Any examples of production applications that use signature trees? - database

I've been reading a lot lately about signature trees, or S-Trees. For example, this paper. The literature speaks very highly of them, and evidence is provided for considerable performance gains over, for example, inverted files or B-Trees, for some applications.
Now, why is it that I don't see S-Trees used very much? Do you know of any prominent instances of such a data structure in a popular application? Are there DBMS implementations that offer signature-tree indexes?

Now, why is it that I don't see S-Trees used very much?
Including a new indexing or join method into a database is a very complex task.
MySQL, for instance, doesn't yet impement MERGE JOIN and HASH JOIN that were invented by, like, ancient Romans or Archimedes or around that time.
And the paper you referenced is dated 2006 and this method isn't even mentioned in Wikipedia.
This means that it's either yet unknown to developers or isn't worth using it in an RDBMS (or both).

I've heard of something similar described as being a "C-tree" - it was part of an object database and I imagined that its indexing methods were similar to what the paper in the link described. A company called InterSystems makes a database system called Caché that they describe as "post-relational" and is very hierarchical ... I don't know enough about the details of these different systems to be sure that they're all different names for the same functionality, but, they have some overlapping fundamental concepts.

Related

When should I use Datomic?

I'm intrigued in the database service Datomic, but I'm not sure if it fits the needs of the projects I work on. When is Datomic a good choice, and when should it be avoided?
With the proviso that I haven't used Datomic in production, thought I'd give you an answer.
Advantages
Datalog queries are powerful (more so than non-recursive SQL) and very expressive.
Queries can be written with Clojure data structures, and it's NOT a weak DSL like many SQL libraries that allow you to query with data structures.
It's immutable, so you get the advantages that immutability gives you in Clojure/other languages as well
a. This also allows you to store, while saving structures, all past facts in your database—this is VERY useful for auditing & more
Disadvantages
It can be slow, as Datalog is just going to be slower than equivalent SQL (assuming an equivalent SQL statement can be written).
If you are writing a LOT, you could maybe need to worry about the single transactor getting overwhelmed. This seems unlikely for most cases, but it's something to think about (you could do a sort of shard, though, and probably save yourself; but this isn't a DB for e.g. storing stock tick data).
It's a bit tricky to get up and running with, and it's expensive, and the licensing and price makes it difficult to use a hosted instance with it: you'll need to be dealing with sysadminning this yourself instead of using something like Postgres on Heroku or Mongo at MongoHQ
I'm sure I'm missing some on each side, and though I have 3 listed under disadvantages, I think that the advantages outweigh them in more circumstances where disadvantages don't preclude its use. Price is probably the one that will prevent its being used in most small projects (that you expect to outlast the 1 year free trial).
Cf. this short post describing Datomic simply for some more information.
Expressivity (c.f. Datalog) and immutability are awesome. It's SO much fun to work with Dataomic in that regard, and you can tell it's powerful just by using it a bit.
One important thing when considering if Datomic is the right fit for your application is to think about shape of the data you are going to store and query - as Datomic facts are actually very similar to RDF triples (+ first class time notion) it lends itself very good to modeling complex relationships (linked graph data) - something which is often cumbersome with traditional SQL databases.
I found this aspect to be one of the most appealing and important for me, it worked really well, even if this is of course not something exclusive to Datomic, as there are many other high-quality offerings for graph databases, one must mention Neo4J when we are talking about JVM based solutions.
Regarding Datomic schema, i think it's just the right balance between flexibility and stability.
To complete the above answers, I'd like to emphasize that immutability and the ability to remember the past are not 'wizardry features' suited to a few special case like auditing. It is an approach which has several deep benefits compared to 'mutable cells' databases (which are 99% of databases today). Stuart Halloway demonstrates this nicely in this video: the Impedance Mismatch is our fault.
In my personal opinion, this approach is fundamentally more sane conceptually. Having used it for several months, I don't see Datomic has having crazy magical sophisticated powers, rather a more natural paradigm without some of the big problems the others have.
Here are some features of Datomic I find valuable, most of which are enabled by immutability:
because reading is not remote, you don't have to design your queries like an expedition over the wire. In particular, you can separate concerns into several queries (e.g find the entities which are the input to my query - answer some business question about these entities - fetch associated data for presenting the result)
the schema is very flexible, without sacrificing query power
it's comfortable to have your queries integrated in your application programming language
the Entity API brings you the good parts of ORMs
the query language is programmable and has primitives for abstraction and reuse (rules, predicates, database functions)
performance: writers impede only other writers, and no one impedes readers. Plus, lots of caching.
... and yes, a few superpowers like travelling to the past, speculative writes or branching reality.
Regarding when not to use Datomic, here are the current constraints and limitations I see:
you have to be on the JVM (there is also a REST API, but you lose most of the benefits IMO)
not suited for write scale, nor huge data volumes
won't be especially integrated into frameworks, e.g you won't currently find a library which generates CRUD REST endpoints from a Datomic schema
it's a commercial database
since reading happens in the application process (the 'Peer'), you have to make sure that the Peer has enough memory to hold all the data it needs to traverse in a query.
So my very vague and informal answer would be that Datomic is a good fit for most non-trivial applications which write load is reasonable and you don't have a problem with the license and being on the JVM.
As an analogy, you can ask yourself the same question for Git as compared to other version control systems which are not based on immutability.
Just to tentatively add over the other answers:
It is probably fair to say datomic presents the better conceptual framework for a queryable data store of all other current options out there, while being partially scalable and not exceptionally performant.
I say only partially scalable, because queries need to fit in the peer RAM or fail. And not exceptionally performant, as top-notch SQL engines can optimize queries to fit in memory through sophisticated execution plans, something I've not yet seen mentioned as a feature in datomic; Datomic's decoupling of transacting and querying might in the overall offset this feature.
Unlike many NoSQL engines though, transactions are a first-class citizen, which puts it at par with RDBMS systems in that key regard.
For applications where data is read more than being written, transactions are needed, queries always fit in memory or memory is very cheap, and the overall size of accumulated data isn't too large, it might be a win where a commercial-only product can be afforded ― for those who are willing to embrace its novel conceptual framework implied in the API.

What should every developer know about databases? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
Whether we like it or not, many if not most of us developers either regularly work with databases or may have to work with one someday. And considering the amount of misuse and abuse in the wild, and the volume of database-related questions that come up every day, it's fair to say that there are certain concepts that developers should know - even if they don't design or work with databases today.
What is one important concept that developers and other software professionals ought to know about databases?
The very first thing developers should know about databases is this: what are databases for? Not how do they work, nor how do you build one, nor even how do you write code to retrieve or update the data in a database. But what are they for?
Unfortunately, the answer to this one is a moving target. In the heydey of databases, the 1970s through the early 1990s, databases were for the sharing of data. If you were using a database, and you weren't sharing data you were either involved in an academic project or you were wasting resources, including yourself. Setting up a database and taming a DBMS were such monumental tasks that the payback, in terms of data exploited multiple times, had to be huge to match the investment.
Over the last 15 years, databases have come to be used for storing the persistent data associated with just one application. Building a database for MySQL, or Access, or SQL Server has become so routine that databases have become almost a routine part of an ordinary application. Sometimes, that initial limited mission gets pushed upward by mission creep, as the real value of the data becomes apparent. Unfortunately, databases that were designed with a single purpose in mind often fail dramatically when they begin to be pushed into a role that's enterprise wide and mission critical.
The second thing developers need to learn about databases is the whole data centric view of the world. The data centric world view is more different from the process centric world view than anything most developers have ever learned. Compared to this gap, the gap between structured programming and object oriented programming is relatively small.
The third thing developers need to learn, at least in an overview, is data modeling, including conceptual data modeling, logical data modeling, and physical data modeling.
Conceptual data modeling is really requirements analysis from a data centric point of view.
Logical data modeling is generally the application of a specific data model to the requirements discovered in conceptual data modeling. The relational model is used far more than any other specific model, and developers need to learn the relational model for sure. Designing a powerful and relevant relational model for a nontrivial requirement is not a trivial task. You can't build good SQL tables if you misunderstand the relational model.
Physical data modeling is generally DBMS specific, and doesn't need to be learned in much detail, unless the developer is also the database builder or the DBA. What developers do need to understand is the extent to which physical database design can be separated from logical database design, and the extent to which producing a high speed database can be accomplished just by tweaking the physical design.
The next thing developers need to learn is that while speed (performance) is important, other measures of design goodness are even more important, such as the ability to revise and extend the scope of the database down the road, or simplicity of programming.
Finally, anybody who messes with databases needs to understand that the value of data often outlasts the system that captured it.
Whew!
Good question. The following are some thoughts in no particular order:
Normalization, to at least the second normal form, is essential.
Referential integrity is also essential, with proper cascading delete and update considerations.
Good and proper use of check constraints. Let the database do as much work as possible.
Don't scatter business logic in both the database and middle tier code. Pick one or the other, preferably in middle tier code.
Decide on a consistent approach for primary keys and clustered keys.
Don't over index. Choose your indexes wisely.
Consistent table and column naming. Pick a standard and stick to it.
Limit the number of columns in the database that will accept null values.
Don't get carried away with triggers. They have their use but can complicate things in a hurry.
Be careful with UDFs. They are great but can cause performance problems when you're not aware how often they might get called in a query.
Get Celko's book on database design. The man is arrogant but knows his stuff.
First, developers need to understand that there is something to know about databases. They're not just magic devices where you put in the SQL and get out result sets, but rather very complicated pieces of software with their own logic and quirks.
Second, that there are different database setups for different purposes. You do not want a developer making historical reports off an on-line transactional database if there's a data warehouse available.
Third, developers need to understand basic SQL, including joins.
Past this, it depends on how closely the developers are involved. I've worked in jobs where I was developer and de facto DBA, where the DBAs were just down the aisle, and where the DBAs are off in their own area. (I dislike the third.) Assuming the developers are involved in database design:
They need to understand basic normalization, at least the first three normal forms. Anything beyond that, get a DBA. For those with any experience with US courtrooms (and random television shows count here), there's the mnemonic "Depend on the key, the whole key, and nothing but the key, so help you Codd."
They need to have a clue about indexes, by which I mean they should have some idea what indexes they need and how they're likely to affect performance. This means not having useless indices, but not being afraid to add them to assist queries. Anything further (like the balance) should be left for the DBA.
They need to understand the need for data integrity, and be able to point to where they're verifying the data and what they're doing if they find problems. This doesn't have to be in the database (where it will be difficult to issue a meaningful error message for the user), but has to be somewhere.
They should have the basic knowledge of how to get a plan, and how to read it in general (at least enough to tell whether the algorithms are efficient or not).
They should know vaguely what a trigger is, what a view is, and that it's possible to partition pieces of databases. They don't need any sort of details, but they need to know to ask the DBA about these things.
They should of course know not to meddle with production data, or production code, or anything like that, and they should know that all source code goes into a VCS.
I've doubtless forgotten something, but the average developer need not be a DBA, provided there is a real DBA at hand.
Basic Indexing
I'm always shocked to see a table or an entire database with no indexes, or arbitrary/useless indexes. Even if you're not designing the database and just have to write some queries, it's still vital to understand, at a minimum:
What's indexed in your database and what's not:
The difference between types of scans, how they're chosen, and how the way you write a query can influence that choice;
The concept of coverage (why you shouldn't just write SELECT *);
The difference between a clustered and non-clustered index;
Why more/bigger indexes are not necessarily better;
Why you should try to avoid wrapping filter columns in functions.
Designers should also be aware of common index anti-patterns, for example:
The Access anti-pattern (indexing every column, one by one)
The Catch-All anti-pattern (one massive index on all or most columns, apparently created under the mistaken impression that it would speed up every conceivable query involving any of those columns).
The quality of a database's indexing - and whether or not you take advantage of it with the queries you write - accounts for by far the most significant chunk of performance. 9 out of 10 questions posted on SO and other forums complaining about poor performance invariably turn out to be due to poor indexing or a non-sargable expression.
Normalization
It always depresses me to see somebody struggling to write an excessively complicated query that would have been completely straightforward with a normalized design ("Show me total sales per region.").
If you understand this at the outset and design accordingly, you'll save yourself a lot of pain later. It's easy to denormalize for performance after you've normalized; it's not so easy to normalize a database that wasn't designed that way from the start.
At the very least, you should know what 3NF is and how to get there. With most transactional databases, this is a very good balance between making queries easy to write and maintaining good performance.
How Indexes Work
It's probably not the most important, but for sure the most underestimated topic.
The problem with indexing is that SQL tutorials usually don't mention them at all and that all the toy examples work without any index.
Even more experienced developers can write fairly good (and complex) SQL without knowing more about indexes than "An index makes the query fast".
That's because SQL databases do a very good job working as black-box:
Tell me what you need (gimme SQL), I'll take care of it.
And that works perfectly to retrieve the correct results. The author of the SQL doesn't need to know what the system is doing behind the scenes--until everything becomes sooo slooooow.....
That's when indexing becomes a topic. But that's usually very late and somebody (some company?) is already suffering from a real problem.
That's why I believe indexing is the No. 1 topic not to forget when working with databases. Unfortunately, it is very easy to forget it.
Disclaimer
The arguments are borrowed from the preface of my free eBook "Use The Index, Luke". I am spending quite a lot of my time explaining how indexes work and how to use them properly.
I just want to point out an observation - that is that it seems that the majority of responses assume database is interchangeable with relational databases. There are also object databases, flat file databases. It is important to asses the needs of the of the software project at hand. From a programmer perspective the database decision can be delayed until later. Data modeling on the other hand can be achieved early on and lead to much success.
I think data modeling is a key component and is a relatively old concept yet it is one that has been forgotten by many in the software industry. Data modeling, especially conceptual modeling, can reveal the functional behavior of a system and can be relied on as a road map for development.
On the other hand, the type of database required can be determined based on many different factors to include environment, user volume, and available local hardware such as harddrive space.
Avoiding SQL injection and how to secure your database
Every developer should know that this is false: "Profiling a database operation is completely different from profiling code."
There is a clear Big-O in the traditional sense. When you do an EXPLAIN PLAN (or the equivalent) you're seeing the algorithm. Some algorithms involve nested loops and are O( n ^ 2 ). Other algorithms involve B-tree lookups and are O( n log n ).
This is very, very serious. It's central to understanding why indexes matter. It's central to understanding the speed-normalization-denormalization tradeoffs. It's central to understanding why a data warehouse uses a star-schema which is not normalized for transactional updates.
If you're unclear on the algorithm being used do the following. Stop. Explain the Query Execution plan. Adjust indexes accordingly.
Also, the corollary: More Indexes are Not Better.
Sometimes an index focused on one operation will slow other operations down. Depending on the ratio of the two operations, adding an index may have good effects, no overall impact, or be detrimental to overall performance.
I think every developer should understand that databases require a different paradigm.
When writing a query to get at your data, a set-based approach is needed. Many people with an interative background struggle with this. And yet, when they embrace it, they can achieve far better results, even though the solution may not be the one that first presented itself in their iterative-focussed minds.
Excellent question. Let's see, first no one should consider querying a datbase who does not thoroughly understand joins. That's like driving a car without knowing where the steering wheel and brakes are. You also need to know datatypes and how to choose the best one.
Another thing that developers should understand is that there are three things you should have in mind when designing a database:
Data integrity - if the data can't be relied on you essentially have no data - this means do not put required logic in the application as many other sources may touch the database. Constraints, foreign keys and sometimes triggers are necessary to data integrity. Don't fail to use them because you don't like them or don't want to be bothered to understand them.
Performance - it is very hard to refactor a poorly performing database and performance should be considered from the start. There are many ways to do the same query and some are known to be faster almost always, it is short-sighted not to learn and use these ways. Read some books on performance tuning before designing queries or database structures.
Security - this data is the life-blood of your company, it also frequently contains personal information that can be stolen. Learn to protect your data from SQL injection attacks and fraud and identity theft.
When querying a database, it is easy to get the wrong answer. Make sure you understand your data model thoroughly. Remember often actual decisions are made based on the data your query returns. When it is wrong, the wrong business decisions are made. You can kill a company from bad queries or loose a big customer. Data has meaning, developers often seem to forget that.
Data almost never goes away, think in terms of storing data over time instead of just how to get it in today. That database that worked fine when it had a hundred thousand records, may not be so nice in ten years. Applications rarely last as long as data. This is one reason why designing for performance is critical.
Your database will probaly need fields that the application doesn't need to see. Things like GUIDs for replication, date inserted fields. etc. You also may need to store history of changes and who made them when and be able to restore bad changes from this storehouse. Think about how you intend to do this before you come ask a web site how to fix the problem where you forgot to put a where clause on an update and updated the whole table.
Never develop in a newer version of a database than the production version. Never, never, never develop directly against a production database.
If you don't have a database administrator, make sure someone is making backups and knows how to restore them and has tested restoring them.
Database code is code, there is no excuse for not keeping it in source control just like the rest of your code.
Evolutionary Database Design. http://martinfowler.com/articles/evodb.html
These agile methodologies make database change process manageable, predictable and testable.
Developers should know, what it takes to refactor a production database in terms of version control, continious integration and automated testing.
Evolutionary Database Design process has administrative aspects, for example a column is to be dropped after some life time period in all databases of this codebase.
At least know, that Database Refactoring concept and methodologies exist.
http://www.agiledata.org/essays/databaseRefactoringCatalog.html
Classification and process description makes it possible to implement tooling for these refactorings too.
About the following comment to Walter M.'s answer:
"Very well written! And the historical perspective is great for people who weren't doing database work at that time (i.e. me)".
The historical perspective is in a certain sense absolutely crucial. "Those who forget history, are doomed to repeat it.". Cfr XML repeating the hierarchical mistakes of the past, graph databases repeating the network mistakes of the past, OO systems forcing the hierarchical model upon users while everybody with even just a tenth of a brain should know that the hierarchical model is not suitable for general-purpose representation of the real world, etcetera, etcetera.
As for the question itself:
Every database developer should know that "Relational" is not equal to "SQL". Then they would understand why they are being let down so abysmally by the DBMS vendors, and why they should be telling those same vendors to come up with better stuff (e.g. DBMS's that are truly relational) if they want to go on sucking hilarious amounts of money out of their customers for such crappy software).
And every database developer should know everything about the relational algebra. Then there would no longer be a single developer left who had to post these stupid "I don't know how to do my job and want someone else to do it for me" questions on Stack Overflow anymore.
From my experience with relational databases, every developer should know:
- The different data types:
Using the correct type for the correct job will make your DB design more robust, your queries faster and your life easier.
- Learn about 1xM and MxM:
This is the bread and butter for relational databases. You need to understand one-to-many and many-to-many relations and apply then when appropriate.
- "K.I.S.S." principle applies to the DB as well:
Simplicity always works best. Provided you have studied how DB work, you will avoid unnecessary complexity which will lead to maintenance and speed problems.
- Indices:
It's not enough if you know what they are. You need to understand when to used them and when not to.
also:
Boolean algebra is your friend
Images: Don't store them on the DB. Don't ask why.
Test DELETE with SELECT
I would like everyone, both DBAs and developer/designer/architects, to better understand how to properly model a business domain, and how to map/translate that business domain model into both a normalized database logical model, an optimized physical model, and an appropriate object oriented class model, each one of which is (can be) different, for various reasons, and understand when, why, and how they are (or should be) different from one another.
I would say strong basic SQL skills. I've seen a lot of developers so far who know a little about databases but are always asking for tips about how to formulate a quite simple query. Queries are not always that easy and simple. You do have to use multiple joins (inner, left, etc.) when querying a well normalized database.
I think a lot of the technical details have been covered here and I don't want to add to them. The one thing I want to say is more social than technical, don't fall for the "DBA knowing the best" trap as an application developer.
If you are having performance issues with query take ownership of the problem too. Do your own research and push for the DBAs to explain what's happening and how their solutions are addressing the problem.
Come up with your own suggestions too after you have done the research. That is, I try to find a cooperative solution to the problem rather than leaving database issues to the DBAs.
Simple respect.
It's not just a repository
You probably don't know better than the vendor or the DBAs
You won't support it at 3 a.m. with senior managers shouting at you
Consider Denormalization as a possible angel, not the devil, and also consider NoSQL databases as an alternative to relational databases.
Also, I think the Entity-Relation model is a must-know for every developper even if you don't design databases. It'll let you understand thoroughly what's your database all about.
Never insert data with the wrong text encoding.
Once your database becomes polluted with multiple encodings, the best you can do is apply some kind combination of heuristics and manual labor.
Aside from syntax and conceptual options they employ (such as joins, triggers, and stored procedures), one thing that will be critical for every developer employing a database is this:
Know how your engine is going to perform the query you are writing with specificity.
The reason I think this is so important is simply production stability. You should know how your code performs so you're not stopping all execution in your thread while you wait for a long function to complete, so why would you not want to know how your query will affect the database, your program, and perhaps even the server?
This is actually something that has hit my R&D team more times than missing semicolons or the like. The presumtion is the query will execute quickly because it does on their development system with only a few thousand rows in the tables. Even if the production database is the same size, it is more than likely going to be used a lot more, and thus suffer from other constraints like multiple users accessing it at the same time, or something going wrong with another query elsewhere, thus delaying the result of this query.
Even simple things like how joins affect performance of a query are invaluable in production. There are many features of many database engines that make things easier conceptually, but may introduce gotchas in performance if not thought of clearly.
Know your database engine execution process and plan for it.
For a middle-of-the-road professional developer who uses databases a lot (writing/maintaining queries daily or almost daily), I think the expectation should be the same as any other field: You wrote one in college.
Every C++ geek wrote a string class in college. Every graphics geek wrote a raytracer in college. Every web geek wrote interactive websites (usually before we had "web frameworks") in college. Every hardware nerd (and even software nerds) built a CPU in college. Every physician dissected an entire cadaver in college, even if she's only going to take my blood pressure and tell me my cholesterol is too high today. Why would databases be any different?
Unfortunately, they do seem different, today, for some reason. People want .NET programmers to know how strings work in C, but the internals of your RDBMS shouldn't concern you too much.
It's virtually impossible to get the same level of understanding from just reading about them, or even working your way down from the top. But if you start at the bottom and understand each piece, then it's relatively easy to figure out the specifics for your database. Even things that lots of database geeks can't seem to grok, like when to use a non-relational database.
Maybe that's a bit strict, especially if you didn't study computer science in college. I'll tone it down some: You could write one today, completely, from scratch. I don't care if you know the specifics of how the PostgreSQL query optimizer works, but if you know enough to write one yourself, it probably won't be too different from what they did. And you know, it's really not that hard to write a basic one.
The order of columns in a non-unique index is important.
The first column should be the column that has the most variability in its content (i.e. cardinality).
This is to aid SQL Server ability to create useful statistics in how to use the index at runtime.
Understand the tools that you use to program the database!!!
I wasted so much time trying to understand why my code was mysteriously failing.
If you're using .NET, for example, you need to know how to properly use the objects in the System.Data.SqlClient namespace. You need to know how to manage your SqlConnection objects to make sure they are opened, closed, and when necessary, disposed properly.
You need to know that when you use a SqlDataReader, it is necessary to close it separately from your SqlConnection. You need to understand how to keep connections open when appropriate to how to minimize the number of hits to the database (because they are relatively expensive in terms of computing time).
Basic SQL skills.
Indexing.
Deal with different incarnations of DATE/ TIME/ TIMESTAMP.
JDBC driver documentation for the platform you are using.
Deal with binary data types (CLOB, BLOB, etc.)
For some projects, and Object-Oriented model is better.
For other projects, a Relational model is better.
The impedance mismatch problem, and know the common deficiencies or ORMs.
RDBMS Compatibility
Look if it is needed to run the application in more than one RDBMS. If yes, it might be necessary to:
avoid RDBMS SQL extensions
eliminate triggers and store procedures
follow strict SQL standards
convert field data types
change transaction isolation levels
Otherwise, these questions should be treated separately and different versions (or configurations) of the application would be developed.
Don't depend on the order of rows returned by an SQL query.
Three (things) is the magic number:
Your database needs version control too.
Cursors are slow and you probably don't need them.
Triggers are evil*
*almost always

Tracing Designs - Screen to Database Traceability

This is vaguely related to:
Should I design the application or model (database) first?
Design from the database first through to UI or t’other way round?
But my question is more about modeling and artifacts and less about the right way to do design. I'm trying to figure out what sort of design artifact would best enunciate the link between features (use cases), screens and database elements (tables and columns, most particularly). UML is very code-centric. Database models are very database centric. And of screen designs are UI centric!
Here's the deal... my team is working on the first release of the product. We used use cases, then did screen designs and database design was somewhat isolated from the two. A critical area for bugs was the lack of traceability between the use cases and their accompanying screens and the database. In our product, there's a very high degree of overlap between use cases and database elements. Many use cases touch over 75% of the database infrastructure. So we have high contention over database design areas, and it's easy for a small database change to disrupt the lower levels of business logic.
For our next release, I want the developers and our DBA to have a really clear insight into what parts of the database each feature touches. The use case/screen design approach worked well, so we're keeping it... the trick is linking each use case and screens to the database model so the relationships are really obvious and hard to forget about.
On smaller projects (we're only 10 people, but often I've worked on teams of 3 or less), I've created my own custom diagrams to show this part of the design. Sort of a fusion of screen, UML and database table, done in Visio with no link to actual code or SQL. I'm not sure it will work for a larger team, as its highly manual to keep up to date, and it doesn't auto generate code the way our database modeling tool does.
Any recommendations? Is there a commonly accepted mechanism for this?
FYI - we're pretty waterfall, that isn't going to change any time soon. And we do love artifacts... Saying "switch to agile" is not a viable solution for our group.
I can't tell from your question how detailed your use cases are. I get the impression that they may be high-level use cases, not broken down into detailed uses cases (perhaps through include or extend relationships.
In any case, I prefer to start with Requirements, and trace them to use cases. While I'm writing the use cases and the use case diagrams, I'm also creating a domain model (a high-level class diagram). This is mostly to give me something to discuss with stakeholders ("did I get that right?").
When the use cases and domain model are finished, it's possible to begin to work on screen design, and possibly also for an activity model, if there are complex interactions between screens. I would treat the screens as though they were classes with UI - a screen might have a FirstName attribute, which I'd note as being related to the FirstName attribute of the Person entity in my domain model. Yet the FirstName attribute might be represented on that screen as a text box.
At the same time, physical database design can occur. This would produce a class or ER diagram, with traceability back to the domain model. Eventually, you might find that some of your screen attributes or activity modeling refer to things that are part of the physical database model that are not present in the domain model. It's ok to relate a screen "PersonalName" attribute to the computed PersonalName column in the Person table in the People schema.
The tool I use for this sort of thing is Sparx Enterprise Architect. It's a great tool, and can do all of this and more, even in the Professional edition.
I also have to say for the sake of Truth that I mostly model on my own - I haven't yet worked on a project where the model, code and database were being developed by separate people. If someone told me that the above wouldn't work in "real life", I might be forced to believe them.
I am not sure I understand your question clearly, but I'll try to respond based on some reasonable assumptions...
Essentially, my recommendation is the same as what John Saunders already suggested: to consider using UML along with a good UML tool. But I would like to add a few points that might be important in your specific situation.
First and foremost, I don't think that UML is "too code-centric". To the contrary, it can be used to model pretty much any aspect of a software system, almost at any level of abstraction. With a good tool at hand (like Sparx EA), the beauty of UML is that you actually do get a well-defined model under the hood (as opposed to just a set of unconnected drawings/charts). As a result, even if the tool itself does not give you a feature that you are looking for (like traceability from DB to use cases)... well, at least you have an option to automate (or at least semi-automate) the task yourself: for example, you can export your UML model into an XMI (standard!) and then derive whatever traceability-related info you need from there (e.g. using XSL or any XML-aware library for your favorite programming/scripting language). I am not saying that it would be easy to do (especially if you want traceability on the level of individual DB columns 8-), but it's possible and it is very likely to beat any manual method if it has to scale along the size of the project.
BTW, speaking of Sparx EA... I don't know all of its capabilities yet, but it has so many that I would not be surprized if it allowed you to select a class (or even an attribute of a class) and show you other model elements that depend on it in some way. You might want to check this out.
Having said all that, I do understand that you may have at least the following two important concerns about UML:
It may appear to require too many modeling details to be in place to get what you want.
As any "universal tool", it may be grossly inferior to specialized modeling tools that you already use.
Regarding issue #1: Again, with a good UML tool at hand, you might be able to do as many shortcuts as you want. For example, instead of building a very detailed and accurate activity model for a use case, you could focus just on classes involved in the use case (just enough to enable tracking classes back to use cases). The same applies to UI, of course.
Regarding issue #2: I don't know what exact tools do you use now to model use cases, UI, and DB schema. So, theoretically it is possible that they are all so superior to UML that you wouldn't want to give any of them up in exchange of easier traceability. However, something tells me that your DB modeling tool (with its code-generating capabilities) might be the only one that is truly indispensable. If that's the case, then I would still recommend to consider using UML: you just do not model down to DB schema level and "stop" at the level of domain model (even if you do not have it in your application!). At that point, the UML tool would give you traceability from domain model elements (entities, their attributes, and their relationships) back to use cases and UI elements, and mappings between your domain model and DB schema could be left "in the air" because, in the vast majority of cases, they should be simple enough to track without drawing anything. This might not give you 100% of what you want, but it could give you 80% that would be sufficient to mitigate most of you problems.
The bottom line: if you are using three different tools/technologies to model three different aspects of your system... well, it's obvious that any traceability between those three aspects remains at mercy of those three tools: you could automate only as much as those tools allow (which probably means that you are going to be stuck with a lot of laborous manual tasks to do). As of today, UML appears the only well-defined and widely supported "lingua franca" that could help you to connect your models and could enable automation of substantial part of your analytical activities. Just make sure you distinguish UML "just-drawing tools" (like most of Visio add-ons and stencils) from true UML modeling tools (like Sparx EA and a bunch of others).
Your use cases is a good place to start from.
Convert your use cases into
executable test code. This test code
needs to verify that the resultant
return values are according to the
requirements of your use cases.
The smaller the parts of the work you
can identify and test, the more
robust you will be able to build
your application.
This means that the interaction of
your use cases with a large part
of your database and the GUI, will
be simpler to understand.
It's hard to lock-down the architecture or business logic interplay in complex projects with complete upfront design of the different layers. One truly learns about what will be able to facilitate your requirements only as you get to the point of implementing them.
As a developer, find the techniques, tools and processes that help you do your job in the best way possible. Don't judge these on their origin. Judge them on their value in making you the best developer possible.
Some items from the agile world has certainly made a big difference to the quality and productivity of my work. This doesn't require throwing out the apple cart and putting an experienced waterfall team into disarray.
The database should model your Problem Domain. It should model it completely enough so that you can extract solutions -- truths -- from it. Bad design is essentially "lying" to the database (allowing the possibility of invalid data or relationships), and when you "lie" to your database, it'll "lie" to you when you ask it questions.
Simple examples are modeling many-to-many relation where a relation can only be one-to-many, or assuming values can't be null, or treating a foreign key as an attribute. Many of these can be avoided by proper normalization, which requires you to explicitly find out what is a key and what isn't.
By "making illegal states unrepresentable" in the model, you avoid having to write "defensive" code to check for the impossible or to validate that a relation is possible, as impossible things are made unrepresentable because of table structures or declarative check constraints.
This lowers the cost of writing your code, as you can concentrate for the most part, on what it needs to do, rather than guarding against the impossible.

What is the best practice for persistence right now?

I come from a java background.
But I would like a cross-platform perspective on what is considered best practice for persisting objects.
The way I see it, there are 3 camps:
ORM camp
direct query camp e.g. JDBC/DAO, iBatis
LINQ camp
Do people still handcode queries (bypassing ORM) ? Why, considering the options available via JPA, Django, Rails.
There is no one best practice for persistence (although the number of people screaming that ORM is best practice might lead you to believe otherwise). The only best practice is to use the method that is most appropriate for your team and your project.
We use ADO.NET and stored procedures for data access (though we do have some helpers that make it very fast to write such as SP class wrapper generators, an IDataRecord to object translator, and some higher order procedures encapsulating common patterns and error handling).
There are a bunch of reasons for this which I won't go into here, but suffice to say that they are decisions that work for our team and that our team agrees with. Which, at the end of the day, is what matters.
I am currently reading up on persisting objects in .net. As such I cannot offer a best practice, but maybe my insights can bring you some benefit. Up until a few months ago I have always used handcoded queries, a bad habit from my ASP.classic days.
Linq2SQL - Very lightweight and easy to get up to speed. I love the strongly typed querying possibilities and the fact that the SQL is not executed at once. Instead it is executed when your query is ready (all the filters applied) thus you can split the data access from the filtering of the data. Also Linq2SQL lets me use domain objects that are separate from the data objects which are dynamically generated. I have not tried Linq2SQL on a larger project but so far it seems promising. Oh it only supports MS SQL which is a shame.
Entity Framework - I played around with it a little bit and did not like it. It seems to want to do everything for me and it does not work well with stored procedures. EF supports Linq2Entities which again allows strongly typed queries. I think it is limited to MS SQL but I could be wrong.
SubSonic 3.0 (Alpha) - This is a newer version of SubSonic which supports Linq. The cool thing about SubSonic is that it is based on template files (T4 templates, written in C#) which you can easily modify. Thus if you want the auto-generated code to look different you just change it :). I have only tried a preview so far but will look at the Alpha today. Take a look here SubSonic 3 Alpha. Supports MS SQL but will support Oracle, MySql etc. soon.
So far my conclusion is to use Linq2SQL until SubSonic is ready and then switch to that since SubSonics templates allows much more customization.
There is at least another one: System Prevalence.
As far as I can tell, what is optimal for you depends a lot on your circumstances. I could see how for very simple systems, using direct queries still could be a good idea. Also, I have seen Hibernate fail to work well with complex, legacy database schemata, so using an ORM might not always be a valid option. System Prevalence is supposed to unbeatingly fast, if you have enough memory to fit all your objects into RAM. Don't know about LINQ, but I suppose it has its uses, too.
So, as so often, the answer is: know a variety of tools for the job, so that you are able to use the one that's most appropriate for your specific situation.
The best practice depends on your situation.
If you need database objects in table structures with some sort of meaningful structure (so one column per field, one row per entity and so on) you need some sort of translation layer inbetween objects and the database. These fall into two camps:
If there's no logic in the database (just storage) and tables map to objects well, then an ORM solution can provide a quick and reliable persistence system. Java systems like Toplink and Hibernate are mature technologies for this.
If there is database logic involved in persistence, or your database schema has drifted from your object model significantly, stored procedures wrapped by Data Access Objects (with further patterns as you like) is a little more involved than ORM but more flexible.
If you don't need structured storage (and you need to be really sure that you don't, as introducing it to existing data is not fun), you can store serialized object graphs directly in the database, bypassing a lot of complexity.
I prefer to write my own SQL, but I apply all my refactoring techniques and other "good stuff" when I do so.
I have written data access layers, ORM code generators, persistence layers, UnitOfWork transaction management, and LOTS of SQL. I've done that in systems of all shapes and sizes, including extremely high-performance data feeds (forty thousand files totaling forty million transactions per day, each loaded within two minutes of real-time).
The most important criteria is destiny, as in control thereof. Don't ever let your ORM tool be an obstacle to getting your work done, or an excuse for not doing it right. Ultimately, all good SQL is hand-written and hand-tuned, but some decent tools can help you get a good first draft quickly.
I treat this issue the same way that I do my UI design. I write all my UIs directly in code, but I might use a visual designer to prototype some essential elements that I have in mind, then I tear apart the code it generates in order to kickstart my own.
So, use an ORM tool in any of its manifestations as a way to get a decent example--look at how it solves many of the issues that arise (key generation, associations, navigation, etc.). Tear apart its output, make it your own, then reuse the heck out of it.

What are the pros and cons of object databases?

There is a lot of information out there on object-relational mappers and how to best avoid impedance mismatch, all of which seem to be moot points if one were to use an object database. My question is why isn't this used more frequently? Is it because of performance reasons or because object databases cause your data to become proprietary to your application or is it due to something else?
Familiarity. The administrators of databases know relational concepts; object ones, not so much.
Performance. Relational databases have been proven to scale far better.
Maturity. SQL is a powerful, long-developed language.
Vendor support. You can pick between many more first-party (SQL servers) and third-party (administrative interfaces, mappings and other kinds of integration) tools than is the case with OODBMSs.
Naturally, the object-oriented model is more familiar to the developer, and, as you point out, would spare one of ORM. But thus far, the relational model has proven to be the more workable option.
See also the recent question, Object Orientated vs Relational Databases.
I've been using db4o which is an OODB and it solves most of the cons listed:
Familiarity - Programmers know their language better then SQL (see Native queries)
Performance - this one is highly subjective but you can take a look at PolePosition
Vendor support and maturity - can change over time
Cannot be used by programs that don't also use the same framework - There are OODB standards and you can use different frameworks
Versioning is probably a bit of a bitch - Versioning is actually easier!
The pros I'm interested in are:
Native queries - Db4o lets you write queries in your static typed language so you don't have to worry about mistyping a string and finding data missing at runtime,
Ease of use - Defining buissiness logic in the domain layer, persistence layer (mapping) and finally the SQL database is certainly violation of DRY. With OODB you define your domain where it belongs.
I agree - OODB have a long way to go but they are going. And there are domain problems out there that are better solved by OODB,
One objection to object databases is that it creates a tight coupling between the data and your code. For certain apps this may be OK, but not for others. One nice thing that a relational database gives you is the possibility to put many views on your data.
Ted Neward explains this and a lot more about OODBMSs a lot better than this.
It has nothing to do with performance. That is to say, basically all applications would perform better with an OODB. But that would also put lots of DBA's out of work/having to learn a new technology. Even more people would be out of work correcting errors in the data. That's unlikely to make OODBs popular with established companies. Gavin seems to be totally clueless, a better link would be Kirk
Cons:
Cannot be used by programs that
don't also use the same framework
for accessing the data store, making
it more difficult to use across the
enterprise.
Less resources available online for
non SQL-based database
No compatibility across database
types (can't swap to a different db
provider without changing all the
code)
Versioning is probably a bit of a
bitch. I'd guess adding a new
property to an object isn't quite as
easy as adding a new column to a
table.
Sören
All of the reasons you stated are valid, but I see the problem with OODBMS is the logical data model. The object-model (or rather the network model of the 70s) is not as simple as the relational one, and is therefore inferior.
jodonnel, i dont' see how use of object databases couples application code to the data. You can still abstract your application from the OODB through using a Repository pattern and replace with an ORM backed SQL database if you design things properly.
For an OO application, an OO database will provide a more natural fit for persisting objects.
What's probably true is that you tie your data to your domain model, but then that's the crux!
Wouldn't it be good to have a single way of looking at both data, business rules and processes using a domain centric view?
So, a big pro is that an OODB matches how most modern, enterprise level object orientated software applications are designed, there is no extra effort to design a data layer using a different (relational) design. Cheaper to build and maintain, and in many cases general higher performance.
Cons, just general lack of maturity and adoption i reckon...

Resources