How do spell checkers work? [closed] - c

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed last year.
Improve this question
I need to implement a spell checker in C. Basically, I need all the standard operations... I need to be able to spell check a block of text, make word suggestions and dynamically add new words to the index.
I'd kind of like to write this myself, tho I really don't know where to begin.

Read up on Tree Traversal. The basic concept is as follows:
Read a dictionary file into memory (this file contains the entire list of correctly spelled words that are possible/common for a given language). You can download free dictionary files online, such as Oracle's example dictionary.
Parse this dictionary file into a search tree to make the actual text search as efficient as possible. I won't describe all of the dirty details of this type of tree structure, but the tree will be made up of nodes which have (up to) 26 links to child nodes (one for each letter), plus a flag to indicate wether or not the current node is the end of a valid word.
Loop through all of the words in your document, and check each one against the search tree. If you reach a node in the tree where the next letter in the word is not a valid child of the current node, the word is not in the dictionary. Also, if you reach the end of your word, and the "valid end of word" flag is not set on that node, the word is not in the dictionary.
If a word is not found in the dictionary, inform the user. At this stage, you can also suggest alternate spellings, but that gets a tad more complicated. You will have to loop through each character in the word, substituting alternate characters and test each of them against the search tree. There are probably more efficient algorithms for finding the recommended words, but I don't know what they are.
A really short example:
Dictionary:apex apple appoint appointed
Tree: (* indicates valid end of word)
update: Thank you to Curt Sampson for pointing out that this data structure is called a Patricia Tree
A -> P -> E -> X*
\\-> P -> L -> E*
\\-> O -> I -> N -> T* -> E -> D*
Document:apple appint ape
Results:
"apple" will be found in the tree, so it is considered correct.
"appint" will be flagged as incorrect. Traversing the tree, you will follow A -> P -> P, but the second P does not have an I child node, so the search fails.
"ape" will also fail, since the E node in A -> P -> E does not have the "valid end of word" flag set.
edit: For more details on spelling suggestions, look into Levenshtein Distance, which measures the smallest number of changes that must be made to convert one string into another. The best suggestions would be the dictionary words with the smallest Levenshtein Distance to the incorrectly spelled word.

Given you don't know where to begin, I'd suggest using an existing solution. See, for example, aspell
(GLPL licenced). If you really have to implement it yourself, please tell us why.

One should look at prefixes and suffixes.
suddenly = sudden + ly.
by removing ly's you can get away storing just the root word.
Likewise preallocate = pre + allocate.
And lovingly = love + ing + ly
gets a bit more complex, as the english rules for ing get invoked.
There is also the possibility of using some sort of hashing function to map a root word
into a specific bit is a large bit map, as a constant time method of determining if the root word is spelled correctly.
You can get even more complex by trying to provide an alternate list of possible correct spellings to a misspelled word. You might research the soundex algorithm to get some ideas.
I would advise prototyping with a small set of words. Do a lot of testing, then scale up.
It is a wonderful educational problem.

Splitting a word into root and suffix is knonw as the "Porter Stemming Algorithm" it's a good way of fitting an English ditionary into an amazingly small memory.
It's also useful for seach so "spell checker" will also find "spelling check" and "spell checking"

I've done this in class
You should consider python Natural Language Toolkit NLTK which is made specificaly to handle this.
It also allows to create text interpreters such as chatbots

The Open Office Spell checker Hunspell can be a good starting point. Here is the Homepage:
Hunspell at Sourceforge

E James gives a great answer for how to tell if a word is valid. It probably depends on the spell checker for how they determine likely misspellings.
One such method, and the one that I would use is the Levenshteinn String Similarity which looks at how many letters must be added, removed, or swaped in a word in order to make another word.
If you say spelled: Country as Contry. The levenshtein string similarity would be 1 since you have to only add 1 letter to transform contry into country.
You could then loop through all possible correct spellings of words (only 171,000 english words and 3000 of those account for 95% of text). Determine those with the lowest levenshtein string similarity value, and then return the top X words that are most similar to the misspelled word.
There's a great python package called Fuzzy Wuzzy which implements this efficiently and generates a % similarity between two words or sentences based on this formula.

Related

How to do Norvig spell check for chinese characters mixed with english letters?

I have a list of product names written in mixture of English letters and numbers and Chinese characters stored in my database.
There is a table called products with the fields name_en, name_zh amongst others.
E.g.
AB 10"机翼
Peter Norvig has a fantastic algorithm for spell check but it only works for English.
I was wondering if there's a way to do something similar for a a narrow list of terms containing Chinese characters?
E.g. of mispelling such as
A10机翼
AB 10鸡翼
AB 10鸡一
AB 10木几翼
all will prompt AB 10"机翼 as the correct spelling
How do I do this?
You have a much more complex problem than Norvig's:
Chinese Input-method
The mis-spellings in your case (at least in your example) is mostly caused by the pinyin input method. One same typing of "jiyi" (English: airplane wings) could lead to different Chinese phrases:
机翼
鸡翼
鸡一
几翼
Chinese Segmentation
Also in Chinese to break up a long sentence into small tokens with semantic meaning, you would need to do segmentation. For example:
飞机模型零件 -> Before segmentation
飞机-模型-零件 After segmentation you got three phrases separated by '-'.
Work on the token-level
You probably can experiment starting from a list of mis-spellings. I guess you can collect a bunch of them from your user logs. Take out one misspelling at a time, using your example:
AB 10鸡翼
First break it into tokens:
A-B-10-鸡翼
(here you probably need a Chinese segmentation algorithm to realize that 鸡翼 should be treated together).
Then you should try to find its nearest neighbor in your product db using the edit distance idea. Note that:
you do not remove/edit/replace one character at a time, but remove/edit/replace one token at a time.
when edit/replace, we should limit our candidates to be those near neighbors of the original token. For example, 鸡翼 -> 机翼,几翼,机一
Build Lucene index
You can also try to tackle the problem in a different way, starting from your correct product names. Treat each product name as a document and pre-build lucene index from that. Then for each user query, the query-matching problem is converted to a search problem in which we issue a query to the search-engine for find the best-matching documents in our db. In this case, I believe Lucene would probably takes care of the segmentation (if not, you would need to extend its functionality to suit your own needs) and tokenization for you.

Separate Real Words from Random Strings

I'm storing a list of keywords that have been used throughout all searches on a site, and I'm getting a lot of random strings in the keywords field. Here's a sample of the data that I'm getting back:
fRNPRXiPtjDrfTDKH
boom
Mule deer
gVXOFEzRWi
cbFXZcCoSiKcmrvs
Owner Financed ,owner Financed
I'm trying to find a way in SQL or ColdFusion to figure out if something has valid English words, or if it's a random set of characters. I've tried doing some digging for n-gram analysis, but can't seem to come up with any useful solutions that I can run directly on my servers.
UPDATE: The code is now on jsFiddle: http://jsfiddle.net/ybanrab/s6Bs5/1/ it may be interesting to copy and paste a page of news copy and paste in your test data
I'd suggest trying to analyse the probabilities of the individual characters following each other. Below is an example in JavaScript I've written but that ought to translate to T-SQL or ColdFusion pretty easily.
The idea is that you feed in good phrases (the corpus) and analyse the frequency of letters following other letters. If you feed it "this thin the" you'll get something like this:
{
t:{h:3},
h:{i:2,e:1},
i:{s:1,n:1},
s:{},
n:{}
}
You'll get most accuracy by feeding in hand-picked known good inputs from the data you're analysing, but you may also get good results by feeding in plain english. In the example below I'm computing this, but you can obviously store this once you're happy with it.
You then run the sample string against the probabilities to give it a score. This version ignores case, word starting letter, length etc, but you could use them as well if you want.
You then just need to decide on a threshold score and filter like that.
I'm fairly sure this kind of analysis has a name, but my google-fu is weak today.
You can paste the code below into a script block to get an idea of how well (or not) it works.
var corpus=["boom","Mule Deer", "Owner Financed ,owner Financed", "This is a valid String","The quick brown fox jumped over the lazy dog"];
var probs={};
var previous=undefined;
//Compute the probability of one letter following another
corpus.forEach(function(phrase){
phrase.split(" ").forEach(function(word){
word.toLowerCase().split("").forEach(function(chr){
//set up an entry in the probabilities table
if(!probs[chr]){
probs[chr]={};
}
//If this isn't the first letter in the word, record this letter as following the previous one
if(previous){
if(!probs[previous][chr]){
probs[previous][chr]=0;
}
probs[previous][chr]++;
}
//keep track of the previous character
previous=chr;
});
//reset previous as we're moving onto a different word
previous=undefined;
})
});
function calculateProbability(suspect){
var score=0;
var previous=undefined;
suspect.toLowerCase().split("").forEach(function(chr){
if(previous && probs[previous] && probs[previous][chr]){
//Add the score if there is one, otherwise zero
score+=probs[previous][chr];
}
previous=chr;
});
return score/suspect.length;
}
console.log(calculateProbability("boom"));
console.log(calculateProbability("Mood"));
console.log(calculateProbability("Broom"));
console.log(calculateProbability("sajkdkas dak"));
The best thing to do is to check your words against frequency lists: dictionaries won't work because they don't contain grammatical inflections, proper nouns, compounds, and a whole load of other stuff that's valid.
The problem with naive checking against n-gram data is there is a lot of noise in the lower frequency words. The easiest thing to do which should give you the correct answer in the overwhelming majority of cases is to truncate a list of frequency counted words from somewhere suitably large (Google n-gram, Wikipedia, etc) at the top 50,000 or 100,000 words. Adjust the threshold as appropriate to get the results you're looking for, but then you can just check if any/all of your query terms appear in this list.
If you want to know if the query is grammatical, or sensible as a unit rather than its constituent parts, that's a whole other question of course.
There are some non-dictionary-words that can be valid searches (e.g. gethostbyname is a valid and meaningful search here on SO, but not a dictionary word). On the other hand, there are dictionary words that have absolutely nothing to do with your website.
Instead of trying to guess what is a word and what isn't, you could simply check if the search query produced a non-empty result. Those with empty results must be complete off-topic or gibberish.
It sounds like you are looking for a
Bayesian Filter

Is there a way to rank the difficulty of pronunciation of a word?

I'm trying to build a collection English words that are difficult to pronounce.
I was wondering if there is an algorithm of some kind or a theory, that can be used to show how difficult a word is to pronounce.
Does this appear to you as something that can be computed?
As this seems to be a very subjective thing, let me make it more objective, let's say hardest words to pronounce by text to speech technologies.
One approach would be to build a list with two versions of each word. One the correct spelling, and the other being the word spelled using the simplest of phonetic spelling. Apply a distance function on the two words (like Levenshtein distance http://en.wikipedia.org/wiki/Levenshtein_distance). The greater the distance between the two words, the harder the word would be to pronounce.
Great problem! Off the top of my head you could create a system which contains all the letters from the phonetic alphabet and with connected weights betweens every combination based on difficulty (highly specific so may need multiple people testing and take averages etc) then have a list of all words from the English dictionary stored on disk and call a script which cycles through each entry and performs web scraping on wikipedia for the phonetic spelling and ranks their difficulty. This could take into consideration the length of the word as well as the difficulty between joining phonetics then order the list based on the difficulty.
Thats what I would try and do :P
To a certain extent...
Speech programs for example use a system of phonetics to try and pronounce words.
For example, "grasp" would be split into:
Gr-A-Sp
However, for foreign words (or words that don't follow this pattern), exception lists have to be kept e.g. Yacht
Suggestion
Fortunately Pronunciation as a process is dependent on a two factors these include
the phones making up the words and the location of vowels and semi vowels i.e
/a/,/ae/,/e/,/i/,/o/,/u/,/w/,/j/...
length of the word.
the first relates to the mechanics of phone sound production as the velum, cheeks tongue have to be altered to produce various sounds related to individual phones i.e nasal etc. this makes some words more difficult to pronounce as the movement required may be a lot. Refer to books about phonetics to find positions of pronouncing each phone.
Algorithm
a weighted spanning tree with weight being the difficulty of pronouncing two consecutive phones i.e l and r or /sh/ and /s/
good luck.

Identifying the components in a English sentence that do not make sense

I'm wondering is there an algorithm or a library which helps me identify the components in an English which has no meaning? e.g., very serious grammar error? If so, could you explain how it works, because I would really like to implement that or use that for my own projects.
Here's a random example:
In the sentence: "I closed so etc page hello the door."
As a human, we can quickly identify that [so etc page hello] does not make any sense. Is it possible for a machine to point out that the string does not make any sense and also contains grammar errors?
If there's such a solution, how precise can that be? Is it possible, for example, given a clip of an English sentence, the algorithm returns a measure, indicating how meaningful, or correct that clip is? Thank you very much!
PS: I've looked at CMU's link grammar as well as the NLTK library. But still I'm not sure how to use for example link grammar parser to do what I would like to do as the if the parser doesn't accept the sentence, I don't know how to tweak it to tell me which part it is not right.. and I'm not sure whether NLTK supported that.
Another thought I had towards solving the problem is to look at the frequencies of the word combination. Since I'm currently interested in correcting very serious errors only. If I define the "serious error" to be the cases where words in a clip of a sentence are rarely used together, i.e., the frequency of the combo should be much lower than those of the other combos in the sentence.
For instance, in the above example: [so etc page hello] these four words really seldom occur together. One intuition of my idea comes from when I type such combo in Google, no related results jump out. So is there any library that provides me such frequency information like Google does? Such frequencies may give a good hint on the correctness of the word combo.
I think that what you are looking for is a language model. A language model assigns a probability to each sentence of k words appearing in your language. The simplest kind of language models are n-grams models: given the first i words of your sentence, the probability of observing the i+1th word only depends on the n-1 previous words.
For example, for a bigram model (n=2), the probability of the sentence w1 w2 ... wk is equal to
P(w1 ... wk) = P(w1) P(w2 | w1) ... P(wk | w(k-1)).
To compute the probabilities P(wi | w(i-1)), you just have to count the number of occurrence of the bigram w(i-1) wi and of the word w(i-1) on a large corpus.
Here is a good tutorial paper on the subject: A Bit of Progress in Language Modeling, by Joshua Goodman.
Yes, such things exist.
You can read about it on Wikipedia.
You can also read about some of the precision issues here.
As far as determining which part is not right after determining the sentence has a grammar issue, that is largely impossible without knowing the author's intended meaning. Take, for example, "Over their, dead bodies" and "Over there dead bodies". Both are incorrect, and could be fixed either by adding/removing the comma or swapping their/there. However, these result in very different meanings (yes, the second one would not be a complete sentence, but it would be acceptable/understandable in context).
Spell checking works because there are a limited number of words against which you can check a word to determine if it is valid (spelled correctly). However, there are infinite sentences that can be constructed, with infinite meanings, so there is no way to correct a poorly written sentence without knowing what the meaning behind it is.
I think what you are looking for is a well-established library that can process natural language and extract the meanings.
Unfortunately, there's no such library. Natural language processing, as you probably can imagine, is not an easy task. It is still a very active research field. There are many algorithms and methods in understanding natural language, but to my knowledge, most of them only work well for specific applications or words of specific types.
And those libraries, such as the CMU one, seems to be still quite rudimental. It can't do what you want to do (like identifying errors in English sentence). You have to develop algorithm to do that using the tools that they provide (such as sentence parser).
If you want to learn about it check out ai-class.com. They have some sections that talks about processing language and words.

How to Implement a dictionary in C/C++ with autoCorrect, auto-complete, spellcheck

I have to write a C/C++ Code for a dictionary implementation with the following features:
There are basically definitions (1 or more) for words.
1) Insertion
2) Searching (As fast as possible)
3) Auto Complete
4) Auto Correct
5) Spell Check
So I need to know HOW TO DO SO?
Which data structures should be the most efficient? Trie or hast table or something else
Which searching technique to use...?
How to implement auto-complete and spell Checking effectively..?
You would typically use a tree of words, arranged according to edit distance from one another, such as a BK tree.
IIRC, the idea is to have a balanced tree with each word linked through edges numbered according to edit distance. If you want to find the nearest match for a word, you compute it's edit distance to the root word, then follow the root word's link of the same number, and repeat the process until you reach a leaf node which is either the same word, or the closest match.
EDIT: in hindsight, that article I linked does a much better job of explaining it than I did. I'd just recommend reading through it for a good explanation of the approach.
Certainly you need a database with a list of words, then you need to split your text up into words and see if they exist in the database.
For Autocomplete you can just check that the text entered so far matches words in the dictionary (with a LIKE txt+'%' clause), implemented with an AJAX call.

Resources