'Followers' and efficiency - database

I am designing an app that would involve users 'following' each other's activity, in the twitter sense, but I am not very experienced with database/query design/efficiency. Are there best practices for managing this, pitfalls to avoid, etc.? I gather this can create a very large load on the db if not done properly (or maybe even then?).
If it makes a difference it is likely that people will 'follow' only a relatively small number of people (but a person may have many followers). However this is not certain, and I wouldn't want to count on it.
Any advice gratefully received. Thanks.

Pretty simple and easy to do with full normalisation. If you have a table of users, each with a unique ID, you would have a TABLE_FOLLOWERS table with the columns, USERID and FOLLOWERID which would describe all the followers for each user as a one to one to many relationship.
Even with millions of assosciations on a half decent database server this will perform well and fast as long as you are using a good database (IE, not MS-Access).

The model is fairly simple. The problem is in the size of the Subscription table; if there are 1 million users, and each subscribes to 1000, then the Subscription table has 1 billion rows.

That depends on how many users you expect to need to support; how many followers you expect users to have; and what sort of funding/development-effort you expect to have access to should your answers to the previous questions prove optimistic.
For a small scale project I would likely ignore the database, design the application as a simple object model with User objects that maintain a List[followers]. Keep it all in RAM for normal operation and use an ORM to persist to a database periodically (probably postgresql or mysql).
For a larger project I would not be using a relational database at all; but exactly what I would use would depend on the specific details of the project.
If you are only trying to spike the concept, go with the ORM approach; but, keep in mind it won't scale.

You probably should read http://highscalability.com/ and it's articles on how this is managed by the big sites.

Related

When is a flat DB design acceptable

When is it ok to use a flat DB table design nowadays. Ever? What I mean is when is it ok to abandon the wisdom of relational database design and revert back a flat table structure that incorporates no links, adding extra columns to add more data, when we should be creating a key to another table to store multiple rows.
I'm working on some ideas to discuss with a product management team. When I initially asked the question "Why are all these tables flat in nature" I was told that
"Read centric databases display better performance with a flat table structure."
I struggle with this explanation b/c a flat design present so many barriers to progress down the road.
Thoughts?
"Read centric databases display better performance with a flat table structure." This statement says table won't/rarely be used to insert/update/delete operations. In that case table must be properly indexed to get good performance. Since there won't be any kind of joins so table would be using lot of filters in where clause hence indexing is really important to be used appropriately.
This kind of scenario is usually used in data warehouses. When we designs warehouses, we usually eliminates primary/foreign keys and uses business primary keys. This is because of huge database in wareshouse.
Never.
Whatever problem you think you are going to solve by ignoring relational database theory, you will only create many more intractable problems. Furthermore, the original problem that you attempt to avoid by ignoring relational theory will invariably be based on a misconception anyway.
Short answer: Almost always!
Your website almost never needs conventional database!
After 20 years of working as an IT admin with big and small projects I can say with confidence that over 90% of todays websites do not need DataBase AT ALL.
It's just another layer of obfuscation that most companies and people can do without.
Face the facts people. Most websites out there don't get a single hit in a day so talking about DataBase performance is quite silly when it comes to HUGE majority of websites today (2019).
That means that over 90% of these sites could and should switch to some flat file CMS/CMR like PageKit, Grav or Bludit (It's my personal favorite because of its minimalistic approach. It disdains flatDB and uses ordinary folders to contain articles in HTML files.)
I never did figure out why CMS leaders like WordPress and Joomla insist on complicating their default setup by forcing their users to use DataBase connection and configuration that's often the reason the site malfunctions. If and only when site actually needs some type of DB like for instance if it has many user accounts then DB is warranted. Still, most websites have only a hand-full user accounts.
Many times we see some site down because the DataBase engine is down or can't handle so many simultaneous connections while Apache or NginX web-servers are still up and running.
Don't just follow others blindly. Time to be brave and lead.

Database Design: does it make sense to duplicate info in this case?

I'm building a service, kind of a social network, that is expected to attract trillions of users. Those users will be able to follow other users. For the case, let's imagine that I'm building Facebook. hah!
Next to each user's name, there will be the number of followers that he has. Something like
SELECT COUNT(*) FROM users_vs_users
WHERE user_followed_id = 'xxx' GROUP BY user_followed;
would work, but doing that for each page reload and checking trillions of users would kill my server.
Is it reasonable to have a field named num_of_followers in the users table for each user, that is updated every time somebody is followed or unfollowed?
Thanks
Yes. Effectively, you are denormalising for performance reasons.
I have another opinion here
Some databases can use memory (plus disk sync) like Oracle times ten and MySQL Cluster
Using memory based database only for data that is frequently accessed usually give great performance that simply make hassles of managing "counting" fields history
Another BIG tip, never optimise unless you have to, try to predict expected traffic for the next couple of months, not years, then you can monitor which queries actually are killing performance or doing too much disk access, just then you'll be able to de-normalize tables according to realistic information, not guesses
In my opinion, any self-respecting DBMS should internally perform such an optimization on its own accord. Or maybe they already do? Is COUNT(*) actually slow? I don't know.
Anyway, why not? Just make sure that "users_vs_users" and "users.num_of_followers" are synchronized at any time.

Should we start with multiple small-grained databases for an app that may scale massively

We're developing a new eCommerce website and are using NHibernate for the first time. At present we are splitting our data into multiple SQL Server databases, divided per area of functionality. So we have one for UserInfo, one for Orders, one for ProductCatalogue and so on...
Our justification for this decision is twofold really:
the website has the potential to be HUGE (it is a new website for one of the largest online brands in the UK) and we feel that by partitioning our data along functional lines we will be able to move the databases onto their own servers which would give us an easy scaling route should we need it;
my team has always worked this way - partly as a consequence of following the MS Commerce Server pattern from previous projects.
However, reading up on this decision on the internet, we find that the normal response to this sort of model is extremely scathing. "Creating more work for the devs now in order to create more work for the devs later" is one sample comment from Stack Overflow!
In addition, NHibernate is much easier to use with only one database (just one SessionFactory needed). And knowing that Stack Overflow ran off just one box for a long time makes me think that maybe we should not try to be so clever.
So, my question is, "are we correct in thinking that using fine-grained databases might increase our ability to scale or should we sacrifice this for easier development"?
Why don't you just design your database properly and put the files on appropriate disk? Use a cluster if necessary. Creating multiple databases is not an inherently scaling solution. Also - cross database referential integrity? Good luck.
What's your definition of "HUGE"? SQL Server can handle massive databases, but one thing I've learnt is that people often have no idea what constitutes a lot of data.
I've never worked in a project like this. I'm used to databases with several hundred tables, which had never been a problem.
Therefore I can't say if your idea is a good idea, I never tried it. The "my team has always worked this way"-argument is a major driver for many decisions, and I can't even say that it is always wrong.
With NHibernate you organize your data in classes. They can be in different namespaces and assemblies. You usually don't work much with the database directly, you don't need this kind of structure there.
About the scalability argument: I'm not sure if it is really scaling well when you need to access several databases every time. I mean: you always need users and orders and probably more. Then you need to get all this data from several databases.
Agree fully with starskythehutch - keep your related tables together in the same DB. BUT, you may want to consider having separate databases for things that are not related or non-critical to your main product; but that are a part of the app.
For eg: if you decide to log every visit/hit to the site in a DB, you should probably keep that in a separate DB.
The reason you should consider:
1. huge number of transactions - say hundreds of thousands / sec. Having non-critical un-related stuff in a separate DB will ensure that tlog contentions because of this are avoided.
Restore, DBCC CHECKDB, backup times. If you stuff your non-related non-critical stuff in your main DB, you are essentially increasing the size of your DB and it will affect these operations. Having it in separate DB will help you improve performance of these operations.

How to model this[Networks, details in post] in database for efficiency and ease of use?

At linkedin, when you visit someones profile you can see how you are connected to them. I believe that linkedin shows upto 3rd level connections if not more, something like
shabda -> Foo user, bar user, baz user -> Joel's connection -> Joel
How can I represent this in the database.
If I model as,
User
Id PK
Name Char
Connection
User1 FK
User2 FK
Then to find the network, three levels deep, I need to get all my connection, their connections, and their connections, and then see if the current user is there. This obviously would be very inefficient with DB of any size, and probably clunky to work with as well.
Since, on linked in I can see this network, on any profile I visit, I don't think this is precalculated either.
The other thing which comes to my mind is probably this is best not stored in a relational DB, but then what would be the best way to store and retrieve it?
My recommendation would be to use a graph database. There seems to be only one implementation currently available, and that's Neo4j. It's written in Java, but has bindings to Ruby and Scala (Python in progress).
If you don't know Java, you probably won't be able to find anything similar on any other platform (yet), unfortunately. However, if you do know Java (or are at least willing to learn), it's way worth it. (Technically you don't even need to learn Java because of the Ruby/Python bindings.) Neo4j was built for exactly what you're trying to do. You'd go through a ton of trouble trying to implement this in a relational database, when you'd be able to do the exact same thing in only a few lines of Java code, and also much more efficiently.
If that's not an option, I'd still recommend looking at other database types such as object databases. Relational databases weren't built for this kind of thing, and you'd go through more pain by trying to do it in an RDBMS than by switching to a different kind of database and learning it.
I don't see why there's anything wrong with using a relational database for this. The tables defined in the question are an excellent start. With proper optimization you'll be able to keep your performance well in hand. I personally think you would need something serious to justify shifting away from such a versatile mainstream product. You'll probably need an RBDMS in the project anyway and there are an unmatchable amount of legitimate choices in many price ranges (even free). You'll get quality documentation, support will be available, and you'll have a large supply of highly trained developers available in the job pool.
Regarding this model of self-relationships (users joined to other users), I recommend looking into recursive queries. That will keep you from performing a cascade of individual queries to find 3 levels of relationships. Consider the following SQL Server method for performing recursive queries with CTEs.
http://msdn.microsoft.com/en-us/library/ms186243.aspx
It allows you to specify how deep you want to go with the MAXRECURSION hint.
Next, you need to start thinking of ways to optimize. That starts with standard best-practices for setting up your tables with proper indexes and maintenance, etc. It inevitably ends with denormalization. That's one of those things you only do once you've already tried everything else, but if you know what you're doing and use good practices then your performance gain will be significant. There are many resources on the internet to help you learn about denormalization, just look it up.

Users asking for denormalized database

I am in the early stages of developing a database-driven system and the largest part of the system revolves around an inheritance type of relationship. There is a parent entity with about 10 columns and there will be about 10 child entities inheriting from the parent. Each child entity will have about 10 columns. I thought it made sense to give the parent entity its own table and give each of the children their own tables - a table-per-subclass structure.
Today, my users requested to see the structure of the system I created. They balked at the idea of the table-per-subclass structure. They would prefer one big ~100 column table because it would be easier for them to perform their own custom queries.
Should I consider denormalizing the database for the sake of the users?
Absolutely not. You can always create a view later to show them what they want to see.
They are effectively asking for a report.
You could give them access to a view containing all the fields they require... that way you don't mess up your data model.
No. Structure the data properly and if the users need the a denormalized view of the data create it as a VIEW in the database.
Alternatively, consider that perhaps an RDBMS is not the appropriate storage tool for this project.
They are the users and not the programmers of the system for a reason. Provide a separate interface for their queries. Power users like this can both be helpful and a pain to deal with. Just explain you need the database designed a certain way so you can do your job, period. Once that is accomplished you and provide other means to make querying easier.
What do they know!? You could argue that users shouldn't even be having direct access to a database in the first place.
Doing that leaves you open to massive performance issues, just because a couple of users are running ridiculous queries.
How about if you created a VIEW in the format your users wanted while still maintaining a properly normalized table?
Aside from a lot of the technical reasons for or against your users' proposition, you need to be on same page in communicating the consequences of various scenarious and (more importantly) the costs of those consequences. If the users are your clients and they are paying you to do a job, explain that their awful "proposed" ideas may cost them more money in development time, additional hardware resources, etc.
Hopefully you can explain it in such a way that shows your expertise and why your idea is a much better value to your users in the long run.
As everyone more or less mentioned, that way lies madness, and you can always build a view.
If you just can't get them to come around on this point, consider showing them this thread and the number of pros who weighed in saying that the users are meddling with things that they don't fully understand, and the impact will be an undermined foundation.
A big part of the developer's craft is the feel for what won't work out long term, and the rules of normalization are almost canonical in that respect. There are situations where you need to denormalize (data warehouses, etc) but this doesn't sound like one of them!
It also sounds as though you may have a particularly troubling brand of user on your hand -- the amatuer developer who thinks they could do your job better themselves if only they had the time. This may or may not help, but I've found that those types respond well to presentation -- a few times now I've found that if I dress sharp and show a little bit of force in my personality, it helps them feel like I'm an expert and prevents a bunch of problems before they start.
I would strongly recommend coming up with an answer that doesn't involve someone running direct reports against your database. The moment that happens, your DB structure is set in stone and you can basically consider it legacy.
A view is a good start, but later on you'll probably want to structure this as an export, to decouple further. Of course, then you'll encounter someone who wants "real time" data. Proper business analysis usually reveals this to be unnecessary. Actual real time requirements are not best handled through reporting systems.
Just to be clear: I'd personally favour the table per subclass approach, but I don't think it's actually as big an issue as the direct reporting off transaction tables is going to be.
I would opt for a view (as others have suggested) or an inline table-valued function (the benefits of this is you require parameters - like an date range or a customer account - which can help to stop users from querying without any limits on the problem space) first. An inline TVF is really a parametrized view and is far closer to a view in terms of how the engine treats them than it is to a multi-statement table valued function or a scalar function, which can perform incredibly poorly.
However, in some cases, this can impact production performance if the view is complex or intensive. With poorly written ad hoc user queries, it can also cause locks to persist longer or be escalated further than they would on a better built query. It is also possible for users to misinterpret an E-R data model and produce multiplied numbers in cases where there are many-to-one or many-to-many relationships. The next option might be to materialize these views with indexes or make tables and keep them updated, which gets us closer to my next option...
So, given those drawbacks of the view option and already thinking of mitigating it by starting to make copies of data, the next option I would consider is to have a separate read-only (for these users) version of the data which is structured differently. Typically, I would first look at a Kimball-style star schema. You do not need to have a full-fledged time-consistent data warehouse. Of course, that's an option, but you could simply keep a reporting model up to date with data. Star-schemas are a special form of denormalization and are particularly good for numerical reporting, and a given star should not be able to be abused by users accidentally. You can keep the star up to date in a number of ways, including triggers, scheduled jobs, etc. They can be very fast for reporting needs and run on the same production installation - perhaps on a separate instance if not just a separate database.
Although such a solution may require you to effectively more than double your storage requirements, when compared with other practices it might be a really good option if you understand your data well and don't mind having two models - one for transactions and one for analysis (note that you will already start to have this logical separation anyway with the use of a the simplest first option of view).
Some architects will often double their servers and use the SAME model with some kind of replication in order to provide a reporting server which is indexed more heavily or differently. Such a second server doesn't impact production transactions with reporting requirements and can be kept up to date fairly easily. There will only be one model, but of course, this has the same usability problems with allowing users ad hoc access to the underlying model only, without the performance affects, since they get their own playground.
There are a lot of ways to skin these cats. Good luck.
The customer is always right. However, the customer is likely to back down when you convert their requirement into dollars and cents. A 100 column table will require extra dev time to write the code that does what the database would do automatically with the proper implementation. Further, their support costs will be higher since more code means more problems and lower ease of debugging.
I'm going to play devil's advocate here and say that both solutions sound like poor approximations of the actual data. There's a reason that object-oriented programming languages don't tend to be implemented with either of these data models, and it's not because Codd's 1970 ideas about relations were the ideal system for storing and querying object-oriented data structures. :-)
Remember that SQL was originally designed as a user interface language (that's why it looks vaguely like English and not at all like other languages of that era: Algol, C, APL, Prolog). The only reasons I've heard for not exposing a SQL database to users today are security (they could take down the server!) and usability (who wants to write SQL when you can clicky clicky?), but if it's their server and they want to, then why not let them?
Given that "the largest part of the system revolves around an inheritance type of relationship", then I'd seriously consider a database that lets me represent that natively, either Postgres (if SQL is important) or a native object database (which are awesome to work with, if you don't need SQL compatibility).
Finally, remember that every engineering decision is a tradeoff. By "sticking to your guns" (as somebody else proposed), you're implicitly saying the value of your users' desires are zero. Don't ask SO for a correct answer to this, because we don't know what your users want to do with your data (or even what your data is, or who your users are). Go tell them why you want a many-tables solution, and then work out a solution with them that's acceptable to both of you.
You've implemented Class Table Inheritance and they're asking for Single Table Inheritance. Both designs are valid in certain situations.
You might want to get a copy of Martin Fowler's Patterns of Enterprise Application Architecture to read more about the advantages and disadvantages of each design. That book is a classic reference to have on your bookshelf, in any case.

Resources