How do I print a 5×5 two-dimensional array in spiral order?
Is there any formula so that I can print an array of any size in spiral order?
The idea is to treat the matrix as a series of layers, top-right layers and bottom-left layers. To print the matrix spirally we can peel layers from these matrix, print the peeled part and recursively call the print on the left over part. The recursion terminates when we don't have any more layers to print.
Input matrix:
1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6
7 8 9 1
After peeling top-right layer:
1 2 3 4
8
5 6 7 2
9 0 1 6
3 4 5 1
7 8 9
After peeling bottom-left layer from sub-matrix:
6 7
5 0 1
9 4 5
3
7 8 9
After peeling top-right layer from sub-matrix:
6 7
1
0 5
4
After peeling bottom-left layer from sub-matrix:
0
4
Recursion terminates.
C functions:
// function to print the top-right peel of the matrix and
// recursively call the print bottom-left on the submatrix.
void printTopRight(int a[][COL], int x1, int y1, int x2, int y2) {
int i = 0, j = 0;
// print values in the row.
for(i = x1; i<=x2; i++) {
printf("%d ", a[y1][i]);
}
// print values in the column.
for(j = y1 + 1; j <= y2; j++) {
printf("%d ", a[j][x2]);
}
// see if more layers need to be printed.
if(x2-x1 > 0) {
// if yes recursively call the function to
// print the bottom left of the sub matrix.
printBottomLeft(a, x1, y1 + 1, x2-1, y2);
}
}
// function to print the bottom-left peel of the matrix and
// recursively call the print top-right on the submatrix.
void printBottomLeft(int a[][COL], int x1, int y1, int x2, int y2) {
int i = 0, j = 0;
// print the values in the row in reverse order.
for(i = x2; i>=x1; i--) {
printf("%d ", a[y2][i]);
}
// print the values in the col in reverse order.
for(j = y2 - 1; j >= y1; j--) {
printf("%d ", a[j][x1]);
}
// see if more layers need to be printed.
if(x2-x1 > 0) {
// if yes recursively call the function to
// print the top right of the sub matrix.
printTopRight(a, x1+1, y1, x2, y2-1);
}
}
void printSpiral(int arr[][COL]) {
printTopRight(arr,0,0,COL-1,ROW-1);
printf("\n");
}
Pop top row
Transpose and flip upside-down (same as rotate 90 degrees counter-clockwise)
Go to 1
Python 2 code:
import itertools
arr = [[1,2,3,4],
[12,13,14,5],
[11,16,15,6],
[10,9,8,7]]
def transpose_and_yield_top(arr):
while arr:
yield arr[0]
arr = list(reversed(zip(*arr[1:])))
print list(itertools.chain(*transpose_and_yield_top(arr)))
For python 3x:
import itertools
arr = [[1,2,3,4],
[12,13,14,5],
[11,16,15,6],
[10,9,8,7]]
def transpose_and_yield_top(arr):
while arr:
yield arr[0]
arr = list(reversed(list(zip(*arr[1:]))))
print(list(itertools.chain(*transpose_and_yield_top(arr))))
I see that no one has use only one for loop and without recursion in the code, and so I want to contribute.
The idea is like this:
Imagine there is a turtle standing at point (0,0), that is, top-left corner, facing east (to the right)
It will keep going forward and each time it sees a sign, the turtle will turn right
So if we put the turtle at point (0,0) facing right-ward, and if we place the signs at appropriate places, the turtle will traverse the array in spiral way.
Now the problem is: "Where to put the signs?"
Let's see where we should put the signs (marked by #, and numbers by O):
For a grid that looks like this:
O O O O
O O O O
O O O O
O O O O
We put the signs like this:
O O O #
# O # O
O # # O
# O O #
For a grid that looks like this:
O O O
O O O
O O O
O O O
We put the signs like this:
O O #
# # O
O # O
# O #
And for a grid that looks like this:
O O O O O O O
O O O O O O O
O O O O O O O
O O O O O O O
O O O O O O O
We put the signs like this:
O O O O O O #
# O O O O # O
O # O O # O O
O # O O O # O
# O O O O O #
We can see that, unless the point is at the top-left part, the signs are places at points where the distances to the closest horizontal border and the closest vertical border are the same, while for the top-left part, the distance to the top border is one more than the distance to the left border, with priority given to top-right in case the point is horizontally centered, and to top-left in case the point is vertically centered.
This can be realized in a simple function quite easily, by taking the minimum of (curRow and height-1-curRow), then the minimum of (curCol and width-1-curCol) and compare if they are the same. But we need to account for the upper-left case, that is, when the minimum is curRow and curCol themselves. In that case we reduce the vertical distance accordingly.
Here is the C code:
#include <stdio.h>
int shouldTurn(int row, int col, int height, int width){
int same = 1;
if(row > height-1-row) row = height-1-row, same = 0; // Give precedence to top-left over bottom-left
if(col >= width-1-col) col = width-1-col, same = 0; // Give precedence to top-right over top-left
row -= same; // When the row and col doesn't change, this will reduce row by 1
if(row==col) return 1;
return 0;
}
int directions[4][2] = {{0,1},{1,0},{0,-1},{-1,0}};
void printSpiral(int arr[4][4], int height, int width){
int directionIdx=0, i=0;
int curRow=0, curCol=0;
for(i=0; i<height*width; i++){
printf("%d ",arr[curRow][curCol]);
if(shouldTurn(curRow, curCol, height, width)){
directionIdx = (directionIdx+1)%4;
}
curRow += directions[directionIdx][0];
curCol += directions[directionIdx][1];
}
printf("\n");
}
int main(){
int arr[4][4]= {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16}};
printSpiral(arr, 4, 4);
printSpiral(arr, 3, 4);
}
Which outputs:
1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10
1 2 3 4 8 12 11 10 9 5 6 7
Here are the three interesting ways
Reading in spiral way can be treated like a snake moving towards boundary and turning on hitting the boundary or itself (I find it elegant and most efficient being a single loop of N iterations)
ar = [
[ 0, 1, 2, 3, 4],
[15, 16, 17, 18, 5],
[14, 23, 24, 19, 6],
[13, 22, 21, 20, 7],
[12, 11, 10, 9, 8]]
def print_spiral(ar):
"""
assuming a rect array
"""
rows, cols = len(ar), len(ar[0])
r, c = 0, -1 # start here
nextturn = stepsx = cols # move so many steps
stepsy = rows-1
inc_c, inc_r = 1, 0 # at each step move this much
turns = 0 # how many times our snake had turned
for i in range(rows*cols):
c += inc_c
r += inc_r
print ar[r][c],
if i == nextturn-1:
turns += 1
# at each turn reduce how many steps we go next
if turns%2==0:
nextturn += stepsx
stepsy -= 1
else:
nextturn += stepsy
stepsx -= 1
# change directions
inc_c, inc_r = -inc_r, inc_c
print_spiral(ar)
output:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
A recursive approach would be to print outer layer and call same function for inner rectangle e.g.
def print_spiral(ar, sr=0, sc=0, er=None, ec=None):
er = er or len(ar)-1
ec = ec or len(ar[0])-1
if sr > er or sc > ec:
print
return
# print the outer layer
top, bottom, left, right = [], [], [], []
for c in range(sc,ec+1):
top.append(ar[sr][c])
if sr != er:
bottom.append(ar[er][ec-(c-sc)])
for r in range(sr+1,er):
right.append(ar[r][ec])
if ec != sc:
left.append(ar[er-(r-sr)][sc])
print " ".join([str(a) for a in top + right + bottom + left]),
# peel next layer of onion
print_spiral(ar, sr+1, sc+1, er-1, ec-1)
Finally here is a small snippet to do it, not efficient but fun :), basically it prints top row, and rotates whole rectangle anti-clockwise and repeats
def print_spiral(ar):
if not ar: return
print " ".join(str(a) for a in ar[0]),
ar = zip(*[ reversed(row) for row in ar[1:]])
print_spiral(ar)
This program works for any n*n matrix..
public class circ {
public void get_circ_arr (int n,int [][] a)
{
int z=n;
{
for (int i=0;i<n;i++)
{
for (int l=z-1-i;l>=i;l--)
{
int k=i;
System.out.printf("%d",a[k][l]);
}
for (int j=i+1;j<=z-1-i;j++)
{
int k=i;
{
System.out.printf("%d",a[j][k]);
}
}
for (int j=i+1;j<=z-i-1;j++)
{
int k=z-1-i;
{
System.out.printf("%d",a[k][j]);
}
}
for (int j=z-2-i;j>=i+1;j--)
{
int k=z-i-1;
{
System.out.printf("%d",a[j][k]);
}
}
}
}
}
}
Hope it helps
I was obsessed with this problem when I was learning Ruby. This was the best I could do:
def spiral(matrix)
matrix.empty? ? [] : matrix.shift + spiral(matrix.transpose.reverse)
end
You can check out some of my other solutions by stepping back through the revisions in this gist. Also, if you follow the link back to whom I forked the gist from, you'll find some other clever solutions. Really interesting problem that can be solved in multiple elegant ways — especially in Ruby.
JavaScript solution:
var printSpiral = function (matrix) {
var i;
var top = 0;
var left = 0;
var bottom = matrix.length;
var right = matrix[0].length;
while (top < bottom && left < right) {
//print top
for (i = left; i < right; i += 1) {
console.log(matrix[top][i]);
}
top++;
//print right column
for (i = top; i < bottom; i += 1) {
console.log(matrix[i][right - 1]);
}
right--;
if (top < bottom) {
//print bottom
for (i = right - 1; i >= left; i -= 1) {
console.log(matrix[bottom - 1][i]);
}
bottom--;
}
if (left < right) {
//print left column
for (i = bottom - 1; i >= top; i -= 1) {
console.log(matrix[i][left]);
}
left++;
}
}
};
One solution involves directions right, left, up, down, and their corresponding limits (indices). Once the first row is printed, and direction changes (from right) to down, the row is discarded by incrementing the upper limit. Once the last column is printed, and direction changes to left, the column is discarded by decrementing the right hand limit... Details can be seen in the self-explanatory C code.
#include <stdio.h>
#define N_ROWS 5
#define N_COLS 3
void print_spiral(int a[N_ROWS][N_COLS])
{
enum {up, down, left, right} direction = right;
int up_limit = 0,
down_limit = N_ROWS - 1,
left_limit = 0,
right_limit = N_COLS - 1,
downcount = N_ROWS * N_COLS,
row = 0,
col = 0;
while(printf("%d ", a[row][col]) && --downcount)
if(direction == right)
{
if(++col > right_limit)
{
--col;
direction = down;
++up_limit;
++row;
}
}
else if(direction == down)
{
if(++row > down_limit)
{
--row;
direction = left;
--right_limit;
--col;
}
}
else if(direction == left)
{
if(--col < left_limit)
{
++col;
direction = up;
--down_limit;
--row;
}
}
else /* direction == up */
if(--row < up_limit)
{
++row;
direction = right;
++left_limit;
++col;
}
}
void main()
{
int a[N_ROWS][N_COLS] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
print_spiral(a);
}
Link for Testing and Download.
Given a matrix of chars, implement a method that prints all characters in the following order: first the outer circle,
then the next one and so on.
public static void printMatrixInSpiral(int[][] mat){
if(mat.length == 0|| mat[0].length == 0){
/* empty matrix */
return;
}
StringBuffer str = new StringBuffer();
int counter = mat.length * mat[0].length;
int startRow = 0;
int endRow = mat.length-1;
int startCol = 0;
int endCol = mat[0].length-1;
boolean moveCol = true;
boolean leftToRight = true;
boolean upDown = true;
while(counter>0){
if(moveCol){
if(leftToRight){
/* printing entire row left to right */
for(int i = startCol; i <= endCol ; i++){
str.append(mat[startRow][i]);
counter--;
}
leftToRight = false;
moveCol = false;
startRow++;
}
else{
/* printing entire row right to left */
for(int i = endCol ; i >= startCol ; i--){
str.append(mat[endRow][i]);
counter--;
}
leftToRight = true;
moveCol = false;
endRow--;
}
}
else
{
if(upDown){
/* printing column up down */
for(int i = startRow ; i <= endRow ; i++){
str.append(mat[i][endCol]);
counter--;
}
upDown = false;
moveCol = true;
endCol--;
}
else
{
/* printing entire col down up */
for(int i = endRow ; i >= startRow ; i--){
str.append(mat[i][startCol]);
counter--;
}
upDown = true;
moveCol = true;
startCol++;
}
}
}
System.out.println(str.toString());
}
Two dimensional N*N Matrix is Square matrix
Idea:
We have to traverse in four different directions to traverse like spiral.
We have to traverse inside matrix once one layer of spiral is over.
So total, we need 5 loops, 4 loops to traverse like spiral and 1 loop to traverse through the layers.
public void printSpiralForm(int[][] a, int length)
{
for( int i = 0 , j = length-1 ; i < j ; i++ , j-- )
{
for( int k = i ; k < j ; k++ )
{
System.out.print( a[i][k] + " " ) ;
}
for( int k = i ; k < j ; k++ )
{
System.out.print(a[k][j] + " ");
}
for( int k = j ; k > i ; k-- )
{
System.out.print(a[j][k] + " ") ;
}
for( int k = j ; k > i ; k-- )
{
System.out.print( a[k][i] + " " ) ;
}
}
if ( length % 2 == 1 )
{
System.out.println( a[ length/2 ][ length/2 ] ) ;
}
}
Just keep it simple -->
public class spiralMatrix {
public static void printMatrix(int[][] matrix, int rows, int col)
{
int rowStart=0;
int rowEnd=rows-1;
int colStart=0;
int colEnd=col-1;
while(colStart<=colEnd && rowStart<=rowEnd)
{
for(int i=colStart;i<colEnd;i++)
System.out.println(matrix[rowStart][i]);
for(int i=rowStart;i<rowEnd;i++)
System.out.println(matrix[i][colEnd]);
for(int i=colEnd;i>colStart;i--)
System.out.println(matrix[rowEnd][i]);
for(int i=rowEnd;i>rowStart;i--)
System.out.println(matrix[i][colStart]);
rowStart++;
colEnd--;
rowEnd--;
colStart++;
}
}
public static void main(String[] args){
int[][] array={{1,2,3,4},{5,6,7,8}};
printMatrix(array,2,4);
}
}
This is my implementation:
public static void printMatrix(int matrix[][], int M, int N){
int level = 0;
int min = (M < N) ? M:N;
System.out.println();
while(level <= min/2){
for(int j = level; j < N - level - 1; j++){
System.out.print(matrix[level][j] + "\t");
}
for(int i = level; i < M - level - 1; i++) {
System.out.print(matrix[i][N - level - 1] + "\t");
}
for(int j = N - level - 1; j > level; j--){
System.out.print(matrix[M - level - 1][j] + "\t");
}
for(int i = M - level - 1; i > level; i-- ){
System.out.print(matrix[i][level] + "\t");
}
level++;
}
}
Here is my solution. Please correct if I'm wrong.
class Spiral:
def spiralOrder(self, A):
result = []
c = []
c.append(A[0])
b = A[1:]
while len(b) > 0:
b = self.rotate(b)
c.append(b[0])
b = b[1:]
for item in c:
for fitem in item:
print fitem,
result.append(fitem)
return result
def rotate(self,a):
b = []
l = zip(*a)
for i in xrange(len(l)-1,-1,-1):
b.append(list(l[i]))
return b
if __name__ == '__main__':
a = [[1, 2, 3,3], [4, 5, 6,6], [7, 8, 9,10]]
s = Spiral()
s.spiralOrder(a)
Slash Top Row -> Transpose -> Flip -> Repeat.
void slashTransposeFlip(int[][] m){
if( m.length * m[0].length == 1){ //only one element left
System.out.print(m[0][0]);
}else{
//print the top row
for(int a:m[0]){System.out.print(a+" ");}
//slash the top row from the matrix.
int[][] n = Arrays.copyOfRange(m,1,m.length);
int[][] temp = n;
int rows = temp.length;
int columns = temp[0].length;
//invert rows and columns and create new array
n = new int[columns][rows];
//transpose
for(int x=0;x<rows;x++)
for(int y=0;y<columns;y++)
n[y][x] = temp[x][y];
//flipping time
for (int i = 0; i < n.length / 2; i++) {
int[] t = n[i];
n[i] = n[n.length - 1 - i];
n[n.length - 1 - i] = t;
}
//recursively call again the reduced matrix.
slashTransposeFlip(n);
}
}
Complexity: Single traverse O(n)
Please let me add my single loop answer with complexity O(n). I have observed that during left-right and right-left traverse of the matrix, there is an increase and decrease by one respectively in the row-major index. Similarly, for the top-bottom and bottom-top traverse there is increase and decrease by n_cols. Thus I made an algorithm for that. For example, given a (3x5) matrix with entries the row-major indexes the print output is: 1,2,3,4,5,10,15,14,13,12,11,6,7,8,9.
------->(+1)
^ 1 2 3 4 5 |
(+n_cols) | 6 7 8 9 10 | (-n_cols)
| 11 12 13 14 15
(-1)<-------
Code solution:
#include <iostream>
using namespace std;
int main() {
// your code goes here
bool leftToRight=true, topToBottom=false, rightToLeft=false, bottomToTop=false;
int idx=0;
int n_rows = 3;
int n_cols = 5;
int cnt_h = n_cols, cnt_v = n_rows, cnt=0;
int iter=1;
for (int i=0; i <= n_rows*n_cols + (n_rows - 1)*(n_cols - 1)/2; i++){
iter++;
if(leftToRight){
if(cnt >= cnt_h){
cnt_h--; cnt=0;
leftToRight = false; topToBottom = true;
//cout << "Iter: "<< iter << " break_leftToRight"<<endl;
}else{
cnt++;
idx++;
//cout << "Iter: "<< iter <<" idx: " << idx << " cnt: "<< cnt << " cnt_h: "<< cnt_h<< endl;
cout<< idx << endl;
}
}else if(topToBottom){
if(cnt >= cnt_v-1){
cnt_v--; cnt=0;
leftToRight = false; topToBottom = false; rightToLeft=true;
//cout << "Iter: "<< iter << " break_topToBottom"<<endl;
}else{
cnt++;
idx+=n_cols;
//cout << "Iter: "<< iter << " idx: " << idx << " cnt: "<< cnt << " cnt_v: "<< cnt_h<< endl;
cout << idx <<endl;
}
}else if(rightToLeft){
if(cnt >= cnt_h){
cnt_h--; cnt=0;
leftToRight = false; topToBottom = false; rightToLeft=false; bottomToTop=true;
//cout << "Iter: "<< iter << " break_rightToLeft"<<endl;
//cout<< idx << endl;
}else{
cnt++;
idx--;
//cout << "Iter: "<< iter << " idx: " << idx << " cnt: "<< cnt << " cnt_h: "<< cnt_h<< endl;
cout << idx <<endl;
}
}else if(bottomToTop){
if(cnt >= cnt_v-1){
cnt_v--; cnt=0;
leftToRight = true; topToBottom = false; rightToLeft=false; bottomToTop=false;
//cout << "Iter: "<< iter << " break_bottomToTop"<<endl;
}else{
cnt++;
idx-=n_cols;
//cout << "Iter: "<< iter << " idx: " << idx << " cnt: "<< cnt << " cnt_v: "<< cnt_h<< endl;
cout<< idx << endl;
}
}
//cout << i << endl;
}
return 0;
}
function spiral(a) {
var s = [];
while (a.length) {
// concat 1st row, push last cols, rotate 180 (reverse inner/outer)...
s = s.concat(a.shift());
a = a
.map(function(v) {
s.push(v.pop());
return v.reverse();
})
.reverse();
}
return s;
}
var arr = [
[1, 2, 3, 4],
[12, 13, 14, 5],
[11, 16, 15, 6],
[10, 9, 8, 7]
];
console.log(spiral(arr));// -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
arr = [
[0, 1, 2, 3, 4],
[15, 16, 17, 18, 5],
[14, 23, 24, 19, 6],
[13, 22, 21, 20, 7],
[12, 11, 10, 9, 8]
];
console.log(spiral(arr));// -> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
For printing a 2-D matrix consider matrix as a composition of rectangles and/or line where smaller rectangle is fitted into larger one, take boundary of matrix which forms a rectangle to be printed, starting with up-left element each time in each layer; once done with this go inside for next layer of smaller rectangle, in case i don't have a rectangle then it should be line to be printed, a horizontal or vertical. I have pasted the code with an example matrix, HTH.
#include <stdio.h>
int a[2][4] = { 1, 2 ,3, 44,
8, 9 ,4, 55 };
void print(int, int, int, int);
int main() {
int row1, col1, row2, col2;
row1=0;
col1=0;
row2=1;
col2=3;
while(row2>=row1 && col2>=col1)
{
print(row1, col1, row2, col2);
row1++;
col1++;
row2--;
col2--;
}
return 0;
}
void print(int row1, int col1, int row2, int col2) {
int i=row1;
int j=col1;
/* This is when single horizontal line needs to be printed */
if( row1==row2 && col1!=col2) {
for(j=col1; j<=col2; j++)
printf("%d ", a[i][j]);
return;
}
/* This is when single vertical line needs to be printed */
if( col1==col2 && row1!=row2) {
for(i=row1; j<=row2; i++)
printf("%d ", a[i][j]);
return;
}
/* This is reached when there is a rectangle to be printed */
for(j=col1; j<=col2; j++)
printf("%d ", a[i][j]);
for(j=col2,i=row1+1; i<=row2; i++)
printf("%d ", a[i][j]);
for(i=row2,j=col2-1; j>=col1; j--)
printf("%d ", a[i][j]);
for(j=col1,i=row2-1; i>row1; i--)
printf("%d ", a[i][j]);
}
Here is my implementation in Java:
public class SpiralPrint {
static void spiral(int a[][],int x,int y){
//If the x and y co-ordinate collide, break off from the function
if(x==y)
return;
int i;
//Top-left to top-right
for(i=x;i<y;i++)
System.out.println(a[x][i]);
//Top-right to bottom-right
for(i=x+1;i<y;i++)
System.out.println(a[i][y-1]);
//Bottom-right to bottom-left
for(i=y-2;i>=x;i--)
System.out.println(a[y-1][i]);
//Bottom left to top-left
for(i=y-2;i>x;i--)
System.out.println(a[i][x]);
//Recursively call spiral
spiral(a,x+1,y-1);
}
public static void main(String[] args) {
int a[][]={{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16}};
spiral(a,0,4);
/*Might be implemented without the 0 on an afterthought, all arrays will start at 0 anyways. The second parameter will be the dimension of the array*/
}
}
//shivi..coding is adictive!!
#include<shiviheaders.h>
#define R 3
#define C 6
using namespace std;
void PrintSpiral(int er,int ec,int arr[R][C])
{
int sr=0,sc=0,i=0;
while(sr<=er && sc<=ec)
{
for(int i=sc;i<=ec;++i)
cout<<arr[sr][i]<<" ";
++sr;
for(int i=sr;i<=er;++i)
cout<<arr[i][ec]<<" ";
ec--;
if(sr<=er)
{
for(int i=ec;i>=sc;--i)
cout<<arr[er][i]<<" ";
er--;
}
if(sc<=ec)
{
for(int i=er;i>=sr;--i)
cout<<arr[i][sc]<<" ";
++sc;
}
}
}
int main()
{
int a[R][C] = { {1, 2, 3, 4, 5, 6},
{7, 8, 9, 10, 11, 12},
{13, 14, 15, 16, 17, 18}
};
PrintSpiral(R-1, C-1, a);
}
int N = Integer.parseInt(args[0]);
// create N-by-N array of integers 1 through N
int[][] a = new int[N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
a[i][j] = 1 + N*i + j;
// spiral
for (int i = N-1, j = 0; i > 0; i--, j++) {
for (int k = j; k < i; k++) System.out.println(a[j][k]);
for (int k = j; k < i; k++) System.out.println(a[k][i]);
for (int k = i; k > j; k--) System.out.println(a[i][k]);
for (int k = i; k > j; k--) System.out.println(a[k][j]);
}
// special case for middle element if N is odd
if (N % 2 == 1) System.out.println(a[(N-1)/2][(N-1)/2]);
}
}
Java code if anybody is interested.
Input:
4
1 2 3 4
5 6 7 8
9 1 2 3
4 5 6 7
Output: 1 2 3 4 8 3 7 6 5 4 9 5 6 7 2 1
public class ArraySpiralPrinter {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(); //marrix size
//read array
int[][] ar = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
ar[i][j] = sc.nextInt();
}
}
printTopRight(0, 0, n - 1, n - 1, ar);
}
//prints top and right layers.
//(x1,y1) to (x1, y2) - top layer & (x1,y2) to (x2, y2)
private static void printTopRight(int x1, int y1, int x2, int y2, int[][] ar) {
//print row values - top
for (int y = y1; y <= y2; y++) {
System.out.printf("%d ", ar[x1][y]);
}
//print column value - right
for (int x = x1 + 1; x <= x2; x++) {
System.out.printf("%d ", ar[x][y2]);
}
//are there any remaining layers
if (x2 - x1 > 0) {
//call printBottemLeft
printBottomLeft(x1 + 1, y1, x2, y2 - 1, ar);
}
}
//prints bottom and left layers in reverse order
//(x2,y2) to (x2, y1) - bottom layer & (x2,y1) to (x1, y1)
private static void printBottomLeft(int x1, int y1, int x2, int y2, int[][] ar) {
//print row values in reverse order - bottom
for (int y = y2; y >= y1; y--) {
System.out.printf("%d ", ar[x2][y]);
}
//print column value in reverse order - left
for (int x = x2-1; x >= x1; x--) {
System.out.printf("%d ", ar[x][y1]);
}
//are there any remaining layers
if (x2 - x1 > 0) {
printTopRight(x1, y1 + 1, x2 - 1, y2, ar);
}
}
}
This is a recursive version in C that I could think of:-
void printspiral (int[][100],int, int, int, int);
int main()
{
int r,c, i, j;
printf ("Enter the dimensions of the matrix");
scanf("%d %d", &r, &c);
int arr[r][100];
int min = (r<c?r:c);
if (min%2 != 0) min = min/2 +1;
for (i = 0;i<r; i++)
for (j = 0; j<c; j++)
scanf ("%d",&arr[i][j]);
printspiral(arr,0,r,c,min );
}
void printspiral (int arr[][100], int i, int j, int k, int min)
{
int a;
for (a = i; a<k;a++)
printf("%d\n", arr[i][a]);
for (a=i+1;a<j;a++)
printf ("%d\n", arr[a][k-1]);
for (a=k-2; a>i-1;a--)
printf("%d\n", arr[j-1][a]);
for (a=j-2; a>i; a--)
printf("%d\n", arr[a][i]);
if (i < min)
printspiral(arr,i+1, j-1,k-1, min);
}
http://www.technicalinterviewquestions.net/2009/03/print-2d-array-matrix-spiral-order.html
here is the best explanation for the above answer :) along with diagram :)
public static void printSpiral1(int array[][],int row,int col){
int rowStart=0,colStart=0,rowEnd=row-1,colEnd=col-1;
int i;
while(rowStart<=rowEnd && colStart<= colEnd){
for(i=colStart;i<=colEnd;i++)
System.out.print(" "+array[rowStart][i]);
for(i=rowStart+1;i<=rowEnd;i++)
System.out.print(" "+array[i][colEnd]);
for(i=colEnd-1;i>=colStart;i--)
System.out.print(" "+array[rowEnd][i]);
for(i=rowEnd-1;i>=rowStart+1;i--)
System.out.print(" "+array[i][colStart]);
rowStart++;
colStart++;
rowEnd--;
colEnd--;
}
}
public class SpiralPrint{
//print the elements of matrix in the spiral order.
//my idea is to use recursive, for each outer loop
public static void printSpiral(int[][] mat, int layer){
int up = layer;
int buttom = mat.length - layer - 1;
int left = layer;
int right = mat[0].length - layer - 1;
if(up > buttom+1 || left > right + 1)
return; // termination condition
//traverse the other frame,
//print up
for(int i = left; i <= right; i ++){
System.out.print( mat[up][i]+ " " );
}
//print right
for(int i = up + 1; i <=buttom; i ++){
System.out.print(mat[i][right] + " ");
}
//print buttom
for(int i = right - 1; i >= left; i --){
System.out.print(mat[buttom][i] + " ");
}
//print left
for(int i = buttom - 1; i > up; i --){
System.out.print(mat[i][left] + " ");
}
//recursive call for the next level
printSpiral(mat, layer + 1);
}
public static void main(String[] args){
int[][] mat = {{1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16}};
int[][] mat2 = {{1,2,3}, {4,5,6}, {7,8,9}, {10,11,12}};
SpiralPrint.printSpiral(mat2,0);
return;
}
}
Here is my solution in C#:
public static void PrintSpiral(int[][] matrix, int n)
{
if (matrix == null)
{
return;
}
for (int layer = 0; layer < Math.Ceiling(n / 2.0); layer++)
{
var start = layer;
var end = n - layer - 1;
var offset = end - 1;
Console.Write("Layer " + layer + ": ");
// Center case
if (start == end)
{
Console.Write(matrix[start][start]);
}
// Top
for (int i = start; i <= offset; i++)
{
Console.Write(matrix[start][i] + " ");
}
// Right
for (int i = start; i <= offset; i++)
{
Console.Write(matrix[i][end] + " ");
}
// Bottom
for (int i = end; i > start; i--)
{
Console.Write(matrix[end][i] + " ");
}
// Left
for (int i = end; i > start; i--)
{
Console.Write(matrix[i][start] + " ");
}
Console.WriteLine();
}
}
Here's my approach using an Iterator . Note this solves almost the same problem..
Complete code here : https://github.com/rdsr/algorithms/blob/master/src/jvm/misc/FillMatrix.java
import java.util.Iterator;
class Pair {
final int i;
final int j;
Pair(int i, int j) {
this.i = i;
this.j = j;
}
#Override
public String toString() {
return "Pair [i=" + i + ", j=" + j + "]";
}
}
enum Direction {
N, E, S, W;
}
class SpiralIterator implements Iterator<Pair> {
private final int r, c;
int ri, ci;
int cnt;
Direction d; // current direction
int level; // spiral level;
public SpiralIterator(int r, int c) {
this.r = r;
this.c = c;
d = Direction.E;
level = 1;
}
#Override
public boolean hasNext() {
return cnt < r * c;
}
#Override
public Pair next() {
final Pair p = new Pair(ri, ci);
switch (d) {
case E:
if (ci == c - level) {
ri += 1;
d = changeDirection(d);
} else {
ci += 1;
}
break;
case S:
if (ri == r - level) {
ci -= 1;
d = changeDirection(d);
} else {
ri += 1;
}
break;
case W:
if (ci == level - 1) {
ri -= 1;
d = changeDirection(d);
} else {
ci -= 1;
}
break;
case N:
if (ri == level) {
ci += 1;
level += 1;
d = changeDirection(d);
} else {
ri -= 1;
}
break;
}
cnt += 1;
return p;
}
private static Direction changeDirection(Direction d) {
switch (d) {
case E:
return Direction.S;
case S:
return Direction.W;
case W:
return Direction.N;
case N:
return Direction.E;
default:
throw new IllegalStateException();
}
}
#Override
public void remove() {
throw new UnsupportedOperationException();
}
}
public class FillMatrix {
static int[][] fill(int r, int c) {
final int[][] m = new int[r][c];
int i = 1;
final Iterator<Pair> iter = new SpiralIterator(r, c);
while (iter.hasNext()) {
final Pair p = iter.next();
m[p.i][p.j] = i;
i += 1;
}
return m;
}
public static void main(String[] args) {
final int r = 19, c = 19;
final int[][] m = FillMatrix.fill(r, c);
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
System.out.print(m[i][j] + " ");
}
System.out.println();
}
}
}
Complete pure C program for any 2D array matrix with given row x column.
#include <stdio.h>
void printspiral(int *p,int r, int c) {
int i=0,j=0,m=1,n=0;
static int firstrun=1,gCol;
if (!p||r<=0||c<=0)
return ;
if(firstrun) {
gCol=c;
firstrun=0;
}
for(i=0,j=0;(0<=i && i<c)&&(0<=j && j<r);i+=m,j+=n) {
printf(" %d",p[i+j*gCol]);
if (i==0 && j==1 && (i+1)!=c) break;
else if (i+1==c && !j) {m=0;n=1;}
else if (i+1==c && j+1==r && j) {n=0;m=-1;}
else if (i==0 && j+1==r && j) {m=0;n=-1;}
}
printspiral(&p[i+j*gCol+1],r-2,c-2);
firstrun=1;
printf("\n");
}
int main() {
int a[3][3]={{0,1,2},{3,4,5},{6,7,8}};
int b[3][4]={{0,1,2,3},{4,5,6,7},{8,9,10,11}};
int c[4][3]={{0,1,2},{3,4,5},{6,7,8},{9,10,11}};
int d[3][1]={{0},{1},{2}};
int e[1][3]={{0,1,2}};
int f[1][1]={{0}};
int g[5][5]={{0,1,2,3,4},{5,6,7,8,9},{10,11,12,13,14},{15,16,17,18,19},{20,21,22,23,24}};
printspiral(a,3,3);
printspiral(b,3,4);
printspiral(c,4,3);
printspiral(d,3,1);
printspiral(e,1,3);
printspiral(f,1,1);
printspiral(g,5,5);
return 0;
}
This question is related to this one: Matrix arrangement issues in php
The answers presented seem to work but are complicated to understand. A very simple way to solve this is divide and conquer i.e., after reading the edge, remove it and the next read will be much simpler. Check out a complete solution in PHP below:
#The source number matrix
$source[0] = array(1, 2, 3, 4);
$source[1] = array(5, 6, 7, 8);
$source[2] = array(9, 10, 11, 12);
$source[3] = array(13, 14, 15, 16);
$source[4] = array(17, 18, 19, 20);
#Get the spiralled numbers
$final_spiral_list = get_spiral_form($source);
print_r($final_spiral_list);
function get_spiral_form($matrix)
{
#Array to hold the final number list
$spiralList = array();
$result = $matrix;
while(count($result) > 0)
{
$resultsFromRead = get_next_number_circle($result, $spiralList);
$result = $resultsFromRead['new_source'];
$spiralList = $resultsFromRead['read_list'];
}
return $spiralList;
}
function get_next_number_circle($matrix, $read)
{
$unreadMatrix = $matrix;
$rowNumber = count($matrix);
$colNumber = count($matrix[0]);
#Check if the array has one row or column
if($rowNumber == 1) $read = array_merge($read, $matrix[0]);
if($colNumber == 1) for($i=0; $i<$rowNumber; $i++) array_push($read, $matrix[$i][0]);
#Check if array has 2 rows or columns
if($rowNumber == 2 || ($rowNumber == 2 && $colNumber == 2))
{
$read = array_merge($read, $matrix[0], array_reverse($matrix[1]));
}
if($colNumber == 2 && $rowNumber != 2)
{
#First read left to right for the first row
$read = array_merge($read, $matrix[0]);
#Then read down on right column
for($i=1; $i<$rowNumber; $i++) array_push($read, $matrix[$i][1]);
#..and up on left column
for($i=($rowNumber-1); $i>0; $i--) array_push($read, $matrix[$i][0]);
}
#If more than 2 rows or columns, pick up all the edge values by spiraling around the matrix
if($rowNumber > 2 && $colNumber > 2)
{
#Move left to right
for($i=0; $i<$colNumber; $i++) array_push($read, $matrix[0][$i]);
#Move top to bottom
for($i=1; $i<$rowNumber; $i++) array_push($read, $matrix[$i][$colNumber-1]);
#Move right to left
for($i=($colNumber-2); $i>-1; $i--) array_push($read, $matrix[$rowNumber-1][$i]);
#Move bottom to top
for($i=($rowNumber-2); $i>0; $i--) array_push($read, $matrix[$i][0]);
}
#Now remove these edge read values to create a new reduced matrix for the next read
$unreadMatrix = remove_top_row($unreadMatrix);
$unreadMatrix = remove_right_column($unreadMatrix);
$unreadMatrix = remove_bottom_row($unreadMatrix);
$unreadMatrix = remove_left_column($unreadMatrix);
return array('new_source'=>$unreadMatrix, 'read_list'=>$read);
}
function remove_top_row($matrix)
{
$removedRow = array_shift($matrix);
return $matrix;
}
function remove_right_column($matrix)
{
$neededCols = count($matrix[0]) - 1;
$finalMatrix = array();
for($i=0; $i<count($matrix); $i++) $finalMatrix[$i] = array_slice($matrix[$i], 0, $neededCols);
return $finalMatrix;
}
function remove_bottom_row($matrix)
{
unset($matrix[count($matrix)-1]);
return $matrix;
}
function remove_left_column($matrix)
{
$neededCols = count($matrix[0]) - 1;
$finalMatrix = array();
for($i=0; $i<count($matrix); $i++) $finalMatrix[$i] = array_slice($matrix[$i], 1, $neededCols);
return $finalMatrix;
}
// Program to print a matrix in spiral order
#include <stdio.h>
int main(void) {
// your code goes here
int m,n,i,j,k=1,c1,c2,r1,r2;;
scanf("%d %d",&m,&n);
int a[m][n];
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
}
}
r1=0;
r2=m-1;
c1=0;
c2=n-1;
while(k<=m*n)
{
for(i=c1;i<=c2;i++)
{
k++;
printf("%d ",a[r1][i]);
}
for(j=r1+1;j<=r2;j++)
{
k++;
printf("%d ",a[j][c2]);
}
for(i=c2-1;i>=c1;i--)
{
k++;
printf("%d ",a[r2][i]);
}
for(j=r2-1;j>=r1+1;j--)
{
k++;
printf("%d ",a[j][c1]);
}
c1++;
c2--;
r1++;
r2--;
}
return 0;
}
Related
I have coding problem to write concentric square matrix (biggest number is in the middle) For example user needs to write an matrix For example:
5 5 5 5 5
5 6 6 6 5
5 6 7 6 5
5 6 6 6 5
5 5 5 5 5
My program has to output "Yes" because this is, by my program's rules, a concentric square matrix.
5 5 5 5 5
5 6 6 6 5
5 6 7 8 5
5 6 6 6 5
5 5 5 5 5
This is not a concentric square matrix because 8 is in 4th column and 3rd row.
This is my code:
#include <stdio.h>
int main() {
int mat[100][100];
int i,j;
int n;
scanf("%d",&n);
printf("Unesite matricu; ");
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&mat[i][j]);
}
}
}
I don't know how to do the rest of it so if someone can help me, I would be happy :))
Comment::
I forgot to say that only odd numbers can be the dimension of the matrix (1,3,11,27). The only final output of the program has to be "YES (if the matrix is a concentric square matrix) or "NO" (if it's not). I know how to make a concentric square matrix when the user inputs a number (for example, 4) and the matrix has 2*n-1 dimensions. And through the loops, the program automatically makes the matrix (if you know what I mean). But for my matrix, the user has to input all the elements of the matrix and the program has to check if the matrix is concentric or not.
Would you please try the following:
#include <stdio.h>
int main() {
int mat[100][100];
int ii[] = {0, 1, 0, -1}; // incremental numbers of i
int jj[] = {1, 0, -1, 0}; // incremental numbers of j
int i, j;
int n;
int u, v, w; // variables to walk on edges
int val; // value of the element
int prev; // previous value in one outer edge
int length; // length of the edge
// read matrix size and values
printf("Enter the number:\n");
scanf("%d", &n);
printf("Enter the matrix:\n");
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
scanf("%d", &mat[i][j]);
}
}
// loop on the edges
for (u = 0; u < n / 2; u++) { // from outmost edge to inner
i = u; j = u; // index of the north west corner
val = mat[u][u]; // initial value to compare
for (v = 0; v < 4; v++) { // four sides
length = n - u * 2 - 1; // length of the edge
for (w = 0; w < length; w++) {
i += ii[v]; // one step ahead on the edge
j += jj[v]; // same as above
if (mat[i][j] != val || (u > 0 && mat[i][j] <= prev)) {
// if u == 0, skip the comparison with prev
printf("No at [%d][%d] (val=%d)\n", i, j, mat[i][j]);
return 1;
}
}
}
prev = mat[i][j];
}
// finally examine the center value (if n is odd number)
if (n % 2) {
if (mat[u][u] <= prev) {
printf("No at [%d][%d] (val=%d)\n", u, u, mat[u][u]);
return 1;
}
}
printf("Yes\n");
return 0;
}
The basic concept is to generate a series of indexes of the edge
such as:
[0, 1], [0, 2], [0, 3], [0, 4],
[1, 4], [2, 4], [3, 4], [4, 4],
[4, 3], [4, 2], [4, 1], [4, 0],
[3, 0], [2, 0], [1, 0], [0, 0]
by using the variables i, j and the arrays ii[], jj[].
The example above is the indexes for the outermost edge and go into
the inner edge in the next iteration. Then the values of the index
is compared with the other value in the same edge and the previous
value in the outer edge.
[Edit]
Here is an alternative which does not use an array other than mat[100][100]:
#include <stdio.h>
int main() {
int mat[100][100];
int i, j;
int ii, jj; // incremental values for i and j
int n;
int u, v, w; // variables to walk on edges
int val; // value of the element
int prev; // previous value in one outer edge
int length; // length of the edge
// read matrix size and values
printf("Enter the number:\n");
scanf("%d", &n);
printf("Enter the matrix:\n");
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
scanf("%d", &mat[i][j]);
}
}
// loop on the edges
for (u = 0; u < n / 2; u++) { // from outmost edge to inner
i = u; j = u; // index of the north west corner
val = mat[u][u]; // initial value to compare
for (v = 0; v < 4; v++) { // four sides
ii = (v & 1) * ((v & 1) - (v & 2));
// assigned to {0, 1, 0, -1} in order
jj = ((v + 1) & 1) * (((v + 1) & 1) - ((v + 1) & 2));
// assigned to {1, 0, -1, 0} in order
length = n - u * 2 - 1; // length of the edge
for (w = 0; w < length; w++) {
i += ii; // one step ahead on the edge
j += jj; // same as above
if (mat[i][j] != val || (u > 0 && mat[i][j] <= prev)) {
// if u == 0, skip the comparison with prev
printf("No at [%d][%d] (val=%d)\n", i, j, mat[i][j]);
return 1;
}
}
}
prev = mat[i][j];
}
// finally examine the center value (if n is odd number)
if (n % 2) {
if (mat[u][u] <= prev) {
printf("No at [%d][%d] (val=%d)\n", u, u, mat[u][u]);
return 1;
}
}
printf("Yes\n");
return 0;
}
I created an answer using more functions than just main(). It is more verbose than what is required for your homework — it prints out the matrix it reads and diagnoses the first problem it comes across. It works with both positive and negative numbers, and with matrices with odd or even numbers of elements.
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
enum { MAT_SIZE = 100 };
static int err_error(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
exit(EXIT_FAILURE);
}
static int err_shell(int r, int c, int a_val, int e_val)
{
printf("Element M[%d][%d] = %d vs expected value %d\n", r, c, a_val, e_val);
return 0;
}
static int check_shell(int shell, int n, int matrix[MAT_SIZE][MAT_SIZE])
{
int lb = shell;
int ub = n - shell - 1;
int val = matrix[lb][lb];
/* Check the horizontals */
for (int c = lb; c <= ub; c++)
{
if (matrix[lb][c] != val)
return err_shell(lb, c, matrix[lb][c], val);
if (matrix[ub][c] != val)
return err_shell(ub, c, matrix[ub][c], val);
}
/* Check the verticals */
for (int r = lb; r <= ub; r++)
{
if (matrix[r][lb] != val)
return err_shell(r, lb, matrix[r][lb], val);
if (matrix[r][ub] != val)
return err_shell(r, ub, matrix[r][ub], val);
}
return 1;
}
static int check_matrix(int n, int matrix[MAT_SIZE][MAT_SIZE])
{
for (int i = 0; i <= n / 2; i++)
{
if (check_shell(i, n, matrix) == 0)
return 0;
}
for (int i = 0; i < (n - 1) / 2; i++)
{
if (matrix[i][i] >= matrix[i+1][i+1])
{
printf("Shell %d has value %d but inner shell %d has value %d\n",
i, matrix[i][i], i+1, matrix[i+1][i+1]);
return 0;
}
}
return 1;
}
static int read_size(void)
{
int n;
if (scanf("%d", &n) != 1)
err_error("failed to read an integer\n");
if (n <= 0 || n > MAT_SIZE)
err_error("matrix size %d is not in the range 1..%d\n", n, MAT_SIZE);
return n;
}
static void read_matrix(int n, int matrix[n][n])
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (scanf("%d", &matrix[i][j]) != 1)
err_error("failed to read M[%d][%d]\n", i, j);
}
}
}
static int max_field_width(int n, int matrix[MAT_SIZE][MAT_SIZE])
{
int min_val = matrix[0][0];
int max_val = matrix[0][0];
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (matrix[i][j] < min_val)
min_val = matrix[i][j];
if (matrix[i][j] > max_val)
max_val = matrix[i][j];
}
}
int fld_width = snprintf(0, 0, "%d", max_val);
if (min_val < 0)
{
int min_width = snprintf(0, 0, "%d", min_val);
if (min_width > fld_width)
fld_width = min_width;
}
return fld_width;
}
static void print_matrix(const char *tag, int n, int matrix[MAT_SIZE][MAT_SIZE])
{
printf("%s (%d):\n", tag, n);
int w = max_field_width(n, matrix) + 1;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
printf("%*d", w, matrix[i][j]);
}
putchar('\n');
}
}
int main(void)
{
int matrix[MAT_SIZE][MAT_SIZE];
int n = read_size();
read_matrix(n, matrix);
print_matrix("Input", n, matrix);
if (check_matrix(n, matrix))
printf("YES: Matrix is a valid concentric matrix\n");
else
printf("NO: Matrix is not a valid concentric matrix\n");
return 0;
}
One detail is that this code can be made to use a VLA (variable-length array) by simply replacing MAT_SIZE by n in each function definition and modifying main() to read:
static int check_shell(int shell, int n, int matrix[n][n]) { … }
static int check_matrix(int n, int matrix[n][n]) { … }
static void read_matrix(int n, int matrix[n][n]) { … }
static int max_field_width(int n, int matrix[n][n]) { … }
static void print_matrix(const char *tag, int n, int matrix[n][n]) { … }
int main(void)
{
int n = read_size();
int matrix[n][n];
read_matrix(n, matrix);
print_matrix("Input", n, matrix);
if (check_matrix(n, matrix))
printf("YES: Matrix is a valid concentric matrix\n");
else
printf("NO: Matrix is not a valid concentric matrix\n");
return 0;
}
This reads the matrix size before allocating the matrix, instead of allocating a fixed size matrix first.
The read_size() function enables this change — that input must be done separately from the main matrix scanning code.
DISCLAIMER:
Described problem looks like a task from a competition. I'm not participating in any of them, I'm not aware about any ongoing competitions, which might involve the problem. If there are any of them, I'll close the question to stay fair!
I have a problem:
given an array A of values and integer K, split A into exactly K non-overlapping contiguous subarrays in such way that difference between a subarray with minimal and a subarray maximum sums is minimal. It is allowed to rotate A by any number in any direction.
Consider an example:
Input: A = [5 1 1 1 3 2], K = 3
Output: [5][1 1 1][3 2], maximum sum = 5, minimum sum = 3, result = 2
I have partially working code (terribly ugly, my bad, but it does not meant to be production quality):
#include <climits>
#include <cstdio>
#include <cstring>
const int max_n = 50;
const int max_k = 20;
int deps[max_n];
int max (int x, int y) {
return x > y ? x : y;
}
int min (int x, int y) {
return x < y ? x : y;
}
int sum (int a[], int start, int end) {
int res = 0;
for (int i = start; i <= end; ++i) res += a[i];
return res;
}
int k_partitioning(int k, int n, int deps[]) {
int res = INT_MAX;
// consider all possible rotations/shifts
for(int offset = 0; offset < n; ++offset) {
for(int l_min = 0; l_min < n; ++l_min) {
for(int r_min = l_min; r_min < n; ++r_min) {
// check minimal sum subarray
int min_sum = sum (deps, l_min, r_min);
int dp[k][n];
for (int s = 0; s < k; ++s) {
for (int q = 0; q < n; ++q) {
dp[s][q] = 0;
}
}
// assuming that current sum is a target sum
dp[0][r_min-l_min] = min_sum;
for(int p = 1; p < k; ++p) {
for(int l_max = 0; l_max < n; ++l_max) {
for(int r_max = 0; r_max < n; ++r_max) {
int max_sum = sum(deps, l_max, r_max);
if (max_sum >= min_sum) dp[p][r_max] = max(dp[p-1][l_max], max_sum);
} // l_maxs
} // r_maxs
} // partitions
// printing dp
// skip incorrect partitioning, when not all K partitions were used
if (dp[k-1][n-1] == 0) continue;
// update difference
res = min (res, dp[k-1][n-1] - min_sum);
} // end min sum seg
} // start min sum seg
//break;
} // cuts
return res;
}
int main(int argc, char* argv[]) {
int k = 0;
scanf("%d", &k);
int n = 0;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d", &deps[i]);
}
printf ("%d\n", k_partitioning(k, n, deps));
return 0;
}
The idea is simple: assume that current partition has minimal sum, enumerate all possible maximal partitions, setup dynamic programming for generating maximum sum with minimal value, check for difference. Total complexity: O(K*N^4).
My problem is that it fails some tests and I'm stuck with troubleshooting it. Could someone help me with it?
Failed test, for example:
N = 4, K = 2, A = [6 13 10 2]
UPDATE
This version should fix some previous issues. First, it removes wasteful loop over "offsets" and adds just an array rotation in the end of l_min loop. Second, I've noticed, that dp can't be initialized with 0 - this is minimization task, so it should be initialized with some large value (depends on a problem's constants, max_value here already is out of value domain). Finally, intervals should not overlap anymore - each sum exclude left end of an interval. However, it still does not produce expected results.
#include <climits>
#include <cstdio>
#include <cstring>
const int max_value = 200000;
const int max_n = 50;
const int max_k = 20;
int deps[max_n];
int max (int x, int y) {
return x > y ? x : y;
}
int min (int x, int y) {
return x < y ? x : y;
}
int sum (int a[], int start, int end) {
int res = 0;
for (int i = start; i <= end; ++i) res += a[i];
return res;
}
int k_partitioning(int k, int n, int deps[]) {
int res = max_value;
for(int l_min = 0; l_min < n; ++l_min) {
for(int r_min = l_min; r_min < n; ++r_min) {
int min_sum = sum (deps, l_min+1, r_min);
int dp[k][n];
for (int s = 0; s < k; ++s) {
for (int q = 0; q < n; ++q) {
dp[s][q] = max_value;
}
}
// assuming that current sum is a target sum
dp[0][r_min-l_min] = min_sum;
for(int p = 1; p < k; ++p) {
for(int l_max = 0; l_max < n; ++l_max) {
for(int r_max = l_max; r_max < n; ++r_max) {
int max_sum = sum(deps, l_max+1, r_max);
if (max_sum >= min_sum) dp[p][r_max] = max(dp[p-1][l_max], max_sum);
} // l_maxs
} // r_maxs
} // partitions
// skip incorrect partitioning, when not all K partitions were used
if (dp[k-1][n-1] == max_value) continue;
// update difference
res = min (res, dp[k-1][n-1] - min_sum);
} // end min sum seg
// rotate an array to consider different starting points
int tmp[n];
for (int i = 0; i < n; ++i) {
int new_idx = i + n + 1;
tmp[new_idx % n] = deps[i];
}
for(int i = 0; i < n; ++i) deps[i] = tmp[i];
} // start min sum seg
return res;
}
int main(int argc, char* argv[]) {
int k = 0;
scanf("%d", &k);
int n = 0;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d", &deps[i]);
}
printf ("%d\n", k_partitioning(k, n, deps));
return 0;
}
Ok, I think I did it!
The idea is following: we assume that minimum sum interval always starts from 0. Then we start to enumerate maximum sum intervals, starting from the right boundary of the minimal interval. We build DP problem for current max interval to determine a minimum maximal sum. After that you update result and rotate an array by one.
My code is not perfect in a way that I compute current sums each iteration. One can pre-compute them and just index them each time.
This code might have some bugs, but it passes all test that I have.
#include <climits>
#include <cstdio>
#include <cstring>
const int max_value = 200000;
const int max_n = 50;
const int max_k = 20;
int deps[max_n];
int max (int x, int y) {
return x > y ? x : y;
}
int min (int x, int y) {
return x < y ? x : y;
}
int sum (int a[], int start, int end) {
int res = 0;
for (int i = start; i <= end; ++i) res += a[i];
return res;
}
int k_partitioning(int k, int n, int deps[]) {
int res = max_value;
for(int offset = 0; offset < n; ++offset) {
int l_min = 0;
for(int r_min = l_min; r_min < n; ++r_min) {
int min_sum = sum (deps, l_min, r_min);
int dp[k][n];
for (int s = 0; s < k; ++s) {
for (int q = 0; q < n; ++q) {
dp[s][q] = max_value;
}
}
// assuming that current sum is a target sum
dp[0][r_min-l_min] = min_sum;
for(int p = 1; p < k; ++p) {
for(int l_max = r_min; l_max < n; ++l_max) {
for(int r_max = l_max; r_max < n; ++r_max) {
int max_sum = sum(deps, l_max+1, r_max);
if (max_sum >= min_sum) {
dp[p][r_max] = min(dp[p][r_max], max(dp[p-1][l_max], max_sum));
}
} // l_maxs
} // r_maxs
} // partitions
// skip incorrect partitioning, when not all K partitions were used
if (dp[k-1][n-1] == max_value) continue;
// update difference
res = min (res, dp[k-1][n-1] - min_sum);
} // end min sum seg
int tmp[n];
for (int i = 0; i < n; ++i) {
int new_idx = i + n - 1;
tmp[new_idx % n] = deps[i];
}
for(int i = 0; i < n; ++i) deps[i] = tmp[i];
} // start min sum seg
return res;
}
int main(int argc, char* argv[]) {
int k = 0;
scanf("%d", &k);
int n = 0;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d", &deps[i]);
}
printf ("%d\n", k_partitioning(k, n, deps));
return 0;
}
Solution without rotations:
1) Compute max M and total S of the array - O(n)
2) Let there be a function F(P), which returns True if it is possible to get a Sum P or less with k (>= 0) partitions still remaining.
3) Do a binary search on range(M, S) using F. - O(log(S-M))
4) Logic behind F: Fill a bucket till it's not greater than S/K. Then move onto next bucket. If there are still items remaining and no buckets remaining, then the answer is false - O(n)
Time Complexity = O(n) + O(n) * (log(S-M)) = O(n*log(S-M))
Solution with Rotations:
For all rotations in [0, 1, ... N-1], compute min sum.
Total Time Complexity = O(n) * O(nlog(S-M)) = O(n^2*log(S-M))
Now that you've got your code working, here's an alternative method :)
Consider that for each k, we can pair a sum growing from A[i] to the left (sum A[i-j..i]) with all available intervals recorded for f(k-1, i-j-1) and update them - for each interval, (low, high), if the sum is greater than high, then new_interval = (low, sum) and if the sum is lower than low, then new_interval = (sum, high); otherwise, the interval stays the same. For example,
i: 0 1 2 3 4 5
A: [5 1 1 1 3 2]
k = 3
i = 3, j = 0
The ordered intervals available for f(3-1, 3-0-1) = f(2,2) are:
(2,5), (1,6) // These were the sums, (A[1..2], A[0]) and (A[2], A[0..1])
Sum = A[3..3-0] = 1
Update intervals: (2,5) -> (1,5)
(1,6) -> (1,6) no change
Now, we can make this iteration much more efficient by recognizing and pruning intervals during the previous k round.
Watch:
A: [5 1 1 1 3 2]
K = 1:
N = 0..5; Intervals: (5,5), (6,6), (7,7), (8,8), (11,11), (13,13)
K = 2:
N = 0: Intervals: N/A
N = 1: Intervals: (1,5)
N = 2: (1,6), (2,5)
Prune: remove (1,6) since any sum <= 1 would be better paired with (2,5)
and any sum >= 6 would be better paired with (2,5)
N = 3: (1,7), (2,6), (3,5)
Prune: remove (2,6) and (1,7)
N = 4: (3,8), (4,7), (5,6), (5,6)
Prune: remove (3,8) and (4,7)
N = 5: (2,11), (5,8), (6,7)
Prune: remove (2,11) and (5,8)
For k = 2, we are now left with the following pruned record:
{
k: 2,
n: {
1: (1,5),
2: (2,5),
3: (3,5),
4: (5,6),
5: (6,7)
}
}
We've cut down the iteration of k = 3 from a list of n choose 2 possible splits to n relevant splits!
The general algorithm applied to k = 3:
for k' = 1 to k
for sum A[i-j..i], for i <- [k'-1..n], j <- [0..i-k'+1]:
for interval in record[k'-1][i-j-1]: // records are for [k'][n']
update interval
prune intervals in k'
k' = 3
i = 2
sum = 1, record[2][1] = (1,5) -> no change
i = 3
// sums are accumulating right to left starting from A[i]
sum = 1, record[2][2] = (2,5) -> (1,5)
sum = 2, record[2][1] = (1,5) -> no change
i = 4
sum = 3, record[2][3] = (3,5) -> no change
sum = 4, record[2][2] = (2,5) -> no change
sum = 5, record[2][1] = (1,5) -> no change
i = 5
sum = 2, record[2][4] = (5,6) -> (2,6)
sum = 5, record[2][3] = (3,5) -> no change
sum = 6, record[2][2] = (2,5) -> (2,6)
sum = 7, record[2][1] = (1,5) -> (1,7)
The answer is 5 paired with record[2][3] = (3,5), yielding the updated interval, (3,5). I'll leave the pruning logic for the reader to work out. If we wanted to continue, here's the pruned list for k = 3
{
k: 3
n: {
2: (1,5),
3: (1,5),
4: (3,5),
5: (3,5)
}
}
I finally solved this question : Split array into three subarrays, It may help you.
here I'm splitting a array into three sub-array with java.
package com.array2;
public class SplitArray {
public static void main(String[] args) {
// TODO Auto-generated method stub
int a[] = { 1, 2, 3, 5, 4, 6, 9, 8, 15, 52, 4, 6, 89 };
splitArray(a);
}
private static void splitArray(int[] a) {
// TODO Auto-generated method stub
int a_l = a.length;
int[] a1 = new int[a.length / 3];
int[] a2 = new int[a.length / 3];
int[] a3 = new int[a.length / 3 + a.length % 3];
for (int i = 0; i < a3.length; i++) {
if (i < a1.length) {
a1[i] = a[i];
a2[i] = a[a1.length + i];
a3[i] = a[a1.length + a2.length + i];
} else {
a3[i] = a[a1.length + a2.length + i];
}
}
}
}
I want to check if an array has number with discending order.
I can realize bubble sorting algorithm but I wonder how I can check if an array has numbers inside with discending order.
I want to get '1' if an array has numbers with discending numbers and '0' if the array is in the opposite case.
Here is a bubble sorting algorithm that I know :
for(int s = 0; s < num - 1; s++) {
for(int t = s + 1; t < num; t++) {
if(test[t] > test[s]) { // ascending order
int tmp = test[t];
test[t] = test[s];
test[s] = tmp;
}
}
}
Here is the example input and output.
example1)
1, 2, 3, 4, 5
0
example2)
5, 4, 3, 2, 1
1
example3)
5, 4, 3, 2, 1, 5, 6
0
you question is unclear,do you mean to check assending/descending order like follow
1 2 3 4 5 //asending
5 4 3 2 1 //descending
or
123 356 289 145 789 //asending within individual numbers
987 541 982 653 321 //descending within individual numbers
As it is case 1: (checking for descending order )
for(int i=0;i<4;i++){ //5 being the size in the example i<5-1
if(test[i]<test[i+1]){
return 0; //will return 0 if there are ascending no/mixed no
}
}
return 1; //if all goes well , i.e meaning descending order will return 1
Full code
#include <iostream>
using namespace std;
int func(int arr[]){
for (int i = 0; i<4; i++) { //5 being the size in the example i<5-1
if (arr[i]<arr[i + 1]) {
return 0; //will return 0 if there are ascending no/mixed no
}
}
return 1;
}
int main()
{
int arr[100];
cout << "enter elements" << endl;
for (int i = 0; i < 5; i++) {
cin >> arr[i];
}
cout << "result= " << func(arr) << endl;
return 0;
}
I don't know why you want to sort your array only for checking if the numbers are descending. Just go through your array and if element n is smaller than the n+1th element (then it's ascending) set the flag and step out of the loop.
int isDescending = 1;
int num = 10; //number of items in your Array
for(int n = 0; n < (num - 1); n++) {
if (test[n] < test[n + 1]) {
isDescending = 0;
break;
}
}
Put a flag in it
Like
int k=0;
for(int s = 0; s < num - 1; s++) {
for(int t = s + 1; t < num; t++) {
if(test[t] > test[s]) { // ascending order
int tmp = test[t];
test[t] = test[s];
test[s] = tmp;
k=1;
}
}
}
if(k==1)
cout<<"\n\tThe series was not in descending order.";
I am trying to print an array in order to the even strings print backwards but the not even string in usual way. What do I do wrong with it?
For example:
1 0 3
9 7 3
5 7 8
and I need it:
1 0 3
3 7 9
5 7 8
But I also have a problem with filling an array in spiral way; how should I take a center of an array? Please, could you give an idea — how should I do this? And the array must be square. For example:
1 2 3
4 5 6
7 8 9
but I need it:
3 2 9
4 1 8
5 6 7
My code so far:
#include <stdio.h>
#include <stdlib.h>
int main()
{
int a[10][10],n,m,i,j;
printf("Enter m: ");
scanf("%d",&m);
printf("Enter n: ");
scanf("%d",&n);
for(i=0;i<m;i++){
for(j=0;j<m;j++){
printf("a[%d][%d]: ",i+1,j+1);
scanf("%d",&a[i][j]);
}
}
// in usual order
for(i=0;i<m;i++){
for(j=0;j<n;j++){
printf("%d ",a[i][j]);
}
printf("\n");
}
for(i=0;i<m;i++){
for(j=0;j<n;j++){
if(i%2 != 0){
printf("%d ",a[i][j]);
}
else {
printf("%d ",a[n-i+1][j]);
}
}
printf("\n");
}
return 0;
}
example of filling an array in spiral
#include <stdio.h>
#include <string.h>
typedef enum {
N, W, S, E
} Dir;
typedef struct walker {
int row, col;
Dir dir;
int steps;
} Walker;
Walker go_forward(Walker walker){
switch(walker.dir){
case N:
walker.row -= 1;
break;
case W:
walker.col -= 1;
break;
case S:
walker.row += 1;
break;
case E:
walker.col += 1;
break;
}
return walker;
}
Walker proceed_left(Walker walker){
walker.dir = (walker.dir + 1) % 4;//turn left
walker = go_forward(walker);
return walker;
}
int main(void){
int n;
for(;;){
printf("Enter n(0 < n < 10): ");fflush(stdout);
int ret_s = scanf("%d", &n);
if(ret_s == 1){
if(0 < n && n < 10)
break;
} else if(ret_s == 0)
while(getchar() != '\n');//clear input
else //if(ret_s == EOF)
return 0;
}
int a[n][n];
memset(a, 0, sizeof(a));//zero clear
Walker walker = { .row = n / 2, .col = n / 2, .dir = E, .steps = 0 };
for(;;){
walker.steps += 1;
a[walker.row][walker.col] = walker.steps;
if(walker.steps == n * n)//goal
break;
Walker left = proceed_left(walker);
if(a[left.row][left.col] == 0)//left side is vacant
walker = left;
else
walker = go_forward(walker);
}
for(int r = 0; r < n; ++r){
for(int c = 0; c < n; ++c){
if(c)
putchar(' ');
printf("%2d", a[r][c]);
}
puts("");
}
}
Here is a program that includes the function spiral_fill(), which fills a square array with sequential ints, starting from 1 at the center, and proceeding in a counter-clockwise spiral. The function fills the array by first storing a 1 in the center, then filling the L-shaped region above and to the left, then below and to the right, and continuing until the array is filled.
#include <stdio.h>
#define ARR_SZ 3
void spiral_fill(size_t arr_sz, int arr[arr_sz][arr_sz]);
void print_arr(size_t rows, size_t cols, int arr[rows][cols]);
int main(void)
{
int test_arr[ARR_SZ][ARR_SZ];
spiral_fill(ARR_SZ, test_arr);
print_arr(ARR_SZ, ARR_SZ, test_arr);
return 0;
}
void spiral_fill(size_t arr_sz, int arr[arr_sz][arr_sz])
{
int center = arr_sz / 2;
int current = center;
int start_col, stop_col, start_row, stop_row;
size_t layer = 0;
int next_val = 1;
arr[center][center] = next_val++;
++layer;
while (layer < arr_sz) {
if (layer % 2) { // For odd layers, fill upper L
current -= layer;
start_col = center + layer / 2;
stop_col = center - (layer + 1) / 2;
for (int j = start_col; j >= stop_col; j--) {
arr[current][j] = next_val++;
}
start_row = center - layer / 2;
stop_row = center + layer / 2;
for (int i = start_row; i <= stop_row; i++) {
arr[i][current] = next_val++;
}
++layer;
} else { // For even layers, fill lower L
current += layer;
start_col = center - layer / 2;
stop_col = center + layer / 2;
for (int j = start_col; j <= stop_col; j++) {
arr[current][j] = next_val++;
}
start_row = center + (layer - 1) / 2;
stop_row = center - layer / 2;
for (int i = start_row; i >= stop_row ; i--) {
arr[i][current] = next_val++;
}
++layer;
}
}
}
void print_arr(size_t rows, size_t cols, int arr[rows][cols])
{
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
printf("%-5d ", arr[i][j]);
}
putchar('\n');
}
}
Here is a 3X3 array:
3 2 9
4 1 8
5 6 7
Here is a 6X6 array:
31 30 29 28 27 26
32 13 12 11 10 25
33 14 3 2 9 24
34 15 4 1 8 23
35 16 5 6 7 22
36 17 18 19 20 21
I am working on a project where at one point I am stuck.
My question is for example I have the following 2D array containing 3 different integers.
2 2 2 2 1
1 2 2 2 1
3 3 2 3 2
3 1 3 3 1
1 1 2 3 1
1 3 1 3 3
What I want is to find the longest adjacent elements chain of array of any number contained in the array.
Like in the above array the longest chain is of digit 2.
2 2 2 2
2 2 2
2
Can anyone just guide me as to what I have to do to achieve this goal?
Easier to draw than to explain...
2 2 2 2 1 => A A A A B => (A: 4, B: 1)
1 2 2 2 1 => C A A A B => (A: 3 + 4, B: 1 + 1, C: 1)
3 3 2 3 2 => D D A E F => (A: 1 + 7, B: 2, C: 1, D: 2, E: 1, F: 1)
3 1 3 3 1 => D G E E G => (A: 8, B: 2, C: 1, D: 2 + 1, E: 2 + 1, F: 1, G: 1)
1 1 2 3 1 => ...
1 3 1 3 3 => ...
update:
And now, with some real code:
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#define ROWS 6
#define COLS 5
unsigned char eles[ROWS][COLS] = { { 2, 2, 2, 2, 1 },
{ 1, 2, 2, 2, 1 },
{ 3, 3, 2, 3, 2 },
{ 3, 1, 3, 3, 1 },
{ 1, 1, 2, 3, 1 },
{ 1, 3, 1, 3, 3 } };
struct zone {
int acu;
int row, col;
int refs;
};
typedef struct zone zone;
zone *
new_zone(int row, int col) {
zone *z = (zone *)malloc(sizeof(zone));
z->col = col;
z->row = row;
z->refs = 1;
z->acu = 0;
}
void croak (const char *str) {
fprintf(stderr, "error: %s\n", str);
exit(1);
}
void
free_zone(zone *z) {
if (z->refs != 0) croak("free_zone: reference count is not cero");
free(z);
}
zone *
ref_zone(zone *z) {
z->refs++;
return z;
}
void
unref_zone(zone *z) {
z->refs--;
if (!z->refs) free_zone(z);
}
int
main() {
zone *last[COLS];
zone *current[COLS];
zone *best = new_zone(0, 0);
int i, j;
memset(last, 0, sizeof(last));
for (j = 0; j < ROWS; j++) {
for (i = 0; i < COLS; i++) {
unsigned int ele = eles[j][i];
zone *z;
/* printf("analyzing ele: %d at row %d, col: %d\n", ele, j, i); */
if (i && (ele == eles[j][i-1])) {
/* printf(" equal to left element\n"); */
z = ref_zone(current[i-1]);
if (j && (ele == eles[j-1][i])) {
zone *z1 = last[i];
/* printf(" equal to upper element\n"); */
if (z != z1) {
int k;
/* printf(" collapsing zone %p\n", z1); */
z->acu += z1->acu;
for (k = 0; k < COLS; k++) {
if (last[k] == z1) {
last[k] = ref_zone(z);
unref_zone(z1);
}
}
for (k = 0; k < i; k++) {
if (current[k] == z1) {
current[k] = ref_zone(z);
unref_zone(z1);
}
}
}
}
}
else if (j && (ele == eles[j-1][i])) {
/* printf(" equal to upper element\n"); */
z = ref_zone(last[i]);
}
else {
/* printf(" new element\n"); */
z = new_zone(j, i);
}
z->acu++;
current[i] = z;
/* printf(" element zone: %p\n", z); */
}
for (i = 0; i < COLS; i++) {
if (j) unref_zone(last[i]);
last[i] = current[i];
if (best->acu < current[i]->acu) {
unref_zone(best);
best = ref_zone(current[i]);
/* printf("best zone changed to %p at row; %d, col: %d, acu: %d\n", best, best->row, best->col, best->acu); */
}
}
}
printf("best zone is at row: %d, col: %d, ele: %d, size: %d\n", best->row, best->col, eles[best->row][best->col], best->acu);
}
Suppose your matrix is a graph, and the elements are vertices. Two vertices are connected if they are adjacent and have the same value. If you perform any search in that graph, be it Breadth-First Search or Depth-First Search, you'll get exactly what you want. HTH
You could treat this like a picture in a paint application. Perform a flood-fill on each element in your 2D array (unless its filled already by something else) and keep track how many pixels you filled in each step.
If your array is declared like
int elements[5][5];
Then introduce a second array which tells whether you filled an element already (if you like, use a different type like bool if thats's okay in your C program):
int pixelFilled[5][5];
memset( pixelFilled, 0, sizeof( pixelFilled ) );
Next, write a recursive function which performs a flood fill and returns the numbers of elements which were filled (I'm writing this from the top of my head, no guarantee whatsoever that this function works as it is):
int floodFill( int x, int y ) {
int filledPixels = 0;
if ( !pixelFilled[x][y] ) {
++filledPixels;
pixelFilled[x][y] = 1;
} else {
return 0;
}
if ( x < 4 && elements[x+1][y] == elements[x][y] )
filledPixels += floodFill( x + 1, y );
if ( x > 0 && elements[x-1][y] == elements[x][y] )
filledPixels += floodFill( x - 1, y );
if ( y < 4 && elements[x][y+1] == elements[x][y] )
filledPixels += floodFill( x, y + 1 );
if ( y > 0 && elements[x][y-1] == elements[x][y] )
filledPixels += floodFill( x, y - 1 );
return filledPixels;
}
Finally, iterate over your array and try to fill it completely. Keep track of the largest filled array:
int thisArea = 0;
int largestArea = 0;
int x, y;
for ( y = 0; y < 5; ++y ) {
for ( x = 0; x < 5; ++x ) {
thisArea = floodFill( x, y );
if (thisArea > largestArea ) {
largestArea = thisArea;
}
}
}
Now, largestArea should contain the size of the longest chain of adjacent elements.
define another 2d array of the same size, initialize all cells to 0
set maxval to 0
if helper array is full of 1's go to 5, otherwise find a cell with 0 and do:
3.1 change value of the cell to 1
3.2 set a counter to 1
3.3 check all adjacent cells, if they're 0 in the helper array and the same value as current cell in the input array then counter++ and go to 2.1 with new coordinates.
maxval = max(maxval,counter), go to 3
return maxval
steps 3.1-3.3 should be implemented as a recursive function which takes coordinate and both arrays as arguments and returns 1+the sum of the returned values from the recursive calls.
I love this kind of problems :-) so here it is my answer.
As said by Frerich Raabe, this can be solved with a floodFill function. For example, opencv library would provide such a function off the shelf.
Please forgive me if in the following code you'll find traces of C++, in case they should be simple to be replaced.
typedef struct Point {
int x;
int y;
} Point;
int areaOfBiggestContiguousRegion(int* mat,int nRows, int nCols) {
int maxArea = 0;
int currValue, queueSize, queueIndex;
int* aux;
Point queue[1000]; //Stores the points I need to label
Point newPoint, currentPoint;
int x,y,x2,y2;
//Code: allocate support array aux of same size of mat
//Code: fill aux of zeros
for (y = 0; y < nRows; y++)
for (x = 0; x < nCols; x++)
if (aux[y * nCols + x] == 0) {//I find a pixel not yet labeled, my seed for the next flood fill
queueIndex = 0; //Contains the index to the next element in the queue
queueSize = 0;
currValue = mat[y * nCols + x]; //The "color" of the current spot
aux[y * nCols + x] = 1;
newPoint.x = x;
newPoint.y = y;
queue[queueSize] = newPoint;
queueSize++;
while(queueIndex != queueSize) {
currPoint = queue[queueIndex];
queueIndex++;
//Look left, right, up, down
x2 = currPoint.x - 1;
y2 = currPoint.y;
//Some copy & paste, sorry I have been too long on C++ to remember correctly about C functions
if (x2 >= 0 && aux[y2 * nCols + x2] == 0 && mat[y2 * nCols + x2] == currValue) {
aux[y2 * nCols + x2] = 1;
newPoint.x = x2;
newPoint.y = y2;
queue[queueSize] = newPoint;
queueSize++;
}
x2 = currPoint.x + 1;
y2 = currPoint.y;
//Some copy & paste, sorry I have been too long on C++ to remember correctly about C functions
if (x2 < nCols && aux[y2 * nCols + x2] == 0 && mat[y2 * nCols + x2] == currValue) {
aux[y2 * nCols + x2] = 1;
newPoint.x = x2;
newPoint.y = y2;
queue[queueSize] = newPoint;
queueSize++;
}
x2 = currPoint.x;
y2 = currPoint.y - 1;
//Some copy & paste, sorry I have been too long on C++ to remember correctly about C functions
if (y2 >= 0 && aux[y2 * nCols + x2] == 0 && mat[y2 * nCols + x2] == currValue) {
aux[y2 * nCols + x2] = 1;
newPoint.x = x2;
newPoint.y = y2;
queue[queueSize] = newPoint;
queueSize++;
}
x2 = currPoint.x;
y2 = currPoint.y + 1;
//Some copy & paste, sorry I have been too long on C++ to remember correctly about C functions
if (y2 < nRows && aux[y2 * nCols + x2] == 0 && mat[y2 * nCols + x2] == currValue) {
aux[y2 * nCols + x2] = 1;
newPoint.x = x2;
newPoint.y = y2;
queue[queueSize] = newPoint;
queueSize++;
}
} //while
if (queueSize > maxArea)
maxArea = queueSize; //If necessary we could store other details like currentValue
}//if (aux...
return maxArea;
}
Note: In C++ using std containers and a constructor for Point it becomes much more compact