I've been working on a code that converts a given number (decimal base) to any other base from 2 to 16.
Clearly, I've come across the issue that the function base_conversion_it (it stands for iterative) prints the values in reverse.
I cannot use arrays nor pointers, and everyone on the internet seems to solve this issue like that. My assignment requires making both an iterative and a recursive function (which I did and works).
void base_conversion_it(unsigned int n, unsigned int b) {
if (n > 0) {
//bases between 2 and 16
if (b >= 2 && b <= 16) {
int r; //r = remainder
int q = 1; //quotient
int num; //saves the remainder
while (q != 0) {
r = n % b;
printf("%X", r);
q = n / b;
n = q;
}
}
}
}
You start converting from the units digit.
Maybe start with the most significant digit instead?
// It's Undefined Behaviour if `b` is outside the range [2...16]
void base_conversion_it(unsigned int n, unsigned int b) {
unsigned highestbase = 1;
while (highestbase * b <= n) highestbase *= b; //possible wrap around and infinite loop
while (highestbase) {
printf("%X", n / highestbase);
n %= highestbase;
highestbase /= b;
}
printf("\n");
}
Sorry missed iterative.
char digits[] = "0123456789ABCDEFGHIJKLMNOP";
void print(unsigned long long val, unsigned base)
{
unsigned long long mask = base;
while(val / mask >= base) mask *= base;
do
{
printf("%c", digits[val / mask]);
val %= mask;
mask /= base;
}while(val);
}
int main(void)
{
print(45654756453, 10); printf("\n");
print(45654756453, 16); printf("\n");
print(45654756453, 24); printf("\n");
print(45654756453, 2); printf("\n");
}
https://godbolt.org/z/W3fGnnhYs
Recursion:
char digits[] = "0123456789ABCDEF";
void print(unsigned long long val, unsigned base)
{
if(base <= 16 && base > 1)
{
if(val >= base) print(val / base, base);
printf("%c", digits[val % base]);
}
}
https://godbolt.org/z/84hYocnjv
If you cannot use either arrays (including strings) or recursion, then I think you need to compute the output digits in most-significant-first order. This is a bit less natural than computing them in the opposite order and reversing the result, but it can be done:
use a loop to find the place value of the most significant non-zero base-b digit of n. For example, check the result of dividing n by successive powers of b until the result is 0, then back off one step.
In a separate loop, read off the base-b digits of n one by one, starting with the one at the discovered most-significant position. For each digit,
Divide the current value of n by the place value pv of the current digit to get a digit value.
Replace n with n % pv.
Be careful to continue all the way down to place value 1, as opposed, say, to stopping when n becomes zero.
So i'm supposed to find out the last 10 digits of 2^n(0<=n<=100) where n is the input. I found a method to handle large numbers but the program fails when n>64. Any leads on how to go about with this would be appreciated.
#include<stdio.h>
#include<math.h>
/* Iterative Function to calculate (x^y)%p in O(log y) */
int power(long long int x, long long int y, long long int p)
{
long long int res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0) {
// If y is odd, multiply x with result
if (y & 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// C function to print last 10 digits of a^b
void printLastDigits(long long int a,long long int b)
{
long long int temp = pow(10,10);
// Calling modular exponentiation
temp = power(a, b, temp);
if (temp)
printf("%d",temp);
}
int main()
{
long long int n;
scanf("%d",&n);
printLastDigits(2,n);
return 0;
}
You don't need to worry about the 'high' bits, since multiplication by 2 left shifts them out of range of the lower part of the product you're interesting in. Just be sure you're using the unsigned long long type (of at least 64 bits) to hold integral types that are wide enough, e.g.,
#include <inttypes.h>
#include <stdio.h>
void low_digits (unsigned int n)
{
unsigned long long base = 2, modulus = 10000000000ULL;
for (unsigned int i = 1; i <= n; i++)
{
fprintf(stdout, "2^%u mod 10^10 = %llu\n", i, base);
base = (base * 2) % modulus;
}
}
You can test 2^1000 with a bignum calculator:
10715086071862673209484250490600018105614048117055336074437503883703\
51051124936122493198378815695858127594672917553146825187145285692314\
04359845775746985748039345677748242309854210746050623711418779541821\
53046474983581941267398767559165543946077062914571196477686542167660\
429831652624386837205668069376
while n = 1000 above yields: 5668069376
Others have noted, that this is a naive method, and modular exponentiation is far more efficient for sufficiently large values of (n). Unfortunately, this is going to require products that exceed the range of an unsigned 64-bit value, so unless you're prepared to implement [hi64][lo64] multi-precision mul / mod operations, it's probably beyond the scope of your task.
Fortunately, later versions of gcc and clang do provide an extended 128 bit integral type:
#include <inttypes.h>
#include <stdio.h>
void low_digits (unsigned int n)
{
unsigned long long base = 2, modulus = 10000000000ULL;
__extension__ unsigned __int128 u = 1, w = base;
while (n != 0)
{
if ((n & 0x1) != 0)
u = (u * w) % modulus; /* (mul-reduce) */
if ((n >>= 1) != 0)
w = (w * w) % modulus; /* (sqr-reduce) */
}
base = (unsigned long long) u;
fprintf(stdout, "2^%u mod 10^10 = %llu\n", n, base);
}
The following uses strings to perform the multiplication:
void lastdigits(char digits[11], int n)
{
int i, j, x, carry;
for (i=0; i<n;i++) {
for (j=9, carry=0; j>=0; j--) {
x= digits[j]-'0';
x *= 2;
x += carry;
if (x>9) {carry= 1; x -= 10;}
else carry= 0;
digits[j]= x+'0';
}
}
}
void test(void)
{
char digits[11];
strcpy(digits,"0000000001");
lastdigits(digits,10);
printf("%s\n",digits);
strcpy(digits,"0000000001");
lastdigits(digits,20);
printf("%s\n",digits);
strcpy(digits,"0000000001");
lastdigits(digits,100);
printf("%s\n",digits);
}
Output:
0000001024
0001048576
6703205376
Since the other answers you've received don't actually show what you're doing wrong:
x = (x * x) % p;
You're assuming that x * x still fits in long long int. But if x is 0x100000000 (4294967296, for 10 decimal digits) and long long int is 64 bits, then it will not fit.
Either:
You need a way to accurately multiply two arbitrary 10-digit numbers. The result may have 20 digits and may not fit in long long int or even unsigned long long int. This means you'd need to use some bigint library or implement something like that yourself.
Or:
You need to avoid multiplying multiple possibly-10-digit numbers.
The answer you've accepted opts for simple repeated multiplication by 2. This is sufficient for your problem now, but beware that this does significantly increase the complexity if you want to allow very large exponents.
Let's say you are finding the last digit of 2^n, you just need to consider last digit and ignore every other digit
1. 2*2 = 4
2. 4*2 = 8
3. 8*2 = 16 (ignore last-but-one digit i.e 1)
4. 6*2 = 12 (ignore last-but-one digit i.e 1)
5. 2*2 = 4
6. 4*2 = 8
7. 8*2 = 16 (ignore last-but-one digit i.e 1)
8. 6*2 = 12 (ignore last-but-one digit i.e 1)
9. 2*2 = 4
... n-1 iterations
To find the last 2 digits of 2^n, ignore all digits except last 2 digits.
1. 2*2 = 4
2. 4*2 = 8
3. 8*2 = 16
4. 16*2 = 32
5. 32*2 = 64
6. 64*2 = 128 (Consider last 2 digits)
7. 28*2 = 56
8. 56*2 = 112 (Consider last 2 digits)
9. 12*2 = 24
... n-1 iterations
Similarly, to find the last 10 digits of 2^n, consider just last 10 digits at each iteration and repeat it for n-1 iterations.
Note:
With this approach, the biggest number you'll get during the calculation can be of 11 digits ~ 10^11, while for a 64-bit machine the max value is ~ 2^64 = ~ 10^18
Is there any way to round systemGuess up. In this case the outcome of systemGuess is 5.5 I want it to be 6 how do I do this?
See code below:
int main(void){
int systemGuess = 0;
stystemGuess = (10 - 1)/2 + 1;
printf(" %d ", stystemmGuess);
}
Use floating point division and ceil:
stystemGuess = ceil((10 - 1)/2.0) + 1;
If you want to round 0.4 down, use round instead.
OP wants to perform an integer division with the result rounded-up.
// If the quotient fraction > 0, return next larger number.
unsigned udiv_ceiling(unsigned n, unsigned d) {
return (n + d - 1)/d;
}
// If the quotient fraction >= 0.5, return next larger number.
unsigned udiv_nearest_ties_up(unsigned n, unsigned d) {
return (n + d/2)/d;
}
stystemGuess = udiv_ceiling(10 - 1, 2) + 1;
// or
stystemGuess = udiv_nearest_ties_up(10 - 1, 2) + 1;
Additional code needed to handle negative numbers and in corner cases, protect against n + d - 1 overflow.
You can use
systemGuess = (10 - 1)/2.0 + 1 + 0.5;
The problem is that you do integer calculation.
So e.g. 9/2 is 4. If you use 9/2.0 you have floating point division, which gives you 4.5. Adding 0.5 in the end gives you 6.0 instead of 5.5, so when storing it in systemGuess, you get 6 instead of 5.
Integer division in C truncates toward 0, so if you do the math on the other side of 0 (i.e., on negative numbers), it will "round up". You might do this by subtracting an amount from the dividend and adding half that amount back to the result:
int main(void)
{
int systemGuess = 0;
//systemGuess = (10 - 1)/2 + 1;
systemGuess = (10 - 1 - 20)/2 + 1 + 10;
printf(" %d ", systemGuess);
}
Probably in your real program there is a more elegant way to make this happen.
Here you go:
#include <stdio.h>
#include <stdlib.h>
int divide(int x, int y);
int main(void){
int systemGuess = 0;
int x = 10-1;
int y = 2;
systemGuess = divide(x,y) + 1;
printf(" %d ", systemGuess);
}
int divide(int x, int y) {
int a = (x -1)/y +1;
return a;
}
I want to make a bitwise AND computation over integers, but without converting them to binary numbers. For example, I have a integer "10111" (it is integer, not binary) and another integer "01001". I want bitwise AND of these numbers without converting them to binary and then making bitwise AND. I know it is not bitwise what I ask, but I want something similar to this. I know it can be interpreted initially as binary, converted to decimal and then do bitwise AND, but I do not want that. I want something like this:
int a;
int b;
int temp;
double result;
temp = a & b;
while (result != 0) {
if (result % 10 == 1)
count++;
result /= 10;
}
int length = floor(log10(abs(a))) + 1;
result = count / length;
return result;
I want this to check similarity of the Bag of Words(from natural language processing, string of 0s and 1s). I am importing Bag of Words in Monetdb, Column type should be Integer (Not string). If I have for example "10111" and "01001" in the Integer type cells, I want to get "00001" and fraction 1/5, because only 1 positions matches.
Thanks in advance
Might be a bit bulky, but it kind of works) You can optimize it yourself. I hope that I get you correctly.
IDEOne demo
#include <stdio.h>
unsigned int weirdAnd(unsigned int a, unsigned int b) {
unsigned int result = 0;
unsigned int coef = 1;
while (a && b) {
result += ((a % 10) && (b % 10)) * coef;
coef *= 10;
a /= 10;
b /= 10;
}
return result;
}
unsigned int weirdOr(unsigned int a, unsigned int b) {
unsigned int result = 0;
unsigned int coef = 1;
while (a || b) {
result += ((a % 10) || (b % 10)) * coef;
coef *= 10;
a /= 10;
b /= 10;
}
return result;
}
int main(void) {
// your code goes here
unsigned int a = 10110;
unsigned int b = 10011;
printf("%u and \n%u = \n%u\n\n", a, b, weirdAnd(a, b));
printf("%u or \n%u = \n%u\n\n", a, b, weirdOr(a, b));
return 0;
}
Output:
10110 and 10011 = 10010
10110 or 10011 = 10111
The problem is that and works on bits only, and it does not care if the input numbers are given in decimals, octal, hexadecimal, or any other way. To force and to work correctly, you must give it an input in 'binary', that is, only ones and zeroes. To do so you need to grab each digit of the input numbers as if they are binary digits.
The following works as expected:
#include <stdio.h>
int cheap_pow (int base, int exponent)
{
int result = base;
while (exponent-- > 0)
result *= base;
return result;
}
int main (void)
{
int a = 10111, b = 1001 ;
int result, factor;
printf ("BAD: %05d AND %05d = %05d\n", a, b, a & b);
printf ("GOOD: %05d AND %05d = ");
result = 0;
factor = 1;
while (a | b)
{
result += factor * ((a & 1) and (b & 1));
factor *= 10;
a /= 10;
b /= 10;
}
printf ("%05d\n", result);
}
but you must be careful when defining your inputs. When written directly into your source code, a value b = 01001 will be interpreted by the C compiler as octal (base 8), rather than decimal; and it will have the (decimal) value 513. It's just a Rule of C.
If your input comes from elsewhere, you don't need to take this into account – except when you use a standard function such as strtol, where you should carefully read the documentation because it does the same thing:
If base is zero or 16, the string may then include a "0x"
prefix, and the number will be read in base 16; otherwise, a zero
base is taken as 10 (decimal) unless the next character is '0', in
which case it is taken as 8 (octal).
An additional note is this program only will work in the range for signed int, that is (currently) up to 10 "binary" digits. If you need some more, you could switch to a larger type; but beyond that, you are better off with a not-numerical solution and use a character strings throughout.
int a, b;
int tmp = a & b;
int res = 0;
while ((tmp != 0 &&) (tmp / 10 != 0)){
int dig = tmp % 10;
res = (dig == 1)? ++res: res;
tmp /= 10;
}
Try this.
How would you divide a number by 3 without using *, /, +, -, %, operators?
The number may be signed or unsigned.
This is a simple function which performs the desired operation. But it requires the + operator, so all you have left to do is to add the values with bit-operators:
// replaces the + operator
int add(int x, int y)
{
while (x) {
int t = (x & y) << 1;
y ^= x;
x = t;
}
return y;
}
int divideby3(int num)
{
int sum = 0;
while (num > 3) {
sum = add(num >> 2, sum);
num = add(num >> 2, num & 3);
}
if (num == 3)
sum = add(sum, 1);
return sum;
}
As Jim commented this works, because:
n = 4 * a + b
n / 3 = a + (a + b) / 3
So sum += a, n = a + b, and iterate
When a == 0 (n < 4), sum += floor(n / 3); i.e. 1, if n == 3, else 0
Idiotic conditions call for an idiotic solution:
#include <stdio.h>
#include <stdlib.h>
int main()
{
FILE * fp=fopen("temp.dat","w+b");
int number=12346;
int divisor=3;
char * buf = calloc(number,1);
fwrite(buf,number,1,fp);
rewind(fp);
int result=fread(buf,divisor,number,fp);
printf("%d / %d = %d", number, divisor, result);
free(buf);
fclose(fp);
return 0;
}
If also the decimal part is needed, just declare result as double and add to it the result of fmod(number,divisor).
Explanation of how it works
The fwrite writes number bytes (number being 123456 in the example above).
rewind resets the file pointer to the front of the file.
fread reads a maximum of number "records" that are divisor in length from the file, and returns the number of elements it read.
If you write 30 bytes then read back the file in units of 3, you get 10 "units". 30 / 3 = 10
log(pow(exp(number),0.33333333333333333333)) /* :-) */
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
int num = 1234567;
int den = 3;
div_t r = div(num,den); // div() is a standard C function.
printf("%d\n", r.quot);
return 0;
}
You can use (platform dependent) inline assembly, e.g., for x86: (also works for negative numbers)
#include <stdio.h>
int main() {
int dividend = -42, divisor = 5, quotient, remainder;
__asm__ ( "cdq; idivl %%ebx;"
: "=a" (quotient), "=d" (remainder)
: "a" (dividend), "b" (divisor)
: );
printf("%i / %i = %i, remainder: %i\n", dividend, divisor, quotient, remainder);
return 0;
}
Use itoa to convert to a base 3 string. Drop the last trit and convert back to base 10.
// Note: itoa is non-standard but actual implementations
// don't seem to handle negative when base != 10.
int div3(int i) {
char str[42];
sprintf(str, "%d", INT_MIN); // Put minus sign at str[0]
if (i>0) // Remove sign if positive
str[0] = ' ';
itoa(abs(i), &str[1], 3); // Put ternary absolute value starting at str[1]
str[strlen(&str[1])] = '\0'; // Drop last digit
return strtol(str, NULL, 3); // Read back result
}
(note: see Edit 2 below for a better version!)
This is not as tricky as it sounds, because you said "without using the [..] + [..] operators". See below, if you want to forbid using the + character all together.
unsigned div_by(unsigned const x, unsigned const by) {
unsigned floor = 0;
for (unsigned cmp = 0, r = 0; cmp <= x;) {
for (unsigned i = 0; i < by; i++)
cmp++; // that's not the + operator!
floor = r;
r++; // neither is this.
}
return floor;
}
then just say div_by(100,3) to divide 100 by 3.
Edit: You can go on and replace the ++ operator as well:
unsigned inc(unsigned x) {
for (unsigned mask = 1; mask; mask <<= 1) {
if (mask & x)
x &= ~mask;
else
return x & mask;
}
return 0; // overflow (note that both x and mask are 0 here)
}
Edit 2: Slightly faster version without using any operator that contains the +,-,*,/,% characters.
unsigned add(char const zero[], unsigned const x, unsigned const y) {
// this exploits that &foo[bar] == foo+bar if foo is of type char*
return (int)(uintptr_t)(&((&zero[x])[y]));
}
unsigned div_by(unsigned const x, unsigned const by) {
unsigned floor = 0;
for (unsigned cmp = 0, r = 0; cmp <= x;) {
cmp = add(0,cmp,by);
floor = r;
r = add(0,r,1);
}
return floor;
}
We use the first argument of the add function because we cannot denote the type of pointers without using the * character, except in function parameter lists, where the syntax type[] is identical to type* const.
FWIW, you can easily implement a multiplication function using a similar trick to use the 0x55555556 trick proposed by AndreyT:
int mul(int const x, int const y) {
return sizeof(struct {
char const ignore[y];
}[x]);
}
It is easily possible on the Setun computer.
To divide an integer by 3, shift right by 1 place.
I'm not sure whether it's strictly possible to implement a conforming C compiler on such a platform though. We might have to stretch the rules a bit, like interpreting "at least 8 bits" as "capable of holding at least integers from -128 to +127".
Here's my solution:
public static int div_by_3(long a) {
a <<= 30;
for(int i = 2; i <= 32 ; i <<= 1) {
a = add(a, a >> i);
}
return (int) (a >> 32);
}
public static long add(long a, long b) {
long carry = (a & b) << 1;
long sum = (a ^ b);
return carry == 0 ? sum : add(carry, sum);
}
First, note that
1/3 = 1/4 + 1/16 + 1/64 + ...
Now, the rest is simple!
a/3 = a * 1/3
a/3 = a * (1/4 + 1/16 + 1/64 + ...)
a/3 = a/4 + a/16 + 1/64 + ...
a/3 = a >> 2 + a >> 4 + a >> 6 + ...
Now all we have to do is add together these bit shifted values of a! Oops! We can't add though, so instead, we'll have to write an add function using bit-wise operators! If you're familiar with bit-wise operators, my solution should look fairly simple... but just in-case you aren't, I'll walk through an example at the end.
Another thing to note is that first I shift left by 30! This is to make sure that the fractions don't get rounded off.
11 + 6
1011 + 0110
sum = 1011 ^ 0110 = 1101
carry = (1011 & 0110) << 1 = 0010 << 1 = 0100
Now you recurse!
1101 + 0100
sum = 1101 ^ 0100 = 1001
carry = (1101 & 0100) << 1 = 0100 << 1 = 1000
Again!
1001 + 1000
sum = 1001 ^ 1000 = 0001
carry = (1001 & 1000) << 1 = 1000 << 1 = 10000
One last time!
0001 + 10000
sum = 0001 ^ 10000 = 10001 = 17
carry = (0001 & 10000) << 1 = 0
Done!
It's simply carry addition that you learned as a child!
111
1011
+0110
-----
10001
This implementation failed because we can not add all terms of the equation:
a / 3 = a/4 + a/4^2 + a/4^3 + ... + a/4^i + ... = f(a, i) + a * 1/3 * 1/4^i
f(a, i) = a/4 + a/4^2 + ... + a/4^i
Suppose the reslut of div_by_3(a) = x, then x <= floor(f(a, i)) < a / 3. When a = 3k, we get wrong answer.
To divide a 32-bit number by 3 one can multiply it by 0x55555556 and then take the upper 32 bits of the 64 bit result.
Now all that's left to do is to implement multiplication using bit operations and shifts...
Yet another solution. This should handle all ints (including negative ints) except the min value of an int, which would need to be handled as a hard coded exception. This basically does division by subtraction but only using bit operators (shifts, xor, & and complement). For faster speed, it subtracts 3 * (decreasing powers of 2). In c#, it executes around 444 of these DivideBy3 calls per millisecond (2.2 seconds for 1,000,000 divides), so not horrendously slow, but no where near as fast as a simple x/3. By comparison, Coodey's nice solution is about 5 times faster than this one.
public static int DivideBy3(int a) {
bool negative = a < 0;
if (negative) a = Negate(a);
int result;
int sub = 3 << 29;
int threes = 1 << 29;
result = 0;
while (threes > 0) {
if (a >= sub) {
a = Add(a, Negate(sub));
result = Add(result, threes);
}
sub >>= 1;
threes >>= 1;
}
if (negative) result = Negate(result);
return result;
}
public static int Negate(int a) {
return Add(~a, 1);
}
public static int Add(int a, int b) {
int x = 0;
x = a ^ b;
while ((a & b) != 0) {
b = (a & b) << 1;
a = x;
x = a ^ b;
}
return x;
}
This is c# because that's what I had handy, but differences from c should be minor.
It's really quite easy.
if (number == 0) return 0;
if (number == 1) return 0;
if (number == 2) return 0;
if (number == 3) return 1;
if (number == 4) return 1;
if (number == 5) return 1;
if (number == 6) return 2;
(I have of course omitted some of the program for the sake of brevity.) If the programmer gets tired of typing this all out, I'm sure that he or she could write a separate program to generate it for him. I happen to be aware of a certain operator, /, that would simplify his job immensely.
Using counters is a basic solution:
int DivBy3(int num) {
int result = 0;
int counter = 0;
while (1) {
if (num == counter) //Modulus 0
return result;
counter = abs(~counter); //++counter
if (num == counter) //Modulus 1
return result;
counter = abs(~counter); //++counter
if (num == counter) //Modulus 2
return result;
counter = abs(~counter); //++counter
result = abs(~result); //++result
}
}
It is also easy to perform a modulus function, check the comments.
This one is the classical division algorithm in base 2:
#include <stdio.h>
#include <stdint.h>
int main()
{
uint32_t mod3[6] = { 0,1,2,0,1,2 };
uint32_t x = 1234567; // number to divide, and remainder at the end
uint32_t y = 0; // result
int bit = 31; // current bit
printf("X=%u X/3=%u\n",x,x/3); // the '/3' is for testing
while (bit>0)
{
printf("BIT=%d X=%u Y=%u\n",bit,x,y);
// decrement bit
int h = 1; while (1) { bit ^= h; if ( bit&h ) h <<= 1; else break; }
uint32_t r = x>>bit; // current remainder in 0..5
x ^= r<<bit; // remove R bits from X
if (r >= 3) y |= 1<<bit; // new output bit
x |= mod3[r]<<bit; // new remainder inserted in X
}
printf("Y=%u\n",y);
}
Write the program in Pascal and use the DIV operator.
Since the question is tagged c, you can probably write a function in Pascal and call it from your C program; the method for doing so is system-specific.
But here's an example that works on my Ubuntu system with the Free Pascal fp-compiler package installed. (I'm doing this out of sheer misplaced stubbornness; I make no claim that this is useful.)
divide_by_3.pas :
unit Divide_By_3;
interface
function div_by_3(n: integer): integer; cdecl; export;
implementation
function div_by_3(n: integer): integer; cdecl;
begin
div_by_3 := n div 3;
end;
end.
main.c :
#include <stdio.h>
#include <stdlib.h>
extern int div_by_3(int n);
int main(void) {
int n;
fputs("Enter a number: ", stdout);
fflush(stdout);
scanf("%d", &n);
printf("%d / 3 = %d\n", n, div_by_3(n));
return 0;
}
To build:
fpc divide_by_3.pas && gcc divide_by_3.o main.c -o main
Sample execution:
$ ./main
Enter a number: 100
100 / 3 = 33
int div3(int x)
{
int reminder = abs(x);
int result = 0;
while(reminder >= 3)
{
result++;
reminder--;
reminder--;
reminder--;
}
return result;
}
Didn't cross-check if this answer is already published. If the program need to be extended to floating numbers, the numbers can be multiplied by 10*number of precision needed and then the following code can be again applied.
#include <stdio.h>
int main()
{
int aNumber = 500;
int gResult = 0;
int aLoop = 0;
int i = 0;
for(i = 0; i < aNumber; i++)
{
if(aLoop == 3)
{
gResult++;
aLoop = 0;
}
aLoop++;
}
printf("Reulst of %d / 3 = %d", aNumber, gResult);
return 0;
}
This should work for any divisor, not only three. Currently only for unsigned, but extending it to signed should not be that difficult.
#include <stdio.h>
unsigned sub(unsigned two, unsigned one);
unsigned bitdiv(unsigned top, unsigned bot);
unsigned sub(unsigned two, unsigned one)
{
unsigned bor;
bor = one;
do {
one = ~two & bor;
two ^= bor;
bor = one<<1;
} while (one);
return two;
}
unsigned bitdiv(unsigned top, unsigned bot)
{
unsigned result, shift;
if (!bot || top < bot) return 0;
for(shift=1;top >= (bot<<=1); shift++) {;}
bot >>= 1;
for (result=0; shift--; bot >>= 1 ) {
result <<=1;
if (top >= bot) {
top = sub(top,bot);
result |= 1;
}
}
return result;
}
int main(void)
{
unsigned arg,val;
for (arg=2; arg < 40; arg++) {
val = bitdiv(arg,3);
printf("Arg=%u Val=%u\n", arg, val);
}
return 0;
}
Would it be cheating to use the / operator "behind the scenes" by using eval and string concatenation?
For example, in Javacript, you can do
function div3 (n) {
var div = String.fromCharCode(47);
return eval([n, div, 3].join(""));
}
First that I've come up with.
irb(main):101:0> div3 = -> n { s = '%0' + n.to_s + 's'; (s % '').gsub(' ', ' ').size }
=> #<Proc:0x0000000205ae90#(irb):101 (lambda)>
irb(main):102:0> div3[12]
=> 4
irb(main):103:0> div3[666]
=> 222
EDIT: Sorry, I didn't notice the tag C. But you can use the idea about string formatting, I guess...
Using BC Math in PHP:
<?php
$a = 12345;
$b = bcdiv($a, 3);
?>
MySQL (it's an interview from Oracle)
> SELECT 12345 DIV 3;
Pascal:
a:= 12345;
b:= a div 3;
x86-64 assembly language:
mov r8, 3
xor rdx, rdx
mov rax, 12345
idiv r8
The following script generates a C program that solves the problem without using the operators * / + - %:
#!/usr/bin/env python3
print('''#include <stdint.h>
#include <stdio.h>
const int32_t div_by_3(const int32_t input)
{
''')
for i in range(-2**31, 2**31):
print(' if(input == %d) return %d;' % (i, i / 3))
print(r'''
return 42; // impossible
}
int main()
{
const int32_t number = 8;
printf("%d / 3 = %d\n", number, div_by_3(number));
}
''')
Using Hacker's Delight Magic number calculator
int divideByThree(int num)
{
return (fma(num, 1431655766, 0) >> 32);
}
Where fma is a standard library function defined in math.h header.
How about this approach (c#)?
private int dividedBy3(int n) {
List<Object> a = new Object[n].ToList();
List<Object> b = new List<object>();
while (a.Count > 2) {
a.RemoveRange(0, 3);
b.Add(new Object());
}
return b.Count;
}
I think the right answer is:
Why would I not use a basic operator to do a basic operation?
Solution using fma() library function, works for any positive number:
#include <stdio.h>
#include <math.h>
int main()
{
int number = 8;//Any +ve no.
int temp = 3, result = 0;
while(temp <= number){
temp = fma(temp, 1, 3); //fma(a, b, c) is a library function and returns (a*b) + c.
result = fma(result, 1, 1);
}
printf("\n\n%d divided by 3 = %d\n", number, result);
}
See my another answer.
First:
x/3 = (x/4) / (1-1/4)
Then figure out how to solve x/(1 - y):
x/(1-1/y)
= x * (1+y) / (1-y^2)
= x * (1+y) * (1+y^2) / (1-y^4)
= ...
= x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i)) / (1-y^(2^(i+i))
= x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i))
with y = 1/4:
int div3(int x) {
x <<= 6; // need more precise
x += x>>2; // x = x * (1+(1/2)^2)
x += x>>4; // x = x * (1+(1/2)^4)
x += x>>8; // x = x * (1+(1/2)^8)
x += x>>16; // x = x * (1+(1/2)^16)
return (x+1)>>8; // as (1-(1/2)^32) very near 1,
// we plus 1 instead of div (1-(1/2)^32)
}
Although it uses +, but somebody already implements add by bitwise op.
Use cblas, included as part of OS X's Accelerate framework.
[02:31:59] [william#relativity ~]$ cat div3.c
#import <stdio.h>
#import <Accelerate/Accelerate.h>
int main() {
float multiplicand = 123456.0;
float multiplier = 0.333333;
printf("%f * %f == ", multiplicand, multiplier);
cblas_sscal(1, multiplier, &multiplicand, 1);
printf("%f\n", multiplicand);
}
[02:32:07] [william#relativity ~]$ clang div3.c -framework Accelerate -o div3 && ./div3
123456.000000 * 0.333333 == 41151.957031
Generally, a solution to this would be:
log(pow(exp(numerator),pow(denominator,-1)))
Okay I think we all agree that this isn't a real world problem. So just for fun, here's how to do it with Ada and multithreading:
with Ada.Text_IO;
procedure Divide_By_3 is
protected type Divisor_Type is
entry Poke;
entry Finish;
private
entry Release;
entry Stop_Emptying;
Emptying : Boolean := False;
end Divisor_Type;
protected type Collector_Type is
entry Poke;
entry Finish;
private
Emptying : Boolean := False;
end Collector_Type;
task type Input is
end Input;
task type Output is
end Output;
protected body Divisor_Type is
entry Poke when not Emptying and Stop_Emptying'Count = 0 is
begin
requeue Release;
end Poke;
entry Release when Release'Count >= 3 or Emptying is
New_Output : access Output;
begin
if not Emptying then
New_Output := new Output;
Emptying := True;
requeue Stop_Emptying;
end if;
end Release;
entry Stop_Emptying when Release'Count = 0 is
begin
Emptying := False;
end Stop_Emptying;
entry Finish when Poke'Count = 0 and Release'Count < 3 is
begin
Emptying := True;
requeue Stop_Emptying;
end Finish;
end Divisor_Type;
protected body Collector_Type is
entry Poke when Emptying is
begin
null;
end Poke;
entry Finish when True is
begin
Ada.Text_IO.Put_Line (Poke'Count'Img);
Emptying := True;
end Finish;
end Collector_Type;
Collector : Collector_Type;
Divisor : Divisor_Type;
task body Input is
begin
Divisor.Poke;
end Input;
task body Output is
begin
Collector.Poke;
end Output;
Cur_Input : access Input;
-- Input value:
Number : Integer := 18;
begin
for I in 1 .. Number loop
Cur_Input := new Input;
end loop;
Divisor.Finish;
Collector.Finish;
end Divide_By_3;