Table "Inheritance" in SQL Server - sql-server

I am currently in the process of looking at a restructure our contact management database and I wanted to hear peoples opinions on solving the problem of a number of contact types having shared attributes.
Basically we have 6 contact types which include Person, Company and Position # Company.
In the current structure all of these have an address however in the address table you must store their type in order to join to the contact.
This consistent requirement to join on contact type gets frustrating after a while.
Today I stumbled across a post discussing "Table Inheritance" (http://www.sqlteam.com/article/implementing-table-inheritance-in-sql-server).
Basically you have a parent table and a number of sub tables (in this case each contact type). From there you enforce integrity so that a sub table must have a master equivalent where it's type is defined.
The way I see it, by this method I would no longer need to store the type in tables like address, as the id is unique across all types.
I just wanted to know if anybody had any feelings on this method, whether it is a good way to go, or perhaps alternatives?
I'm using SQL Server 05 & 08 should that make any difference.
Thanks
Ed

I designed a database just like the link you provided suggests. The case was to store the data for many different technical reports. The number of report types is undefined and will probably grow to about 40 different types.
I created one master report table, that has an autoincrement primary key. That table contains all common information like customer, testsite, equipmentid, date etc.
Then I have one table for each report type that contains the spesific information relating to that report type. That table have the same primary key as the master and references the master as well.
My idea for splitting this into different tables with a 1:1 relation (which normally would be a no-no) was to avoid getting one single table with a huge number of columns, that gets very difficult to maintain as your constantly adding columns.
My design with table inheritance gave me segmented data and expandability without beeing difficult to maintain. The only thing I had to do was to write special a special save method to handle writing to two tables automatically. So far I'm very happy with the design and haven't really found any drawbacks, except for a little more complicated save method.

Google on "gen-spec relational modeling". You'll find a lot of articles discussing exactly this pattern. Some of them focus on table design, while others focus on an object oriented approach.
Table inheritance pops up in a few of them.

I know this won't help much now, but initially it may have been better to have an Entity table rather than 6 different contact types. Then each Entity could have as many addresses as necessary and there would be no need for type in the join.

You'll still have the problem that if you want the sub-type fields and you have only the master contact, you'll have to know what table to go looking at - or else join to all of them. But otherwise this is a workable solution to a common problem.
Another possibility (fairly similar in structure, but different in how you think of it) is to simply put all your contacts into one table. Then for the more specific fields (birthday say for people and department for position#company) create separate tables that are associated with that contact.
Contact Table
--------------
Name
Phone Number
Address Table
-------------
Street / state, etc
ContactId
ContactBirthday Table
--------------
Birthday
ContactId
Departments Table
-----------------
Department
ContactId
It requires a different way of thinking of things though - instead of thinking of people vs. companies, you think of the various functional requirements for the task at hand - if you want to send out birthday cards, get all the contacts that have birthdays associated with them, etc..

I'm going to go out on a limb here and suggest you should rethink your normalization strategy (as you seem to be lucky enough to be able to rethink your schema quite fundamentally). If you typically store an address for each contact, then your contact table should have the address fields in it. Alternatively if the address is stored per company then the address should be stored in the company table and your contacts linked to that company.
If your contacts only have one address, or one (or even 3, just not 'many') instance of the other fields, think about rationalizing them into a single table. In my experience having a few null fields is a far better alternative than needing left joins to data you aren't sure exists.
Fortunately for anyone who vehemently disagrees with me you did ask for opinions! :) IMHO you should only normalize when you really need to. Where you are rethinking schemas, denormalization should be considered at every opportunity.

When you have a 7th type, you'll have to create another table.

I'm going to try this approach. Yes, you have to create new tables when you have a new type, but since this table will probably have different columns, you'll end up doing this anyway if you don't use this scheme.
If the tables that inherit the master don't differentiate much from one another, I'd recommend you try another approach.

May I suggest that we just add a Type table. Ie a person has an address, name etc then the student, teacher as each use case presents its self we have a PersonType table that has an entry from the person table to n types and the subsequent new tables teacher, alien, singer as the system eveolves...

Related

Database design, multiple M-M tables or just one?

Today I was designing a database for a potential personal project of mine. Since I couldn't decide what would be a better option I asked my teacher Databases, unfortunately he couldn't tell me which of the two options is better than the other and why.
I designed the database for a dummy data generator. Since I want to generate multilangual data I thought of these tables. (But its a simplification of the tables).
(first and last)names: id, name
streets: id, name
languages: id, name
Each names.name and streets.name originates from a language, sometimes a name can have multiple origins (ex: Nick is both a Dutch as an English name).
Each language has multiple names and streets.
These two rules result in a Many-to-Many relationship. At the moment I've got only two tables, but I know I will get between 10 and 20 of these kind of tables.
The regular way one would do this is just make 10 to 20 Many-to-Many relationship tables.
Another idea I came up with was just one Many-to-Many table with a third column which specifies which table the id relates to.
At the moment I've got the design on my other PC so I will update it with my ideas visualized after dinner (2 hours or so).
Which idea is better and why?
To make the project idea a bit clearer:
It is always a hassle to create good and enough realistic looking working data for projects. This application will generate this data for you and return the needed SQL so you only have to run the queries.
The user comes to the site to get the data. He states his tablename, his columnnames and then he can link the columnnames to types of data, think of:
* Firstname
* Lastname
* Email adress (which will be randomly generated from the name of the person)
* Adress details (street, housenumber, zipcode, place, country)
* A lot more
Then, after linking columns with the types the user can set the number of rows he wants to make. The application will then choose a country at random and generate realistic looking data according to the country they live in.
That's actually an excellent question. This sort of thing leads to a genuine problem in database design and there is a real tradeoff. I don't know what rdbms you are using but....
Basically you have four choices, all of them with serious downsides:
1. One M-M table with check constraints that only one fkey can be filled in besides language and one column per potential table. Ick....
2. One M-M table per relationship. This makes things quite hard to manage over time especially if you need to change something from an int to a bigint at some point.
3. One M-M table with a polymorphic relationship. You lose a lot of referential integrity checks when you do this and to make it safe, have fun coding (and testing!) triggers.
4. Look carefully at the advanced features in your rdbms for a solution. For example in postgresql this can be solved with table inheritance. The downside is that you lose portability and end up in advanced territory.
Unfortunately there is no single definite answer. You need to consider the tradeoffs carefully and decide what makes sense for your project. If I was just working with one RDBMS, I would do the last one. But if not, I would probably do one table per relationship and focus on tooling to manage the problems that come up. But the former preference is about my level of knowledge and confidence, and the latter is a bit more of a personal opinion.
So I hope this helps you look at the tradeoffs and select what is right for you.

Parent child design to easily identify child type

In our database design we have a couple of tables that describe different objects but which are of the same basic type. As describing the actual tables and what each column is doing would take a long time I'm going to try to simplify it by using a similar structured example based on a job database.
So say we have following tables:
These tables have no connections between each other but share identical columns. So the first step was to unify the identical columns and introduce a unique personId:
Now we have the "header" columns in person that are then linked to the more specific job tables using a 1 to 1 relation using the personId PK as the FK. In our use case a person can only ever have one job so the personId is also unique across the Taxi driver, Programmer and Construction worker tables.
While this structure works we now have the use case where in our application we get the personId and want to get the data of the respective job table. This gets us to the problem that we can't immediately know what kind of job the person with this personId is doing.
A few options we came up with to solve this issue:
Deal with it in the backend
This means just leaving the architecture as it is and look for the right table in the backend code. This could mean looking through every table present and/or construct a semi-complicated join select in which we have to sift through all columns to find the ones which are filled.
All in all: Possible but means a lot of unecessary selects. We also would like to keep such database oriented logic in the actual database.
Using a Type Field
This means adding a field column in the Person table filled for example with numbers to determine the correct child table like:
So you could add a 0 in Type if it's a taxi driver, a 1 if it's a programmer and so on...
While this greatly reduced the amount of backend logic we then have to make sure that the numbers we use in the Type field are known in the backend and don't ever change.
Use separate IDs for each table
That means every job gets its own ID (has to be nullable) in Person like:
Now it's easy to find out which job each person has due to the others having an empty ID.
So my question is: Which one of these designs is the best practice? Am i missing an obvious solution here?
Bill Karwin made a good explanation on a problem similar to this one. https://stackoverflow.com/a/695860/7451039
We've now decided to go with the second option because it seem to come with the least drawbacks as described by the other commenters and posters. As there was no actual answer portraying the second option as a solution i will try to summarize our reasoning:
Against Option 1:
There is no way to distinguish the type from looking at the parent table. As a result the backend would have to include all logic which includes scanning all tables for the that contains the id. While you can compress most of the logic into a single big Join select it would still be a lot more logic as opposed to the other options.
Against Option 3:
As #yuri-g said this one is technically not possible as the separate IDs could not setup as primary keys. They would have to be nullable and as a result can't be indexed, essentially rendering the parent table useless as one of the reasons for it was to have a unique personID across the tables.
Against a single table containing all columns:
For smaller use cases as the one i described in the question this might me viable but we are talking about a bunch of tables with each having roughly 2-6 columns. This would make this option turn into a column-mess really quickly.
Against a flat design with a key-value table:
Our properties have completly different data types, different constraints and foreign key relations. All of this would not be possible/difficult in this design.
Against custom database objects containt the child specific properties:
While this option that #Matthew McPeak suggested might be a viable option for a lot of people our database design never really used objects so introducing them to the mix would likely cause confusion more than it would help us.
In favor of the second option:
This option is easy to use in our table oriented database structure, makes it easy to distinguish the proper child table and does not need a lot of reworking to introduce. Especially since we already have something similar to a Type table that we can easily use for this purpose.
Third option, as you describe it, is impossible: no RDBMS (at least, of I personally know about) would allow you to use NULLs in PK (even composite).
Second is realistic.
And yes, first would take up to N queries to poll relatives in order to determine the actual type (where N is the number of types).
Although you won't escape with one query in second case either: there would always be two of them, because you cant JOIN unless you know what exactly you should be joining.
So basically there are flaws in your design, and you should consider other options there.
Like, denormalization: line non-shared attributes into the parent table anyway, then fields become nulls for non-correpondent types.
Or flexible, flat list of attribute-value pairs related through primary key (yes, schema enforcement is a trade-off).
Or switch to column-oriented DB: that's a case for it.

Many tables to a single row in relational database

Consider we have a database that has a table, which is a record of a sale. You sell both products and services, so you also have a product and service table.
Each sale can either be a product or a service, which leaves the options for designing the database to be something like the following:
Add columns for each type, ie. add Service_id and Product_id to Invoice_Row, both columns of which are nullable. If they're both null, it's an ad-hoc charge not relating to anything, but if one of them is satisfied then it is a row relating to that type.
Add a weird string/id based system, for instance: Type_table, Type_id. This would be a string/varchar and integer respectively, the former would contain for example 'Service', and the latter the id within the Service table. This is obviously loose coupling and horrible, but is a way of solving it so long as you're only accessing the DB from code, as such.
Abstract out the concept of "something that is chargeable" for with new tables, of which Product and Service now are an abstraction of, and on the Invoice_Row table you would link to something like ChargeableEntity_id. However, the ChargeableEntity table here would essentially be redundant as it too would need some way to link to an abstract "backend" table, which brings us all the way back around to the same problem.
Which way would you choose, or what are the other alternatives to solving this problem?
What you are essentially asking is how to achieve polymorphism in a relational database. There are many approaches (as you yourself demonstrate) to this problem. One solution is to use "table per class" inheritance. In this setup, there will be a parent table (akin to your "chargeable item") that contains a unique identifier and the fields that are common to both products and services. There will be two child tables, products and goods: Each will contain the unique identifier for that entity and the fields specific to it.
One benefit to this approach over others is you don't end up with one table with many nullable columns that essentially becomes a dumping ground to describe anything ("schema-less").
One downside is as your inheritance hierarchy grows, the number of joins needed to grab all the data for an entity also grows.
I believe it depends on use case(s).
You could put the common columns in one table and put product and service specific columns in its own tables.Here the deal is that you need to join stuff.
Else if you maintain two separate tables, one for Product and another for Sale. You use application logic to determine which table to insert into. And getting all sales will essentially mean , union of getting all products and getting all sale.
I would go for approach 2 personally to avoid joins and inserting into two tables whenever a sale is made.

Database Design: Explain this schema

Full disclosure...Trying feverishly here to learn more about databases so I am putting in the time and also tried to get this answer from the source to no avail.
Barry Williams from databaseanswers has this schema posted.
Clients and Fees Schema
I am trying to understand the split of address tables in this schema. Its clear to me that the Addresses table contains the details of a given address. The Client_Addresses and Staff_Addresses tables are what gets me.
1) I understand the use of Primary Foreign Keys as shown but I was under the assumption that when these are used you don't have a resident Primary Key in that same table (date_address_from in this case). Can someone explain the reasoning for both and put it into words how this actually works out?
2) Why would you use date_address_from as the primary key instead of something like client_address_id as the PK? What if someone enters two addresses in one day would there be conflicts in his design? If so or if not, what?
3) Along the lines of normalization...Since both date_address_from and date_address_to are the same in the Client_Addresses and Staff_Addresses table should those fields just not be included in the main Address table?
Evaluation
First an Audit, then the specific answers.
This is not a Data Model. This is not a Database. It is a bucket of fish, with each fish drawn as a rectangle, and where the fins of one fish are caught in the the gills of another, there is a line. There are masses of duplication, as well as masses of missing elements. It is completely unworthy of using as an example to learn anything about database design from.
There is no Normalisation at all; the files are very incomplete (see Mike's answer, there are a hundred more problem like that). The other_details and eg.s crack me up. Each element needs to be identified and stored: StreetNo, ApartmentNo, StreetName, StreetType, etc. not line_1_number_street, which is a group.
Customer and Staff should be normalised into a Person table, with all the elements identified.
And yes, if Customer can be either a Person or an Organisation, then a supertype-subtype structure is required to support that correctly.
So what this really is, the technically accurate terms, is a bunch of flat files, with descriptions for groups of fields. Light years distant from a database or a relational one. Not ready for evaluation or inspection, let alone building something with. In a Relational Data Model, that would be approximately 35 normalised tables, with no duplicated columns.
Barry has (wait for it) over 500 "schemas" on the web. The moment you try to use a second "schema", you will find that (a) they are completely different in terms of use and purpose (b) there is no commonality between them (c) let's say there was a customer file in both; they would be different forms of customer files.
He needs to Normalise the entire single "schema" first,
then present the single normlaised data model in 500 sections or subject areas.
I have written to him about it. No response.
It is important to note also, that he has used some unrecognisable diagramming convention. The problem with these nice interesting pictures is that they convey some things but they do not convey the important things about a database or a design. It is no surprise that a learner is confused; it is not clear to experienced database professionals. There is a reason why there is a standard for modelling Relational databases, and for the notation in Data Models: they convey all the details and subtleties of the design.
There is a lot that Barry has not read about yet: naming conventions; relations; cardinality; etc, too many to list.
The web is full of rubbish, anyone can "publish". There are millions of good- and bad-looking "designs" out there, that are not worth looking at. Or worse, if you look, you will learn completely incorrect methods of "design". In terms of learning about databases and database design, you are best advised to find someone qualified, with demonstrated capability, and learn from them.
Answer
He is using composite keys without spelling it out. The PK for client_addresses is client_id, address_id, date_address_from). That is not a bad key, evidently he expects to record addresses forever.
The notion of keeping addresses in a separate file is a good one, but he has not provided any of the fields required to store normalised addresses, so the "schema" will end up with complete duplication of addresses; in which case, he could remove addresses, and put the lines back in the client and staff files, along with their other_details, and remove three files that serve absolutely no purpose other than occupying disk space.
You are thinking about Associative Tables, which resolve the many-to-many relations in Databases. Yes, there, the columns are only the PKs of the two parent tables. These are not Associative Tables or files; they contain data fields.
It is not the PK, it is the third element of the PK.
The notion of a person being registered at more than one address in a single day is not reasonable; just count the one address they slept the most at.
Others have answered that.
Do not expect to identify any evidence of databases or design or Normalisation in this diagram.
1) In each of those tables the primary key is a compound key consisting of three attributes: (staff_id, address_id, date_address_from) and (client_id, address_id, date_address_from). This presumably means that the mapping of clients/staff to addresses is expected to change over time and that the history of those changes is preserved.
2) There's no obvious reason to create a new "id" attribute in those tables. The compound key does the job adequately. Why would you want to create the same address twice for the same client on the same date? If you did then that might be a reason to modify the design but that seems like an unlikely requirement.
3) No. The apparent purpose is that they are the applicable dates for the mapping of address to client/staff - not dates applicable to the address alone.
3) Along the lines of
normalization...Since both
date_address_from and date_address_to
are the same in the Client_Addresses
and Staff_Addresses table should those
fields just not be included in the
main Address table?
No. But you did find a problem.
The designer has decided that clients and staff are two utterly different things. By "utterly different", I mean they have no attributes in common.
That's not true, is it? Both clients and staff have addresses. I'm sure most of them have telephones, too.
Imagine that someone on staff is also a client. How many places is that person's name stored? That person's address? Can you hear Mr. Rogers in the background saying, "Can you spell 'update anomaly'? . . . I knew you could."
The problem is that the designer was thinking of clients and staff as different kinds of people. They're not. "Client" describes a business relationship between a service provider (usually, that is, not a retailer) and a customer, which might be either a person or a company. "Staff" describes a employment relationship between a company and a person. Not different kinds of people--different kinds of relationships.
Can you see how to fix that?
This 2 extra tables enables you to have address history per one person.
You can have them both in one table, but since staff and client are separated, it is better to separate them as well (b/c client id =1 and staff id =1 can't be used on the same table of address).
there is no "single" solution to a design problem, you can use 1 person table and then add a column to different between staff and client. BUT The major Idea is that the DB should be clear, readable and efficient, and not to save tables.
about 2 - the pk is combined, both clientID, AddressID and from.
so if someone lives 6 month in the states, then 6 month in Israel, and then back to the states, to the same address - you need only 2 address in address table, and 3 in the client_address.
The idea of heaving the from_Date as part of the key is right, although it doesn't guaranty data integrity - as you also need manually to check that there isn't overlapping dates between records of the same person.
about 3 - no (look at 2).
Viewing the data model, i think:
1) PF means that the field is both part of the primary key of the table and foreign key with other table.
2) In the same way, the primary key of Staff_Addresses is {staff_id,address_id,date_adderess_from} not just date_adderess_from
3) The same that 2)
In reference to Staff_Addresses table, the Primary Key on date_address_from basically prevents a record with the same staff_id/address_id entered more than once. Now, i'm no DBA, but i like my PKs to be integers or guids for performance reasons/faster indexing. If i were to do this i would make a new column, say, Staff_Address_Id and make it the PK column and put a unique constraint on staff_id/address_id/date_address_from.
As for your last concern, Addresses table is really a generic address storage structure. It shouldn't care about date ranges during which someone resided there. It's better to be left to specific implementations of an address such as Client/Staff addresses.
Hope this helps a little.

How can I build a voting system to support multiple types of objects to vote on?

I'm really looking for something very similar to the way SO is setup where a few different kinds of things can be voted on (questions AND answers). What kind of DB schema, generally, could I use to support voting on many different kinds of objects?
Would I have a single Vote table that would have references to other objects in the database? Or do I have to have or should have a separate vote table for each of the objects I would like to vote on.
Kyle,
it's a bit hard to understand what exactly you need...but here's my 2 cents:
I assume you want for each vote to store when it was voted, by whom (maybe IP address or user name), I would go for a single Voting table solution. I also assume that when you query an entity from the DB (question, answer, etc.), you also want to join this table, and it's not likely to have a query solely on the voting table.
in this case, you can use 2 columns on the voting table - one for the type of object that was voted, and one to hold the id of that object. that way you can join the voting table to any other query by specifying the type of the object.
I think managing all your votes in a single table will make your domain simpler then spreading it and creating a voting table for each entity. in this single voting table solution you only need to maintain the list of types of entities (probably using a small dictionary table).
there is also a consideration of performance. if you expect millions of votes, that single table will grow much more quickly than a set of separate tables. it might be a consideration against it. also take care to not make it a bottleneck if there are many concurrent read/writes to it.

Resources