Which NoSQL storage to choose - database

According to Wikipedia NoSQL article, there are a lot of NoSQL implementations.
What's the difference between document-oriented and key-value storages (as people mention them most often)?

Here's a blog post I wrote, Visual Guide to NoSQL Systems, that illustrates the major differences between some of the most popular systems. The biggest difference between them is which of the following two they choose to optimize for: consistency, availability, and partition tolerance.

At one level document and key/value are quite similar - both will return an object when you request a key. In pure key/value that object will be a simple string, although it can be a serialized complex object. A document database extends this with functions to work with this object such as partial update functionality or search indexing.
Beyond that you will need to think about your specific requirements - NOSQL covers a lot of different systems, and unlike SQL databases they all have quite different advantages/disadvantages for a specific scenario.

In my opinion I don't really see how Cassandra is not consistent. It can't do consistent updates but I have never worked with a database model where updates are a requirement, as opposed to consistent versioned inserts (sometimes called versioned updates even if they are not really updates.
Also Cassandra can be fully ACID if you make your data model ACID. Instead of using database transaction, do a transaction the way banks do it. There the transaction is not a mulit-data change but a actual data object.
Bank account does not have money in them. They have transactions and your accounts current state is calculated from the transactions. Such transactions are not a database feature, but a part of the data model. They do not need to be instantly available to all nodes in order to be consistent, because they are immutable.
I have not found a case where making data immutable does not solve the consistency problem. This combined with making transactions part of the data model as immutable data (write once read many) the ACID requirements are met.
Atomic - A transaction as a unique immutable object/row becomes atomic without any complex database object to support it.
Consistency - A database operation or transaction can be designed in the data model so that it is consistent. All that is needed is really that it is immutable (never changed after creation)
Isolation - A transaction that does is its own data object should not interfere with others, and are therefore isolated.
Durability - If a transactions immutable data is lost it is equivalent to restoring the database to its previous state. If the data is not lost then it is in its post-transaction state. In either case it fills the durability requirement of ACID.
It is true that several things cannot be achieved in the "bank" data model. Your account info can not have a ACID row with a fixed amount of money. While the transactions themselves are ACID that does not mean that data depending on them can be. This is because a all transactions may not yet be visible from all nodes. They may even be in another banks database. Therefore your account balance can not achieve ACID consistency, but there is no reason for it to have such a requirement as long as all important data has ACID consistency - which it does.
I used the bank database as an example because it is often used as an example on how to do SQL transactions with rollback on account balance - something that NEVER happens in actual implementations... because bank transactions must support asynchronous multi-database transactions, or in other words cross-bank transactions.
You can also relate this to a file-system. Cassandra (for example) can give you a Consistent view of a immutable snapshot of a file. You are not guaranteed to have a view of the latest snapshot - but A snapshot. With this it makes it as consistent as CVS/SVN or CODA.

Related

Is it possible to create a relational data schema with multiple tables on blockchain?

Blockchain has been described as a form of database. So far, most blockchain applications seem to involve blockchain as a one-table database.
Is it possible to create a data schema with multiple tables, one-to-many relationship like a relational database on blockchain? If not, why?
If I understand your question, you're asking, "can I treat a blockchain just like a normal relational database, and execute queries?" I assume you basically want a database, with the benefits of "immutability" and decentralization. Technically, the answer is yes, but economically and practically, there are a few things to consider.
Immutability of blockchain is only really achieved if there really is decentralization and a strong decentralized consensus mechanism. For example, Bitcoin has been immutable because there is a lot of distributed hash power around the world, and a 51% attack would be prohibitively expensive. Smaller networks like Bitcoin Gold, can (and were) attacked because they don't have enough hash power to resist an attacker. So you need to make sure you are resistant to this.
If you want to use the blockchain as a database for arbitrary storage, there has to be an economic incentive for users to store strangers' data. There have been many notable blockchain projects attempt this without as much adoption as previously hoped. This is in part because the economic incentive is not great enough. The only incentive Bitcoin users (miners) have to store the block data is to make sure the next mined block will be valid (if they don't store the data, they might mine an invalid block unknowingly because they can't properly validate the transactions).
The technical implementation of this depends on what you are trying to accomplish. If you want to be able to query the blockchain like a database (without necessarily being able to store arbitrary data) these solutions already exist. Different node implementations can use whatever language, storage mechanism, operating system they want, as long as they can communicate and follow the consensus rules. The block data can be stored in a flat file, SQL, noSQL, whateverSQL, the node application just has to be able to read, write, and validate the data. The thing to optimize for here is speed. Since full tx validation requires the entire blockchain, this can be very slow if the database lookups are slow.
Blockchain was invented as a solution to decentralized consensus, and cannot really be taken out of the context it was invented in, which requires not only a technical implementation, but an economic incentive for usage.
Using the blockchain structure directly? No.
However, a blockchain ledger serves very similar purposes as a write-ahead logging (WAL). Quoting from wikipedia: "a family of techniques for providing atomicity and durability (two of the ACID properties) in database systems".
WALs and distributed ledgers are just ways of registering a sequential set of events, where order matters. The main difference is that a WAL does not contain the whole history of events.
The way you construct SQL or any other type of database over blockchain, is by using the ledger as a WAL for SQL instructions. Since the ledger contains the whole history of events, you can always reconstruct the SQL database by executing the history in the same order.

Database Bottleneck In Distributed Application

I hear about SOA and Distributed Applications everywhere now. I would like know about some best practices related to keeping the single data source responsive or in case if you have copy of data on every server how it is better to synchronise those databases to keep them updated ?
There are many answers to this question and in order to choose the most appropriate solution, you need to carefully consider what kind of data you are storing and what you want to do with it.
Replication
This is the traditional mechanism for many RDBMS, and normally relies on features provided by the RDBMS. Replication has a latency which means although servers can handle load independently, they may not necessarily be reading the latest data. This may or may not be a problem for a particular system. When replication is bidirectional then simultaneous changes on two databases can lead to conflicts that need resolving somehow. Depending on your data, the choice might be easy (i.e. audit log => append both), or difficult (i.e. hotel room booking - cancel one? select alternative hotel?). You also have to consider what to do in the event that the replication network link is down (i.e. do you deny updates on both database, one database or allow the databases to diverge and sort out the conflicts later). This is all dependent on the exact type of data you have. One possible compromise, for read-heavy systems, is to use unidirectional replication to many databases for reading, and send all write operations to the source database. This is always a trade-off between Availability and Consistency (see CAP Theorem). The advantage of RDBMS and replication is that you can easily query your entire dataset in complex ways and have greater opportunity to
remove duplication by using relational links to data items.
Sharding
If your data can be cleanly partitioned into disjoint subsets (e.g. different customers), such that all possible relational links between data items are contained within each subset (e.g. customers -> orders). Then you can put each subset in separate databases. This is the principle behind NoSQL databases, or as Martin Fowler calls them 'Aggregate-Oriented Databases'. The downside of this approach is that it requires more work to run queries over your entire dataset, as you have to query all your databases and then combine the results (e.g. map-reduce). Another disadvantage is that in separating your data you may need to duplicate some (e.g. sharding by customers -> orders might mean product data is duplicated). It is also hard to manage the data schema as it lies independently on multiple databases, which is why most NoSQL databases are schema-less.
Database-per-service
In the microservice approach, it is advised that each microservice should have its own dedicated database, that is not allowed to be accessed by any other microservice (of a different type). Hence, a microservice that manages customer contact information stores the data in a separate database from the microservice that manages customer orders. Links can be made between the databases using globally unique ids, or URIs (especially if the microservices are RESTful) etc. The downside again from this is that it is even harder to perform complex queries on the entire dataset (especially since all access should go via the microservice API not direct to the databases).
Polyglot storage
So many of my projects in the past have involved a single RDBMS in which all data was placed. Some of this data was well suited to the relational model, much of it was not. For example, hierarchical data might be better stored in a graph database, stock ticks in a column-oriented database, html templates in a NoSQL database. The trend with micro-services is to move towards a model where different parts of your dataset are placed in storage providers that are chosen according to the need.
If you thinking to keep different copies of the database for each microservice and you want to achieve eventual consistency than you can use Kafka Connect. I can briefly tell you that kafka connect will watch your DBS and whenever there are any changes it will read the log file and will add these logged events as a message in Queue then another database those are a subscriber to this Queue can execute the same statement at their side also.
Kafka connect isn't the only framework, you can search and find other frameworks or application for the same implementation.

Data integrity across the databases of different Microservices

I am using relational databases for my microservices. I have CustomersMService which has its own database with table Customer, then I have OrdersMService which also has its own database but with table Order, and that table has column CustomerId. How can I ensure data integrity between databases, so Orders won't point to non-existent Customers?
How can I ensure data integrity between databases, so Orders won't point to non-existent Customers?
There is an important dimension missing, which is that of the span of time over which you wish to establish the referential integrity.
If you ask, "How can I ensure that all my data is 100% consistent at all times?" - you can't. If you want that you will need to enforce it, either via foreign key constraints (which are unavailable across databases), or by never writing to more than one database outside of a distributed transaction (which would defeat the purpose of using service orientation).
If you ask, "How can I ensure that all my data is 100% consistent after a reasonable span of time?", then there are things you can do. A common approach is to implement durable, asynchronous eventing between your services. This ensures that changes can be written locally and then dispatched remotely in a reliable, but offline, manner. A further approach is a caretaker process which periodically remediates inconsistencies in your data.
However, outside of a transaction, even over a reasonable span of time, consistency is impossible to guarantee. If absolute consistency is a requirement for your application then microservices may not be the right approach.

Opinion: Reason to use NoSQL

I got two opinions about NoSQL from my friend.
First: Use NoSQL to boost performance and save occasional updated data. Still use sql to save all important dan transaction data.
Second: Don't use NoSQL if you didn't really need it. Use it if you really save big data.
I've used NoSQL and its really fast when selecting data.
I want to know, is first opinion only enough for implementing NoSQL? What all of you think about these?
NOTE: In my case, it still running well with SQL. I want to add NoSQL for improving data reading speed. so it will work alongside.
Is it worth it to use NoSQL this early?
Thanks in advance
It depends on what you are designing.
From my experience scaling out data collection I have found traditional relational storage to be a bottleneck in terms of its inability to scale out over multiple nodes when a databases gets very large. Sure it scales up but this becomes cost prohibitive at some point. In this scenario it would therefore depend on your medium to long term data storage projections. The solution for me was therefore mixture of relational storage for data that may be updated frequently and noSQL (document storage) for data the has a fast rate of growth that is generally not updated post write.
Things to take into account:
Queries
SQL relational storage supports a growing subset languages for queries, as well as a wide range of filters, sorting options, and projections and index queries. NoSQL does all this as well, but SQL can often go beyond it, allowing powerful aggregations of your data as well, beyond what NoSQL can do.
Transactions
Transactions are important because they ensure that you have atomically made changes to your database. Many NoSQL platforms don’t support transactions, so be aware of this feature when you’re figuring out which to use, and what your own needs are.
Consistency
MySQL platforms often use a single master to guarantee strong consistency in your database. These use synchronous replication to ensure you don’t lose important changes queued up to the master. NoSQL, by contrast, does replication of entity groups without a master, so that data is strong within an entity group, and is eventually updated across all groups. The better option depends on the constraints and needs of your database.
Scalability
For years, database administrators relied on scaling up, buying bigger servers as database load increased. However, as transaction rates and demands on the databases continue to expand immensely, emphasis is on scaling out instead. Scaling out is distributing databases across multiple hosts, and that’s something NoSQL does better than standard SQL. They’re designed for optimal use on scaled out databases.
Management
NoSQL databases are generally designed to require less management overall. Repairs are often automatic, and data distribution and simpler data models contribute to less administration required overall. However, you’ve also got less support when there’s a problem. SQL platforms often have vendors waiting to supply support to enterprises.
Schema
Regular SQL platforms often have strictly enforced rules for a schema change, to stave off user-created typos that can put faults in your query. NoSQL platforms will have their own mechanisms for combating this.
Hope that helps.
NoSQL scores over SQL in below areas
It support semi-structured data and volatile data. You can change the structure at any time
It does not have schema
Read/Write through put is very high
Horizontal scalability is easily achieved - Add cheaper hardware and provide right replication factor
Will support Bigdata in volumes of Terra Bytes & Peta Bytes by using cheaper hardware
Good support for Analytic tools on top of Bigdata, especially Hadoop/Hbase family
In memory caching option is available to increase the performance of queries
Faster development life cycles for developers
When you should not use NoSQL and go for SQL
If you require business critical transaction with ACID properties i.e where Consistency is key & Eventual consistency is not an option
If you have heavy aggregation queries spanning multiple entities
In summary, you have to use right technology for right business use case. i.e combination of SQL and NoSQL
Regarding your queries:
Use SQL for business critical transactions. If your SQL is scaling for your business requirements, use SQL.
Use NoSQL for huge volumes of data in magnitudes of Tera/Peta bytes with variety of data , where SQL can't handle that volume & variety.
As others pointed out both SQL and NoSQL (Not only SQL) have their advantages.
There is often temptation to use both side by side and get maximum out of it. Something referred to as Polyglot persistence
Is it a good idea? Sometimes, yes.
Should I do it?
While it may have benefits, the trade off comes with maintenance of multiple stores (note: they would have different ways of database management).
Also the data sync is a bigger one if you are planning this for same transactional system.
If the data you are going to store (in sql and no-sql databases) can be logically separated then you might be ok. But in case they are closely related then you are going to have tough time keeping them consistent.
Overall when i evaluated this option, i came to conclude that it would work only when you can logically partition the data. Another use case may be using Nosql for Analytics and continue with sql for transaction system.
Going back to your use case, did you try JSON storage within your sql database. It may give you benefit of performance without much tradeoffs.

Is there any NoSQL data store that is ACID compliant?

Want to improve this post? Provide detailed answers to this question, including citations and an explanation of why your answer is correct. Answers without enough detail may be edited or deleted.
Is there any NoSQL data store that is ACID compliant?
I'll post this as an answer purely to support the conversation - Tim Mahy , nawroth , and CraigTP have suggested viable databases. CouchDB would be my preferred due to the use of Erlang, but there are others out there.
I'd say ACID does not contradict or negate the concept of NoSQL... While there seems to be a trend following the opinion expressed by dove , I would argue the concepts are distinct.
NoSQL is fundamentally about simple key-value (e.g. Redis) or document-style schema (collected key-value pairs in a "document" model, e.g. MongoDB) as a direct alternative to the explicit schema in classical RDBMSs. It allows the developer to treat things asymmetrically, whereas traditional engines have enforced rigid same-ness across the data model. The reason this is so interesting is because it provides a different way to deal with change, and for larger data sets it provides interesting opportunities to deal with volumes and performance.
ACID provides principles governing how changes are applied to a database. In a very simplified way, it states (my own version):
(A) when you do something to change a database the change should work or fail as a whole
(C) the database should remain consistent (this is a pretty broad topic)
(I) if other things are going on at the same time they shouldn't be able to see things mid-update
(D) if the system blows up (hardware or software) the database needs to be able to pick itself back up; and if it says it finished applying an update, it needs to be certain
The conversation gets a little more excitable when it comes to the idea of propagation and constraints. Some RDBMS engines provide the ability to enforce constraints (e.g. foreign keys) which may have propagation elements (a la cascade). In simpler terms, one "thing" may have a relationship with another "thing" in the database, and if you change an attribute of one it may require the other be changed (updated, deleted, ... lots of options). NoSQL databases, being predominantly (at the moment) focused on high data volumes and high traffic, seem to be tackling the idea of distributed updates which take place within (from a consumer perspective) arbitrary time frames. This is basically a specialized form of replication managed via transaction - so I would say that if a traditional distributed database can support ACID, so can a NoSQL database.
Some resources for further reading:
Wikipedia article on ACID
Wikipedia on propagation constraints
Wikipedia (yeah, I like the site, ok?) on database normalization
Apache documentation on CouchDB with a good overview of how it applies ACID
Wikipedia on Cluster Computing
Wikipedia (again...) on database transactions
UPDATE (27 July 2012):
Link to Wikipedia article has been updated to reflect the version of the article that was current when this answer was posted. Please note that the current Wikipedia article has been extensively revised!
Well, according to an older version of a Wikipedia article on NoSQL:
NoSQL is a movement promoting a
loosely defined class of
non-relational data stores that break
with a long history of relational
databases and ACID guarantees.
and also:
The name was an attempt to describe
the emergence of a growing number of
non-relational, distributed data
stores that often did not attempt to
provide ACID guarantees.
and
NoSQL systems often provide weak
consistency guarantees such as
eventual consistency and transactions
restricted to single data items, even
though one can impose full ACID
guarantees by adding a supplementary
middleware layer.
So, in a nutshell, I'd say that one of the main benefits of a "NoSQL" data store is its distinct lack of ACID properties. Furthermore, IMHO, the more one tries to implement and enforce ACID properties, the further away from the "spirit" of a "NoSQL" data store you get, and the closer to a "true" RDBMS you get (relatively speaking, of course).
However, all that said, "NoSQL" is a very vague term and is open to individual interpretations, and depends heavily upon just how much of a purist viewpoint you have. For example, most modern-day RDBMS systems don't actually adhere to all of Edgar F. Codd's 12 rules of his relation model!
Taking a pragmatic approach, it would appear that Apache's CouchDB comes closest to embodying both ACID-compliance whilst retaining loosely-coupled, non-relational "NoSQL" mentality.
Please ensure you read the Martin Fowler introduction about NoSQL databases. And the corresponding video.
First of all, we can distinguish two types of NoSQL databases:
Aggregate-oriented databases;
Graph-oriented databases (e.g. Neo4J).
By design, most Graph-oriented databases are ACID!
Then, what about the other types?
In Aggregate-oriented databases, we can put three sub-types:
Document-based NoSQL databases (e.g. MongoDB, CouchDB);
Key/Value NoSQL databases (e.g. Redis);
Column family NoSQL databases (e.g. Hibase, Cassandra).
What we call an Aggregate here, is what Eric Evans defined in its Domain-Driven Design as a self-sufficient of Entities and Value-Objects in a given Bounded Context.
As a consequence, an aggregate is a collection of data that we
interact with as a unit. Aggregates form the boundaries for ACID
operations with the database. (Martin Fowler)
So, at Aggregate level, we can say that most NoSQL databases can be as safe as ACID RDBMS, with the proper settings. Of source, if you tune your server for the best speed, you may come into something non ACID. But replication will help.
My main point is that you have to use NoSQL databases as they are, not as a (cheap) alternative to RDBMS. I have seen too much projects abusing of relations between documents. This can't be ACID. If you stay at document level, i.e. at Aggregate boundaries, you do not need any transaction. And your data will be as safe as with an ACID database, even if it not truly ACID, since you do not need those transactions! If you need transactions and update several "documents" at once, you are not in the NoSQL world any more - so use a RDBMS engine instead!
some 2019 update: Starting in version 4.0, for situations that require atomicity for updates to multiple documents or consistency between reads to multiple documents, MongoDB provides multi-document transactions for replica sets.
In this question someone must mention OrientDB:
OrientDB is a NoSQL database, one of the few, that support fully ACID transactions. ACID is not only for RDBMS because it's not part of the Relational algebra. So it IS possible to have a NoSQL database that support ACID.
This feature is the one I miss the most in MongoDB
FoundationDB is ACID compliant:
http://www.foundationdb.com/
It has proper transactions, so you can update multiple disparate data items in an ACID fashion. This is used as the foundation for maintaining indexes at a higher layer.
ACID and NoSQL are completely orthogonal. One does not imply the other.
I have a notebook on my desk, I use it to keep notes on things that I still have to do. This notebook is a NoSQL database. I query it using a linear search with a "page cache" so I don't always have to search every page. It is also ACID compliant as I ensure that I only write one thing at a time and never while I am reading it.
NoSQL simply means that it isn't SQL. Many people get confused and think it means highly-scaleable-wild-west-super-fast-storage. It doesn't. It doesn't mean key-value store, or eventual consistency. All it means is "not SQL", there are a lot of databases in this planet and most of them are not SQL[citation needed].
You can find many examples in the other answers so I need not list them here, but there are non-SQL databases with ACID compliance for various operations, some are only ACID for single object writes while some guarantee far more. Each database is different.
"NoSQL" is not a well-defined term. It's a very vague concept. As such, it's not even possible to say what is and what is not a "NoSQL" product. Not nearly all of the products typcially branded with the label are key-value stores.
As one of the originators of NoSQL (I was an early contributor to Apache CouchDB, and a speaker at the first NoSQL event held at CBS Interactive / CNET in 2009) I'm excited to see new algorithms create possibilities that didn't exist before. The Calvin protocol offers a new way to think of physical constraints like CAP and PACELC.
Instead of active/passive async replication, or active/active synchronous replication, Calvin preserves correctness and availability during replica outages by using a RAFT-like protocol to maintain a transaction log. Additionally, transactions are processed deterministically at each replica, removing the potential for deadlocks, so agreement is achieved with only a single round of consensus. This makes it fast even on multi-cloud worldwide deployments.
FaunaDB is the only database implementation using the Calvin protocol, making it uniquely suited for workloads that require mainframe-like data integrity with NoSQL scale and flexibility.
Yes, MarkLogic Server is a NoSQL solution (document database I like to call it) that works with ACID transactions
The grandfather of NoSQL: ZODB is ACID compliant. http://www.zodb.org/
However, it's Python only.
If you are looking for an ACID compliant key/value store, there's Berkeley DB. Among graph databases at least Neo4j and HyperGraphDB offer ACID transactions (HyperGraphDB actually uses Berkeley DB for low-level storage at the moment).
FoundationDB was mentioned and at the time it wasn't open source. It's been open sourced by Apple two days ago:
https://www.foundationdb.org/blog/foundationdb-is-open-source/
I believe it is ACID compliant.
MongoDB announced that its 4.0 version will be ACID compliant for multi-document transactions.
Version 4.2. is supposed to support it under sharded setups.
https://www.mongodb.com/blog/post/multi-document-transactions-in-mongodb
NewSQL
This concept Wikipedia contributors define as:
[…] a class of modern relational database management systems that seek to provide the same scalable performance of NoSQL systems for online transaction processing (OLTP) read-write workloads while still maintaining the ACID guarantees of a traditional database system.[1][2][3]
References
[1] Nancy Lynch and Seth Gilbert, “Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services”, ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59.
[2] "Brewer's CAP Theorem", julianbrowne.com, Retrieved 02-Mar-2010
[3] "Brewers CAP theorem on distributed systems", royans.net
take a look at the CAP theorem
EDIT: RavenDB seems to be ACID compliant
To add to the list of alternatives, another fully ACID compliant NoSQL database is GT.M.
Hyperdex Warp http://hyperdex.org/warp/
Warp (ACID feature) is proprietary, but Hyperdex is free.
db4o
Unlike roll-your-own persistence or
serialization, db4o is ACID
transaction safe and allows for
querying, replication and schema
changes during runtime
http://www.db4o.com/about/productinformation/db4o/
BergDB is a light-weight, open-source, NoSQL database designed from the start to run ACID transactions. Actually, BergDB is "more" ACID than most SQL databases in the sense that the only way to change the state of the database is to run ACID transactions with the highest isolation level (SQL term: "serializable"). There will never be any issues with dirty reads, non-repeatable reads, or phantom reads.
In my opinion, the database is still highly performant; but don't trust me, I created the software. Try it yourself instead.
Tarantool is a fully ACID NoSQL database. You can issue CRUD operations or stored procedures, everything will be run with strict accordance with an ACID property. You can also read about that here: http://stable.tarantool.org/doc/mpage/data-and-persistence.html
MarkLogic is also ACID complient. I think is one of the biggest players now.
Wait is over.
ACID compliant NoSQL DB is out ----------- have a look at citrusleaf
A lot of modern NoSQL solution don't support ACID transactions (atomic isolated multi-key updates), but most of them support primitives which allow you to implement transactions on the application level.
If a data store supports per key linearizability and compare-and-set (document level atomicity) then it's enough to implement client-side transactions, more over you have several options to choose from:
If you need Serializable isolation level then you can follow the same algorithm which Google use for the Percolator system or Cockroach Labs for CockroachDB. I've blogged about it and create a step-by-step visualization, I hope it will help you to understand the main idea behind the algorithm.
If you expect high contention but it's fine for you to have Read Committed isolation level then please take a look on the RAMP transactions by Peter Bailis.
The third approach is to use compensating transactions also known as the saga pattern. It was described in the late 80s in the Sagas paper but became more actual with the raise of distributed systems. Please see the Applying the Saga Pattern talk for inspiration.
The list of data stores suitable for client side transactions includes Cassandra with lightweight transactions, Riak with consistent buckets, RethinkDB, ZooKeeper, Etdc, HBase, DynamoDB, MongoDB and others.
YugaByte DB supports an ACID Compliant distributed txns as well as Redis and CQL API compatibility on the query layer.
Google Cloud Datastore is a NoSQL database that supports ACID transactions
DynamoDB is a NoSQL database and has ACID transactions.
VoltDB is an entrant which claims ACID compliance, and while it still uses SQL, its goals are the same in terms of scalability
Whilst it's only an embedded engine and not a server, leveldb has WriteBatch and the ability to turn on Synchronous writes to provide ACID behaviour.
Node levelUP is transactional and built on leveldb https://github.com/rvagg/node-levelup#batch
If you add enough pure water and successfully flip a coin, anything can become acidic. Or basic for that matter.
To say a database is ACID compliant means four specific things. And in defining the system (restricting the range) we can arbitrarily water down the meanings so that the result is ACID compliance.
A—if your NoSQL database only allows one record operation at a time and records either go or they don't then that's atomic.
C—if the only constraints you allow are simple, like checking JSON schemas against a known schema then that's consistent.
I—if just append-only transactions are supported (and schema changes are disallowed) then it is impossible for anything to depend on anything else, that's independent.
D—if you turn off all machines at night and synchronize disks then the transactions will be it in or they won't, that's durable.

Resources