have a big old switch block that checks all these attribute types to see if something needs updating
2) Everytime you need some data, check all your attribute tables BEFORE you add a new one.
I found this to be a good rapid development strategy for a game that grows organically(not completely planned out on paper ahead of time) - but it's one big limitation is that your past/current content(levels/events etc) will not be compatible with future attributes - i.e. that map won't give you a region badge because there were no region badges when you coded it. This of course requires you to update past content when new attributes are added to the system.
just some little points for your consideration :
1) Always Try to make your "get quest" requirements simple.. and "Finish quest" requirements complicated..
Part1 can be done by "trying to make your quests in a Hierarchical order":
example :
QuestA : (Kill Raven the demon) (quest req: Lvl1)
QuestA.1 : Save "unkown" in the forest to obtain some info.. (quest req : QuestA)
QuestA.2 : Craft the sword of Crystal ... etc.. (quest req : QuestA.1 == Done)
QuestA.3 : ... etc.. (quest req : QuestA.2 == Done)
QuestA.4 : ... etc.. (quest req : QuestA.3 == Done)
etc...
QuestB (Find the lost tomb) (quest req : ( QuestA.statues == Done) )
QuestC (Go To the demons Hypermarket) ( Quest req: ( QuestA.statues == Done && player.level== 10)
etc....
Doing this would save you lots of data fields/table joints.
ADDITIONAL THOUGHTS:
if you use the above system, u can add an extra Reward field to ur quest table called "enableQuests" and add the name of the quests that needs to be enabled..
Logically.. you'd have an "enabled" field assigned to each quest..
2) A minor solution for Your crafting problem, create crafting recipes, Items that contains To-be-Crafted-item crafting requirements stored in them..
so when a player tries to craft an item.. he needs to buy a recipe 1st.. then try crafting..
a simple example of such item Desc would be:
ItemName: "Legendary Sword of the dead"
Craftevel req. : 75
Items required:
Item_1 : Blade of the dead
Item_2 : A cursed seal
item_3 : Holy Gemstone of the dead
etc...
and when he presses the "craft" Action, you can parse it and compare against his inventory/craft box...
so Your Crafting DB will have only 1 field (or 2 if u want to add a crafting LvL req. , though it will already be included in the recipe.
ADDITIONAL THOUGHTS:
Such items, can be stored in xml format in the table .. which would make it much easier to parse...
3) A similar XML System can be applied to Your quest system.. to implement quest-ending requirements..

Resources