Load Testing a Database attached to a Network storage device - sql-server

We are looking at stress testing a NAS system for a Database, basically was want to see how much abuse it can take and how much it affects the Database performance. here is what we have planed
I have a test Tool I'm building that will kickoff a configurable number of
threads that run a sql query (also configurable, and thinking about
having it able to run multiple quires)
using the SQLIOSim utility to simulate SQL Server activity
Copying very large amounts of Data onto and off of the device (at the same time)
Can anyone think of anything else we could do (that's repeatable) for placing a load on the system.

You'll also want to simulate network conditions between your database and the NAS. As more traffic hits a network, its realizable utilization drops, and this will seriously affect your performance.
By way of example. If you have 50 machines on a 1Gbps network and the network is approaching 100% utilization, packet collisions and retries at the data link layer mean that your effective total transfer is a fraction of the network potential that would be realized if you had only two communicators on the net. Worse yet, as retries increase, so does effective load. You get an ugly feedback loop in the face of peak demand.
There are a number of network traffic simulators and generators out there, though I'm afraid I've never used any of them.

You could look at Pole Position, a generic database performance testing suite.
http://www.polepos.org/

Depending on the goals you wish to achieve with your load testing you may also want to look at using SQLIO & not just SQLIOSim. SQLIOSim is very good for stress testing & simulating SQL Server load & will go from green to red if it detects any IO errors. It's output is a bit cryptic though although KKline gives some insight.
SQLIO is useful if you want to perform one operation continuously such as large random reads, or large sequential writes & anything in between. It will also give you some useful output stats which you can graph & use as a comparison.

You can try IoMeter from Intel

Related

How to gear towards scalability for a start up e-commerce portal?

I want to scale an e-commerce portal based on LAMP. Recently we've seen huge traffic surge.
What would be steps (please mention in order) in scaling it:
Should I consider moving onto Amazon EC2 or similar? what could be potential problems in switching servers?
Do we need to redesign database? I read, Facebook switched to Cassandra from MySql. What kind of code changes are required if switched to Cassandra? Would Cassandra be better option than MySql?
Possibility of Hadoop, not even sure?
Any other things, which need to be thought of?
Found this post helpful. This blog has nice articles as well. What I want to know is list of steps I should consider in scaling this app.
First, I would suggest making sure every resource served by your server sets appropriate cache control headers. The goal is to make sure truly dynamic content gets served fresh every time and any stable or static content gets served from somebody else's cache as much as possible. Why deliver a product image to every AOL customer when you can deliver it to the first and let AOL deliver it to all the others?
If you currently run your webserver and dbms on the same box, you can look into moving the dbms onto a dedicated database server.
Once you have done the above, you need to start measuring the specifics. What resource will hit its capacity first?
For example, if the webserver is running at or near capacity while the database server sits mostly idle, it makes no sense to switch databases or to implement replication etc.
If the webserver sits mostly idle while the dbms chugs away constantly, it makes no sense to look into switching to a cluster of load-balanced webservers.
Take care of the simple things first.
If the dbms is the likely bottle-neck, make sure your database has the right indexes so that it gets fast access times during lookup and doesn't waste unnecessary time during updates. Make sure the dbms logs to a different physical medium from the tables themselves. Make sure the application isn't issuing any wasteful queries etc. Make sure you do not run any expensive analytical queries against your transactional database.
If the webserver is the likely bottle-neck, profile it to see where it spends most of its time and reduce the work by changing your application or implementing new caching strategies etc. Make sure you are not doing anything that will prevent you from moving from a single server to multiple servers with a load balancer.
If you have taken care of the above, you will be much better prepared for making the move to multiple webservers or database servers. You will be much better informed for deciding whether to scale your database with replication or to switch to a completely different data model etc.
1) First thing - measure how many requests per second can serve you most-visited pages. For well-written PHP sites on average hardware it must be in 200-400 requests per second range. If you are not there - you have to optimize the code by reducing number of database requests, caching rarely changed data in memcached/shared memory, using PHP accelerator. If you are at some 10-20 requests per second, you need to get rid of your bulky framework.
2) Second - if you are still on Apache2, you have to switch to lighthttpd or nginx+apache2. Personally, I like the second option.
3) Then you move all your static data to separate server or CDN. Make sure it is served with "expires" headers, at least 24 hours.
4) Only after all these things you might start thinking about going to EC2/Hadoop, build multiple servers and balancing the load (nginx would also help you there)
After steps 1-3 you should be able to serve some 10'000'000 hits per day easily.
If you need just 1.5-3 times more, I would go for single more powerfull server (8-16 cores, lots of RAM for caching & database).
With step 4 and multiple servers you are on your way to 0.1-1billion hits per day (but for significantly larger hardware & support expenses).
Find out where issues are happening (or are likely to happen if you don't have them now). Knowing what is your biggest resource usage is important when evaluating any solution. Stick to solutions that will give you the biggest improvement.
Consider:
- higher than needed bandwidth use x user is something you want to address regardless of moving to ec2. It will cost you money either way, so its worth a shot at looking at things like this: http://developer.yahoo.com/yslow/
- don't invest into changing databases if that's a non issue. Find out first if that's really the problem, and even if you are having issues with the database it might be a code issue i.e. hitting the database lots of times per request.
- unless we are talking about v. big numbers, you shouldn't have high cpu usage issues, if you do find out where they are happening / optimization is worth it where specific code has a high impact in your overall resource usage.
- after making sure the above is reasonable, you might get big improvements with caching. In bandwith (making sure browsers/proxy can play their part on caching), local resources usage (avoiding re-processing/re-retrieving the same info all the time).
I'm not saying you should go all out with the above, just enough to make sure you won't get the same issues elsewhere in v. few months. Also enough to find out where are your biggest gains, and if you will get enough value from any scaling options. This will also allow you to come back and ask questions about specific problems, and how these scaling options relate to those.
You should prepare by choosing a flexible framework and be sure things are going to change along the way. In some situations it's difficult to predict your user's behavior.
If you have seen an explosion of traffic recently, analyze what are the slowest pages.
You can move to cloud, but EC2 is not the best performing one. Again, be sure there's no other optimization you can do.
Database might be redesigned, but I doubt all of it. Again, see the problem points.
Both Hadoop and Cassandra are pretty nifty, but they might be overkill.

Performance Testing - How much data should I create

I'm very new to performance engineering, so I have a very basic question.
I'm working in a client-server system that uses SQL server backend. The application is a huge tax-related application that requires testing performance at peak load. Meaning that there should be like 10 million tax returns in the system when we run scenarios related to creating tax returns and submitting them. Then there will also be proportional number of users that need to be created.
Now I'm hearing in meetings that we need to create 10 million records to test performance and run scenarios with 5000 users and I just don't think it is feasible.
When one talks about creating a smaller dataset and extrapolating the performance planning, a very common answer I hear is that we need to 10 million records because we cannot tell from a smaller data set how the database or network will behave.
So how does one plan capacity and test performance on large enterprise application without creating peak level of data or running peak number of scenarios?
Thanks.
Personally, I would throw as much data and traffic at it as you can. Forget what traffic you "think you need to handle". And just see how much traffic you CAN handle and go from there. Knowing the limits of your system is more valuable than simply knowing it can handle 10 million records.
Maybe it does handle 10 million, but at 11 million it dies a horrible death. Or maybe it's well written and will scale to 100 million before it dies. There's a very distinct difference between the two even though both pass the "10 million test"
Now I'm hearing in meetings that we need to create 10 million records to test performance and run scenarios with 5000 users and I just don't think it is feasible.
Why do you think so?
Of course you can (and should) test with limited amounts of data, but you also really, really need to test with a realistic load, which means testing with the amount (and type) of data that you will use in production.
This is just a special case of a general rule: For system or integration testing, you need to test in a scenario that is as close as possible to production; ideally you just copy/clone a live production system, data, config and all and use that for testing. That is actually what we do (if we technically can and the client agrees). We just run a few SQL scripts to randomize personal data in the test data set, so prevent privacy concerns.
There are always issues that crop up because production data is somehow different from what you tested on, and this is the only way to prevent (or at least limit) these problems.
I've planned and implemented reporting and imports, and they invariably break or misbehave the first time they're exposed to real data, because there are always special cases or scaling problems you didn't expect. You want that breakage to happen during development, not in production :-).
In short:
Bite the bullet, and (after having done all the tests with "toy data"), get a realistic dataset to test on. If you don't have the hardware to handle that, then you don't have the right hardware for your tests :-).
I would take a look at Redgate's SQL Data Generator. It does a good job of generating representative data.
Have a peek at "The art of application performance testing / Ian Molyneaux, O’Reilly, 2009".
Your test data is ideally a realistic variety of records. But for first approximations you could have just a few unique records, and duplicate them until you have the desired size. Then use ApacheBench to roughly approximate the traffic.
To help generate data look at ruby faker and perl data faker. I have had good luck with it in generating large data sets for testing. SQL generator from redgate is good too.

What is the Speed Difference Between Database and Web Service Calls?

All things being equal, and in the most simple form, which is faster?
1.) A call to a web service method
2.) A call to a database
For example, assume that you have a simple web service that just returns an integer that is calculated in X time. You also have a database that, when queried in th right way, also takes X time to calculate the answer. (So the compute time is the same in both cases) In both cases, assume the amount of data both directions is the same, say, a single 32-bit integer, for simplicity.
Thus far, the calculation times of both the web service and the database are exactly the same.
The environment is 1 application server, where the app resides, and 1 other server that is holding both the web service and the database. There is nothing else going on in the environment other than the application calling either the web service or database repeatedly. This all within one single LAN, so any network latency is equal.
From an application, which will be faster, the call to the database, or the call to the web service?
What I am trying to isolate, I guess, is which is more heavy-weight. Does the set up, open, close, tear down of a database connection end up slower than that for a web service, or is it the same? Additionally, if there are other things, such as parsing the result from a web service, how do they affect the speed?
O(1) doesn't refer to any length of time. A single operation could take .001 ms on a webservice and 100 seconds in a database and they both could be using O(1) functions:
http://en.wikipedia.org/wiki/Big_O_notation
It's hard to know quite what you're asking. If you're asking whether accessing a local database is generally faster than accessing a similar service over the internet, then I expect that, generally, the answer is that the local database will be faster. The call over the internet to the web service has a lot of overhead and communication over internet is relatively slow. Evan on a slow computer a databases can perform many thousands of simple queries per second. Contrast that with access over the internet, where you'd be lucky to get 50 round trip requests per second, not even accounting for time it takes to perform the requested operation on the server.
If you're asking whether a server on the web can serve data faster by avoiding a database and calculating results directly, then the answer is it depends. The call to the database in this case adds unnecessary overhead if the data in it can be easily calculated in a stand-alone function. The answer to this question doesn't really have anything to do with a "web service". Is it faster to calculate an answer in a function or to access the answer using a query on a database? As I said, the answer would depend on the complexity of the particular function you had to use, and weighing its computation time against the overhead of accessing the answer (or part of the answer) directly from a database.
In short, the answer to your question depends on what exactly you're asking. It would also probably help to know why you're asking the question. I have a suspicion that the real answer is that this probably isn't something you need to worry about, not really a practical concern unless you have a particular situation requiring optimization.
If you're concerned about comparison of speed when webservice and database are both on a lan, I'm pretty sure the overhead of the db is a less than the webservice. The application typically maintains a stateful connection(s) to the db, while requests to a webservice are via http, which is stateless, relatively higher overhead, and slower. Could be wrong, though. Best answer would be to whip up a simple webservice, query, and (1) measure time it takes to retrieve results using both methods, and compare, and/or (2) create an app that opens a lot of threads and do some load testing.
A caveat: If your app doesn't maintain an open connection or have access to a pool of connections with the db, then the db alternative may well be slower. Initial creation of a db connection can be relatively slow. But that shouldn't figure into things, since you should write your app so that an open connection is always maintained.
Based on practical experience, I would say that the database call is significantly faster.
It all depends on the network topology and languages you're using. If you're talking C#...my money would be on the database call being faster almost every time.
Your calls to the database server are going to be made over the native protocol. Everything is going to be optimized.
If you're calling a web service, you're going to need some mechanism to send the request to the web server, wait for the web server to respond, and then something to parse the result of the web service call back into your code.
One could say that generally, latency of the network in a web service (which will typically be over the internet) is going to be slower than the call to a database (which is typically on a LAN or something, which is faster than one's connection to the internet).
Of course, this makes a LOT of assumptions about setups/software/etc, etc which effectively reduces it to an apples and oranges comparison, which there is never a good answer for.
O(1) doesn't specify the speed, it specifies the 'growth' in time required as the underlying data gets larger. The constants are dropped from the equation. What this means is that O(N^2) can be less than O(N) for some really small N.
A web service is a way to connect to some functionality. Besides the network latency, the real time is bound by what the service is actually doing. There could be a database underneath for example. If it is something that just returns an Integer, the computational time is mostly trivial, the request is bounded by the network.
A database needs to parse the query, build a query tree, optimized it, then apply some search algorithms against a series of caches and files. If you just plopped an Integer into a trivial table, or a tableless SQL call, then fetching the data is probably trivial, its the whole transactional packaging that will eat CPU.
Can you get a packet back and forth to a server before you can parse trivial SQL and punch back a tabled result? Mostly, these days I say it was a toss up. Some networks are faster than others, while some databases and servers are pretty good. Nothing is certain.
In general, is a web service faster than a database? Yes, if and only if the service is trivial (if it's hiding a database, then it's obviously just additional time). Databases are big bulky engines, and while they've gotten much faster over the years, their base level of transactional integrity specifies an awful lot of minimum CPU usage. They're slower because they are doing so much more work. Contrast that with some explicit minimal computation hidden behind network access. A fibber or gigabit network can rapidly move data. It's just so much less work to get accomplished.
Of course the reason we don't replace databases with custom written web services is time. It takes too long to write it, and then keep it up to date. Way more effort than just slamming it into a database and accepting it's performance.
Paul.
IMHO I would say the database call would be faster hands down. I say this because there is much less overhead. With the verbosity of the HTTP protocol and SOAP markup incurred you have a lot more bloat in your data. This bloat data has extra cost for packaging and un-packaging. with a stored procedure call you could use an output parameter to return a single int instead of a result set to make it even lighter.
Algorithmic complexity is just one variable that impacts the overall performance of a system. Other factors might include network latency or network bandwidth, especially when the size of the returned data is different.
If you run the same O(1) algorithm on a local machine, you will get the results faster than if you run the algorithm on a machine on another continent and need the same results sent over the network.
Other factors might include raw CPU speed if the calls are done on physically different machines.
That's why premature optimisation is the root of all evil.
EDIT:
I'd say it depends even more now on the details of the system, i.e., what database software you are using, or whether or not your web service is reading data from a static web page or dynamically generating the data.
But I am beginning to lose sight of why you are asking the question. You seem to say that both methods take the same amount of time. So if they take the same amount of time, how can you ask which is faster? Clearly they are equally fast. You need to tell us more about how and when they stop taking the same amount of time.
If we are assuming that you are communicating to a different server for both the web and database calls, wouldn't they be pretty much the same, since both requests are transferred through TCP/IP? The only thing then that could be compared is how big the actual results are that are sent back in terms of bits across the wire.

Quick and dirty way to compare SQL server performance

Further to my previous question about the Optimal RAID setup for SQL server, could anyone suggest a quick and dirty way of benchmarking the database performance on the new and old servers to compare them? Obviously, the proper way would be to monitor our actual usage and set up all sorts of performance counters and capture the queries, etc., but we are just not at that level of sophistication yet and this isn't something we'll be able to do in a hurry. So in the meanwhile, I'm after something that would be a bit less accurate, but quick to do and still better than nothing. Just as long as it's not misleading, which would be worse than nothing. It should be SQL Server specific, not just a "synthetic" benchmark. It would be even better if we could use our actual database for this.
Measure the performance of your application itself with the new and old servers. It's not necessarily easy:
Set up a performance test environment with your application on (depending on your architecture this may consist of several machines, some of which may be able to be VMs, but some of which may not be)
Create "driver" program(s) which give the application simulated work to do
Run batches of work under the same conditions - remember to reboot the database server between runs to nullify effects of caching (Otherwise your 2nd and subsequent runs will probably be amazingly fast)
Ensure that the performance test environment has enough hardware machines in to be able to load the database heavily - this may mean swapping out some VMs for real hardware.
Remember to use production-grade hardware in your performance test environment - even if it is expensive.
Our database performance test cluster contains six hardware machines, several of which are production-grade, one of which contains an expensive storage array. We also have about a dozen VMs on a 7th simulating other parts of the service.
you can always insert, read, and delete a couple of million rows - it's not a realistic mix of operations but it should strain the disks nicely...
Find at least a couple of the queries that are taking some time, or at least that you suspect are taking time, insert a lot of data if you don't have it already, and run the queries having set:
SET STATISTICS IO ON
SET STATISTICS TIME ON
SET STATISTICS PROFILE ON
Those should give you a rough idea of the resources being consumed.
You can also run SQL Server Profiler to get a general idea of what queries are taking a long time and how long they are taking plus other statistics. It outputs a lot of data so try to filter it down a little bit, possibly by long duration or one of the other performance statistics.

What advice can you give me for writing a meaningful benchmark?

I have developed a framework that is used by several teams in our organisation. Those "modules", developed on top of this framework, can behave quite differently but they are all pretty resources consuming even though some are more than others. They all receive data in input, analyse and/or transform it, and send it further.
We planned to buy new hardware and my boss asked me to define and implement a benchmark based on the modules in order to compare the different offers we have got.
My idea is to simply start sequentially each module with a well chosen bunch of data as input.
Do you have any advice? Any remarks on this simple procedure?
Your question is pretty broad, so unfortunately my answer will not be very specific either.
First, benchmarking is hard. Do not underestimate the effort necessary to produce meaningful, repeatable, high-confidence results.
Second, what is your performance goal? Is it throughput (transaction or operations per second)? Is it latency (time it takes to execute a transaction)? Do you care about average performance? Do I care about worst case performance? Do you care about the absolute worst case or I care that 90%, 95% or some other percentile get adequate performance?
Depending on which goal you have, then you should design your benchmark to measure against that goal. So, if you are interested in throughput, you probably want to send messages / transactions / input into your system at a prescribed rate and see if the system is keeping up.
If you are interested in latency, you would send messages / transactions / input and measure how long it takes to process each one.
If you are interested in worst case performance you will add load to the system until up to whatever you consider "realistic" (or whatever the system design says it should support.)
Second, you do not say if these modules are going to be CPU bound, I/O bound, if they can take advantage of multiple CPUs/cores, etc. As you are trying to evaluate different hardware solutions you may find that your application benefits more from a great I/O subsystem vs. a huge number of CPUs.
Third, the best benchmark (and the hardest) is to put realistic load into the system. Meaning, you record data from a production environment, and put the new hardware solution through this data. Getting this done is harder than it sounds, often, this means adding all kinds of measure points in the system to see how it behaves (if you do not have them already,) modifying the existing system to add record/playback capabilities, modifying the playback to run at different rates, and getting a realistic (i.e., similar to production) environment for testing.
The most meaningful benchmark is to measure how your code performs under everyday usage. That will obviously provide you with the most realistic numbers.
Choose several real-life data sets and put them through the same processes your org uses every day. For extra credit, talk with the people that use your framework and ask them to provide some "best-case", "normal", and "worst-case" data. Anonymize the data if there are privacy concerns, but try not to change anything that could affect performance.
Remember that you are benchmarking and comparing two sets of hardware, not your framework. Treat all of the software as a black box and simply measure the hardware performance.
Lastly, consider saving the data sets and using them to similarly evaluate any later changes you make to the software.
If you're system is supposed to be able to handle multiple clients all calling at the same time, then your benchmark should reflect this. Note that some calls will not play well together. For example, having 25 threads post the same bit of information at the same time could lead to locks on the server end, thus skewing your results.
From a nuts-and-bolts point of view, I've used Perl and its Benchmark module to gather the information I care about.
If you're comparing differing hardware, then measuring the cost per transaction will give you a good comparison of the trade offs of hardware for performance. One configuration may give you the best performance, but costs too much. A less expensive configuration may give you adequate performance.
It's important to emulate the "worst case" or "peak hour" of load. It's also important to test with "typical" volumes. It's a balancing act to get good server utilization, that doesn't cost too much, that gives the required performance.
Testing across hardware configurations quickly becomes expensive. Another viable option is to first measure on the configuration you have, then simulate that behavior across virtual systems using a model.
If you can, try to record some operations users (or processes) are doing with your framework, ideally using a clone of the real system. That gives you the most realistic data. Things to consider:
Which functions are most often used?
How much data is transferred?
Do not assume anything. If you think "that is going to be fast/slow", don't bet on it. In 9 out of 10 cases, you're wrong.
Create a top ten for 1+2 and work from that.
That said: If you replace old hardware with new hardware, you can expect roughly 10% faster execution for each year that has passed since you bought the first set (if the systems are otherwise pretty equal).
If you have a specialized system, the numbers may be completely different but usually, new hardware doesn't change much. For example, adding an useful index to a database can reduce the runtime of a query from two hours to two seconds. Hardware will never give you that.
As I see it, there are two kinds of benchmarks when it comes to benchmarking software. First, microbenchmarks, when you try to evaluate a piece of code in isolation or how a system deals with narrowly defined workload. Compare two sorting algorithms written in Java. Compare two web browsers how fast can each perform some DOM manipulation operation. Second, there are system benchmarks (I just made the name up), when you try to evaluate a software system under a realistic workload. Compare my Python based backend running on Google Compute Engine and on Amazon AWS.
When dealing with Java and such like, keep in mind that the VM needs to warm up before it can give you realistic performance. If you measure time with the time command, the JVM startup time will be included. You almost always want to either ignore start-up time or keep track of it separately.
Microbenchmarking
During the first run, CPU caches are getting filled with the necessary data. The same goes for disk caches. During few subsequent runs the VM continues to warm up, meaning JIT compiles what it deems helpful to compile. You want to ignore these runs and start measuring afterwards.
Make a lot of measurements and compute some statistics. Mean, median, standard deviation, plot a chart. Look at it and see how much it changes. Things that can influence the result include GC pauses in the VM, frequency scaling on the CPU, some other process may start some background task (like virus scan), OS may decide move the process on a different CPU core, if you have NUMA architecture, the results would be even more marked.
In case of microbenchmarks, all of this is a problem. Kill what processes you can before you begin. Use a benchmarking library that can do some of it for you. Like https://github.com/google/caliper and such like.
System benchmarking
In case of benchmarking a system under a realistic workload, these details do not really interest you and your problem is "only" to know what a realistic workload is, how to generate it and what data to collect. It is always best if you can instrument a production system and collect data there. You can usually do that, because you are measuring end-user characteristics (how long did a web page render) and these are I/O bound so the code gathering data does not slow down the system. (The page needs to be shipped to the user over the network, it does not matter if we also log a few numbers in the process).
Be mindful of the difference between profiling and benchmarking. Benchmarking can give you absolute time spent doing something, profiling gives you relative time spent doing something compared to everything else that needed doing. This is because profilers run heavily instrumented programs (common technique is to stop-the-world every few hundred ms and save a stack trace) and the instrumentation slows everything down significantly.

Resources