Faster way of finding multiple of double - c

If have the following C function, used to determine if one number is a multiple of another to an arbirary tolerance
#include <math.h>
#define TOLERANCE 0.0001
int IsMultipleOf(double x,double mod)
{
return(fabs(fmod(x, mod)) < TOLERANCE);
}
It works fine, but profiling shows it to be very slow, to the extent that it has become a candidate for optimization. About 75% of the time is spent in modulo and the remaining in fabs. I'm trying to figure a way of speeding things up, using something like a look-up table. The parameter x changes regularly, whereas mod changes infrequently. The number of possible values of x is small enough that the space for a look-up would not be an issue, typically it will be one of a few hundred possible values. I can get rid of the fabs easily enough, but can't figure out a reasonable alternative to the modulo. Any ideas on how to optimize the above?
Edit The code will be running on a wide range of Windows desktop and mobile devices, hence processors could include Intel, AMD on desktop, and ARM or SH4 on mobile devices. VisualStudio 2008 is the compiler.

Do you really have to use modulo for this?
Wouldn't it be possible to just result = x / mod and then check if the decimal part of result is close to 0. For instance:
11 / 5.4999 = 2.000003 ==> 0.000003 < TOLERANCE
Or something like that.

Division (floating point or not, fmod in your case) is often an operation where the execution time varies a lot depending on the cpu and compiler:
gcc has a builtin replacement for
that if you give it the right compile
flags or if you use __builtin_fmod
explicitly. This then might map the
operation on a small number of
assembler instructions.
there may be special units like SSE
on intel processors where this
operation is implemented more
efficiently
By such tricks, depending on your environment (you didn't tell which) the time may vary from some clock cycles to some hundred. I think best is to look into the documentation of your compiler and cpu for that particular operation.

The following is probably overkill, and sub-optimal. But for what it is worth here is one way on how to do it.
We know the format of the double ...
1 bit for the sign
11 bits for the biased exponent
52 fraction bits
Let ...
value = x / mod;
exp = exponent bits of value - BIAS;
lsb = least sig bit of value's fraction bits;
Once you have that ...
/*
* If applying the exponent would eliminate the fraction bits
* then for double precision resolution it is a multiple.
* Note: lsb may require some massaging.
*/
if (exp > lsb)
return (true);
if (exp < 0)
return (false);
The only case remaining is the tolerance case. Build your double so that you are getting rid of all the digits to the left of the decimal.
sign bit is zero (positive)
exponent is the BIAS (1023 I think ... look it up to be sure)
shift the fraction bits as appropriate
Now compare it against your tolerance.

I think you need to inspect the bowels of your C RTL fmod() function: X86 FPU's have 'FPREM/FPREM1' instructions which computes remainders by repeated subtraction.
While floating point division is a single instruction, it seems you may need to call FPREM repeatedly to get the right answer for modulus, so your RTL may not use it.

I have not tested this at all, but from the way I understand fmod this should be equivalent inlined, which might let the compiler optimize it better, though I would have thought that the compiler's math library (or builtins) would work just as well. (also, I don't even know for sure if this is correct).
#include <math.h>
int IsMultipleOf(double x, double mod) {
long n = x / mod; // You should probably test for /0 or NAN result here
double new_x = mod * n;
double delta = x - new_x;
return fabs(delta) < TOLERANCE; // and for NAN result from fabs
}

Maybe you can get away with long long instead of double if you have comparable scale of data. For example long long would be enough for over 60 astronomical units in micrometer resolution.

Does it need to be double precision ? Depending on how good your math library is, this ought to be faster:
#include <math.h>
#define TOLERANCE 0.0001f
bool IsMultipleOf(float x, float mod)
{
return(fabsf(fmodf(x, mod)) < TOLERANCE);
}

I presume modulo looks a little like this on the inside:
mod(x,m) {
while (x > m) {
x = x - m
}
return x
}
I think that through some sort of search i could be optimised: eg:
fastmod(x,m) {
q = 1
while (m * q < x) {
q = q * 2
}
return mod((x - (q / 2) * m), m)
}
You might even choose to replace the finall call to mod with annother call to fastmod, adding the condition that if x < m then to return x.

Related

Power function giving different answer than math.pow function in C

I was trying to write a program to calculate the value of x^n using a while loop:
#include <stdio.h>
#include <math.h>
int main()
{
float x = 3, power = 1, copyx;
int n = 22, copyn;
copyx = x;
copyn = n;
while (n)
{
if ((n % 2) == 1)
{
power = power * x;
}
n = n / 2;
x *= x;
}
printf("%g^%d = %f\n", copyx, copyn, power);
printf("%g^%d = %f\n", copyx, copyn, pow(copyx, copyn));
return 0;
}
Up until the value of 15 for n, the answer from my created function and the pow function (from math.h) gives the same value; but, when the value of n exceeds 15, then it starts giving different answers.
I cannot understand why there is a difference in the answer. Is it that I have written the function in the wrong way or it is something else?
You are mixing up two different types of floating-point data. The pow function uses the double type but your loop uses the float type (which has less precision).
You can make the results coincide by either using the double type for your x, power and copyx variables, or by calling the powf function (which uses the float type) instead of pow.
The latter adjustment (using powf) gives the following output (clang-cl compiler, Windows 10, 64-bit):
3^22 = 31381059584.000000
3^22 = 31381059584.000000
And, changing the first line of your main to double x = 3, power = 1, copyx; gives the following:
3^22 = 31381059609.000000
3^22 = 31381059609.000000
Note that, with larger and larger values of n, you are increasingly likely to get divergence between the results of your loop and the value calculated using the pow or powf library functions. On my platform, the double version gives the same results, right up to the point where the value overflows the range and becomes Infinity. However, the float version starts to diverge around n = 55:
3^55 = 174449198498104595772866560.000000
3^55 = 174449216944848669482418176.000000
When I run your code I get this:
3^22 = 31381059584.000000
3^22 = 31381059609.000000
This would be because pow returns a double but your code uses float. When I changed to powf I got identical results:
3^22 = 31381059584.000000
3^22 = 31381059584.000000
So simply use double everywhere if you need high resolution results.
Floating point math is imprecise (and float is worse than double, having even fewer bits to store the data in; using double might delay the imprecision longer). The pow function (usually) uses an exponentiation algorithm that minimizes precision loss, and/or delegates to a chip-level instruction that may do stuff more efficiently, more precisely, or both. There could be more than one implementation of pow too, depending on whether you tell the compiler to use strictly conformant floating point math, the fastest possible, the hardware instruction, etc.
Your code is fine (though using double would get more precise results), but matching the improved precision of math.h's pow is non-trivial; by the time you've done so, you'll have reinvented it. That's why you use the library function.
That said, for logically integer math as you're using here, precision loss from your algorithm likely doesn't matter, it's purely the float vs. double issue where you lose precision from the type itself. As a rule, default to using double, and only switch to float if you're 100% sure you don't need the precision and can't afford the extra memory/computation cost of double.
Precision
float x = 3, power = 1; ... power = power * x forms a float product.
pow(x, y) forms a double result and good implementations internally use even wider math.
OP's loop method incurs rounded results after the 15th iteration. These roundings slowly compound the inaccuracy of the final result.
316 is a 26 bit odd number.
float encodes all odd numbers exactly until typically 224. Larger values are all even and of only 24 significant binary digits.
double encodes all odd numbers exactly until typically 253.
To do a fair comparison, use:
double objects and pow() or
float objects and powf().
For large powers, the pow(f)() function is certain to provide better answers than a loop at such functions often use internally extended precision and well managed rounding vs. the loop approach.

Computing RD(sqrt(x)) with a FPU in RU mode

Intervals of floating-point bounds can be used to over-approximate sets of reals, as long as the upper bound of any result interval is computed in round-upwards and the lower bound in round-downwards.
One recommended trick is to actually compute the negation of the lower bound. This allows to keep the FPU in round-upwards at all times (for instance, “Handbook of Floating-Point Arithmetic”, 2.9.2).
This works well for addition and for multiplication. The square root operation, on the other hand, is not symmetrical in the ways addition and multiplication are.
It occurs to me that in order to compute sqrtRD, for the lower bound, the following idiom, despite its complications, might be faster on an ordinary platform with IEEE 754 double-precision and FLT_EVAL_METHOD defined to 0 than changing the rounding mode twice:
#include <fenv.h>
#include <math.h>
#pragma STDC FENV_ACCESS ON
…
/* assumes round-upwards */
double sqrt_rd(double l) {
feclearexcept(FE_INEXACT);
double candidate = sqrt(l);
if (fetestexcept(FE_INEXACT))
return nextafter(candidate, 0);
return candidate;
}
I am wondering whether this is better, and whether if it is the fastest yet. As one possible alternative, but still not necessarily the fastest, it seems to me that FMARU(candidate, candidate, -l) might perhaps not be always exact (because of the directed rounding) but might be accurate enough around 0 for the following to work:
/* assumes round-upwards */
double sqrt_rd(double l) {
double candidate = sqrt(l);
if (fma(candidate, candidate, -l) != 0.0)
return nextafter(candidate, 0);
return candidate;
}
What other inexpensive ways are there to detect that sqrt was inexact?
What combination of floating-point operations leads to the fastest computation of sqrt_rd on a modern FPU set to round upwards?
I think you should be able to use:
/* assumes round-upwards */
double sqrt_rd(double l) {
double u = sqrt(l);
double w = u*u;
if (w != l)
return nextafter(u, 0);
return u;
}
The justification here being that if u is inexact, then it will be strictly greater than √l, which in turn implies that w >= u2 > l (since w is also calculated in RU mode). And if u is exact, then so is w (since we know it must be representable as a double).
fma calculates the result with infinite precision, then applies the rounding mode.
If your candidate is too large, then the infinitely precise result is greater than 0, and since you are rounding up, it will be rounded up. Even if it is only a tiny little bit larger than zero. To verify this, first try l = 1 + 2eps, where (1 + eps) = sqrt (1 + 2eps + eps^2) is just a tiny bit too large; then scale l down by a negative power of 4 so that the eps^2 is way beyond the resolution of denormalised numbers, and check that as well.

Fast float to int conversion (truncate)

I'm looking for a way to truncate a float into an int in a fast and portable (IEEE 754) way. The reason is because in this function 50% of the time is spent in the cast:
float fm_sinf(float x) {
const float a = 0.00735246819687011731341356165096815f;
const float b = -0.16528911397014738207016302002888890f;
const float c = 0.99969198629596757779830113868360584f;
float r, x2;
int k;
/* bring x in range */
k = (int) (F_1_PI * x + copysignf(0.5f, x)); /* <-- 50% of time is spent in cast */
x -= k * F_PI;
/* if x is in an odd pi count we must flip */
r = 1 - 2 * (k & 1); /* trick for r = (k % 2) == 0 ? 1 : -1; */
x2 = x * x;
return r * x*(c + x2*(b + a*x2));
}
The slowness of float->int casts mainly occurs when using x87 FPU instructions on x86. To do the truncation, the rounding mode in the FPU control word needs to be changed to round-to-zero and back, which tends to be very slow.
When using SSE instead of x87 instructions, a truncation is available without control word changes. You can do this using compiler options (like -mfpmath=sse -msse -msse2 in GCC) or by compiling the code as 64-bit.
The SSE3 instruction set has the FISTTP instruction to convert to integer with truncation without changing the control word. A compiler may generate this instruction if instructed to assume SSE3.
Alternatively, the C99 lrint() function will convert to integer with the current rounding mode (round-to-nearest unless you changed it). You can use this if you remove the copysignf term. Unfortunately, this function is still not ubiquitous after more than ten years.
I found a fast truncate method by Sree Kotay which provides exactly the optimization that I needed.
to be portable you would have to add some directives and learn a couple assembler languages but you could theoretically could use some inline assembly to move portions of the floating point register into eax/rax ebx/rbx and convert what you would need by hand, floating point specification though is a pain in the butt, but I am pretty certain that if you do it with assembly you will be way faster, as your needs are very specific and the system method is probably more generic and less efficient for your purpose
You could skip the conversion to int altogether by using frexpf to get the mantissa and exponent, and inspect the raw mantissa (use a union) at the appropriate bit position (calculated using the exponent) to determine (the quadrant dependent) r.

Why is floor() so slow?

I wrote some code recently (ISO/ANSI C), and was surprised at the poor performance it achieved. Long story short, it turned out that the culprit was the floor() function. Not only it was slow, but it did not vectorize (with Intel compiler, aka ICL).
Here are some benchmarks for performing floor for all cells in a 2D matrix:
VC: 0.10
ICL: 0.20
Compare that to a simple cast:
VC: 0.04
ICL: 0.04
How can floor() be that much slower than a simple cast?! It does essentially the same thing (apart for negative numbers).
2nd question: Does someone know of a super-fast floor() implementation?
PS: Here is the loop that I was benchmarking:
void Floor(float *matA, int *intA, const int height, const int width, const int width_aligned)
{
float *rowA=NULL;
int *intRowA=NULL;
int row, col;
for(row=0 ; row<height ; ++row){
rowA = matA + row*width_aligned;
intRowA = intA + row*width_aligned;
#pragma ivdep
for(col=0 ; col<width; ++col){
/*intRowA[col] = floor(rowA[col]);*/
intRowA[col] = (int)(rowA[col]);
}
}
}
A couple of things make floor slower than a cast and prevent vectorization.
The most important one:
floor can modify the global state. If you pass a value that is too huge to be represented as an integer in float format, the errno variable gets set to EDOM. Special handling for NaNs is done as well. All this behavior is for applications that want to detect the overflow case and handle the situation somehow (don't ask me how).
Detecting these problematic conditions is not simple and makes up more than 90% of the execution time of floor. The actual rounding is cheap and could be inlined/vectorized. Also It's a lot of code, so inlining the whole floor-function would make your program run slower.
Some compilers have special compiler flags that allow the compiler to optimize away some of the rarely used c-standard rules. For example GCC can be told that you're not interested in errno at all. To do so pass -fno-math-errno or -ffast-math. ICC and VC may have similar compiler flags.
Btw - You can roll your own floor-function using simple casts. You just have to handle the negative and positive cases differently. That may be a lot faster if you don't need the special handling of overflows and NaNs.
If you are going to convert the result of the floor() operation to an int, and if you aren't worried about overflow, then the following code is much faster than (int)floor(x):
inline int int_floor(double x)
{
int i = (int)x; /* truncate */
return i - ( i > x ); /* convert trunc to floor */
}
Branch-less Floor and Ceiling (better utilize the pipiline) no error check
int f(double x)
{
return (int) x - (x < (int) x); // as dgobbi above, needs less than for floor
}
int c(double x)
{
return (int) x + (x > (int) x);
}
or using floor
int c(double x)
{
return -(f(-x));
}
The actual fastest implementation for a large array on modern x86 CPUs would be
change the MXCSR FP rounding mode to round towards -Infinity (aka floor). In C, this should be possible with fenv stuff, or _mm_getcsr / _mm_setcsr.
loop over the array doing _mm_cvtps_epi32 on SIMD vectors, converting 4 floats to 32-bit integer using the current rounding mode. (And storing the result vectors to the destination.)
cvtps2dq xmm0, [rdi] is a single micro-fused uop on any Intel or AMD CPU since K10 or Core 2. (https://agner.org/optimize/) Same for the 256-bit AVX version, with YMM vectors.
restore the current rounding mode to the normal IEEE default mode, using the original value of the MXCSR. (round-to-nearest, with even as a tiebreak)
This allows loading + converting + storing 1 SIMD vector of results per clock cycle, just as fast as with truncation. (SSE2 has a special FP->int conversion instruction for truncation, exactly because it's very commonly needed by C compilers. In the bad old days with x87, even (int)x required changing the x87 rounding mode to truncation and then back. cvttps2dq for packed float->int with truncation (note the extra t in the mnemonic). Or for scalar, going from XMM to integer registers, cvttss2si or cvttsd2si for scalar double to scalar integer.
With some loop unrolling and/or good optimization, this should be possible without bottlenecking on the front-end, just 1-per-clock store throughput assuming no cache-miss bottlenecks. (And on Intel before Skylake, also bottlenecked on 1-per-clock packed-conversion throughput.) i.e. 16, 32, or 64 bytes per cycle, using SSE2, AVX, or AVX512.
Without changing the current rounding mode, you need SSE4.1 roundps to round a float to the nearest integer float using your choice of rounding modes. Or you could use one of the tricks shows in other answers that work for floats with small enough magnitude to fit in a signed 32-bit integer, since that's your ultimate destination format anyway.)
(With the right compiler options, like -fno-math-errno, and the right -march or -msse4 options, compilers can inline floor using roundps, or the scalar and/or double-precision equivalent, e.g. roundsd xmm1, xmm0, 1, but this costs 2 uops and has 1 per 2 clock throughput on Haswell for scalar or vectors. Actually, gcc8.2 will inline roundsd for floor even without any fast-math options, as you can see on the Godbolt compiler explorer. But that's with -march=haswell. It's unfortunately not baseline for x86-64, so you need to enable it if your machine supports it.)
Yes, floor() is extremely slow on all platforms since it has to implement a lot of behaviour from the IEEE fp spec. You can't really use it in inner loops.
I sometimes use a macro to approximate floor():
#define PSEUDO_FLOOR( V ) ((V) >= 0 ? (int)(V) : (int)((V) - 1))
It does not behave exactly as floor(): for example, floor(-1) == -1 but PSEUDO_FLOOR(-1) == -2, but it's close enough for most uses.
An actually branchless version that requires a single conversion between floating point and integer domains would shift the value x to all positive or all negative range, then cast/truncate and shift it back.
long fast_floor(double x)
{
const unsigned long offset = ~(ULONG_MAX >> 1);
return (long)((unsigned long)(x + offset) - offset);
}
long fast_ceil(double x) {
const unsigned long offset = ~(ULONG_MAX >> 1);
return (long)((unsigned long)(x - offset) + offset );
}
As pointed in the comments, this implementation relies on the temporary value x +- offset not overflowing.
On 64-bit platforms, the original code using int64_t intermediate value will result in three instruction kernel, the same available for int32_t reduced range floor/ceil, where |x| < 0x40000000 --
inline int floor_x64(double x) {
return (int)((int64_t)(x + 0x80000000UL) - 0x80000000LL);
}
inline int floor_x86_reduced_range(double x) {
return (int)(x + 0x40000000) - 0x40000000;
}
They do not do the same thing. floor() is a function. Therefore, using it incurs a function call, allocating a stack frame, copying of parameters and retrieving the result.
Casting is not a function call, so it uses faster mechanisms (I believe that it may use registers to process the values).
Probably floor() is already optimized.
Can you squeeze more performance out of your algorithm? Maybe switching rows and columns may help? Can you cache common values? Are all your compiler's optimizations on? Can you switch an operating system? a compiler?
Jon Bentley's Programming Pearls has a great review of possible optimizations.
Fast double round
double round(double x)
{
return double((x>=0.5)?(int(x)+1):int(x));
}
Terminal log
test custom_1 8.3837
test native_1 18.4989
test custom_2 8.36333
test native_2 18.5001
test custom_3 8.37316
test native_3 18.5012
Test
void test(char* name, double (*f)(double))
{
int it = std::numeric_limits<int>::max();
clock_t begin = clock();
for(int i=0; i<it; i++)
{
f(double(i)/1000.0);
}
clock_t end = clock();
cout << "test " << name << " " << double(end - begin) / CLOCKS_PER_SEC << endl;
}
int main(int argc, char **argv)
{
test("custom_1",round);
test("native_1",std::round);
test("custom_2",round);
test("native_2",std::round);
test("custom_3",round);
test("native_3",std::round);
return 0;
}
Result
Type casting and using your brain is ~3 times faster than using native functions.

I need a fast 96-bit on 64-bit specific division algorithm for a fixed-point math library

I am currently writing a fast 32.32 fixed-point math library. I succeeded at making adding, subtraction and multiplication work correctly, but I am quite stuck at division.
A little reminder for those who can't remember: a 32.32 fixed-point number is a number having 32 bits of integer part and 32 bits of fractional part.
The best algorithm I came up with needs 96-bit integer division, which is something compilers usually don't have built-ins for.
Anyway, here it goes:
G = 2^32
notation: x is the 64-bit fixed-point number, x1 is its low nibble and x2 is its high
G*(a/b) = ((a1 + a2*G) / (b1 + b2*G))*G // Decompose this
G*(a/b) = (a1*G) / (b1*G + b2) + (a2*G*G) / (b1*G + b2)
As you can see, the (a2*G*G) is guaranteed to be larger than the regular 64-bit integer. If uint128_t's were actually supported by my compiler, I would simply do the following:
((uint128_t)x << 32) / y)
Well they aren't and I need a solution. Thank you for your help.
You can decompose a larger division into multiple chunks that do division with less bits. As another poster already mentioned the algorithm can be found in TAOCP from Knuth.
However, no need to buy the book!
There is a code on the hackers delight website that implements the algorithm in C. It's written to do 64-bit unsigned divisions using 32-bit arithmetic only, so you can't directly cut'n'paste the code. To get from 64 to 128-bit you have to widen all types, masks and constans by two e.g. a short becomes a int, a 0xffff becomes 0xffffffffll ect.
After this easy easy change you should be able to do 128bit divisions.
The code is mirrored on GitHub, but was originally posted on Hackersdelight.org (original link no longer accessible).
Since your largest values only need 96-bit, One of the 64-bit divisions will always return zero, so you can even simplify the code a bit.
Oh - and before I forget this: The code only works with unsigned values. To convert from signed to unsigned divide you can do something like this (pseudo-code style):
fixpoint Divide (fixpoint a, fixpoint b)
{
// check if the integers are of different sign:
fixpoint sign_difference = a ^ b;
// do unsigned division:
fixpoint x = unsigned_divide (abs(a), abs(b));
// if the signs have been different: negate the result.
if (sign_difference < 0)
{
x = -x;
}
return x;
}
The website itself is worth checking out as well: http://www.hackersdelight.org/
By the way - nice task that you're working on.. Do you mind telling us for what you need the fixed-point library?
By the way - the ordinary shift and subtract algorithm for division would work as well.
If you target x86 you can implement it using MMX or SSE intrinsics. The algorithm relies only on primitive operations, so it could perform quite fast as well.
Better self-adjusting answer:
Forgive the C#-ism of the answer, but the following should work in all cases. There is likely a solution possible that finds the right shifts to use quicker, but I'd have to think much deeper than I can right now. This should be reasonably efficient though:
int upshift = 32;
ulong mask = 0xFFFFFFFF00000000;
ulong mod = x % y;
while ((mod & mask) != 0)
{
// Current upshift of the remainder would overflow... so adjust
y >>= 1;
mask <<= 1;
upshift--;
mod = x % y;
}
ulong div = ((x / y) << upshift) + (mod << upshift) / y;
Simple but unsafe answer:
This calculation can cause an overflow in the upshift of the x % y remainder if this remainder has any bits set in the high 32 bits, causing an incorrect answer.
((x / y) << 32) + ((x % y) << 32) / y
The first part uses integer division and gives you the high bits of the answer (shift them back up).
The second part calculates the low bits from the remainder of the high-bit division (the bit that could not be divided any further), shifted up and then divided.
I like Nils' answer, which is probably the best. It's just long division, like we all learned in grade school, except the digits are base 2^32 instead of base 10.
However, you might also consider using Newton's approximation method for division:
x := x (N + N - N * D * x)
where N is the numerator and D is the demoninator.
This just uses multiplies and adds, which you already have, and it converges very quickly to about 1 ULP of precision. On the other hand, you won't be able to acheive the exact 0.5-ULP answer in all cases.
In any case, the tricky bit is detecting and handling the overflows.
Quick -n- dirty.
Do the A/B divide with double precision floating point.
This gives you C~=A/B. It's only approximate because of floating point precision and 53 bits of mantissa.
Round off C to a representable number in your fixed point system.
Now compute (again with your fixed point) D=A-C*B. This should have significantly lower magnitude than A.
Repeat , now computing D/B with floating point. Again, round the answer to an integer. Add each division result together as you go. You can stop when your remainder is so small that your floating point divide returns 0 after rounding.
You're still not done. Now you're very close to the answer, but the divisions weren't exact.
To finalize, you'll have to do a binary search. Using the (very good) starting estimate, see if increasing it improves the error.. you basically want to bracket the proper answer and keep dividing the range in half with new tests.
Yes, you could do Newton iteration here, but binary search will likely be easier since you need only simple multiplies and adds using your existing 32.32 precision toolkit.
This is not the most efficient method, but it's by far the easiest to code.

Resources