Snowflake Tasks and Streams - Complexity and Visualization - snowflake-cloud-data-platform

We're heading into a POC and would need to determine if Snowflake tasks and streams are useful for CDC and data transformation. I have read snowflake documentation and the more I read it seems like it will be a complex mess to handle. Thinking about thousands of tables and complex transformations, how will tasks and streams scale up? Considering of a table that gets loaded from 5 other feeds, how will the process look like. On top of that, snowflake doesn't offer any visualization to work with tasks. Can some of you who worked with Snowflake streams/tasks comment and share you opinion of using tasks and streams? If you went with an alternative after trying them out, was it a commercial ETL tool or databricks? If we're already using qlik to bring in data into AWS S3 (data lake), would it make sense to use streams to ingest from our data lake into snowflake?
TIA

This question seems too wide for the typical Stack Overflow process (so the community might choose to close it).
In the meantime, I'll reply here to one of the stated questions: "On top of that, snowflake doesn't offer any visualization to work with tasks"
There is a tool to visualize tasks, created by a Snowflake SE:
https://medium.com/snowflake/visualizing-task-hierarchies-and-dependencies-in-snowflake-snowsight-d28298d0f0ed
For the larger picture: Snowflake streams and tasks are basic building blocks for more complex solutions. As your use case grows more complex, you'll need to find ways to manage this complexity - either with your own tools, Snowflake's, or third parties.
Since you are running a POC: Make sure to ask your Snowflake sales contact. Engineers like Dave are ready and eager to find a solution that fits your needs.

Related

What are the approaches to the Big-Data problems? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 7 years ago.
Improve this question
Let us consider the following problem. We have a system containing a huge amount of data (Big-Data). So, in fact we have a data base. As the first requirement we want to be able to write to and to read from the data base quickly. We also want to have a web-interface to the data-bases (so that different clients can write to and read from the data base remotely).
But the system that we want to have should be more than a data base. First, we want to be able to run different data-analysis algorithm on the data to find regularities, correlations, abnormalities and so on (as before we do care a lot about the performance). Second, we want to bind a machine learning machinery to the data-base. Which means that we want to run machine learning algorithms on the data to be able to learn "relations" present on the data and based on that predict the values of entries that are not yet in the data base.
Finally, we want to have a nice clicks based interface that visualize the data. So that the users can see the data in form of nice graphics, graphs and other interactive visualisation objects.
What are the standard and widely recognised approaches to the above described problem. What programming languages have to be used to deal with the described problems?
I will approach your question like this: I assume you are firmly interested in big data database use already and have a real need for one, so instead of repeating textbooks upon textbooks of information about them, I will highlight some that meet your 5 requirements - mainly Cassandra and Hadoop.
1) The first requirement we want to be able to write to and to read from the database quickly.
You'll want to explore NoSQL databases which are often used for storing “unstructured” Big Data. Some open-source databases include Hadoop and Cassandra. Regarding the Cassandra,
Facebook needed something fast and cheap to handle the billions of status updates, so it started this project and eventually moved it to Apache where it's found plenty of support in many communities (ref).
References:
Big Data and NoSQL: Five Key Insights
NoSQL standouts: New databases for new applications
Big data woes: Which database should I use?
Cassandra and Spark: A match made in big data heaven
List of NoSQL databases (currently 150)
2) We also want to have a web interface to the database
See the list of 150 NoSQL databases to see all the various interfaces available, including web interfaces.
Cassandra has a cluster admin, a web-based environment, a web-admin based on AngularJS, and even GUI clients.
References:
150 NoSQL databases
Cassandra Web
Cassandra Cluster Admin
3) We want to be able to run different data-analysis algorithm on the data
Cassandra, Hive, and Hadoop are well-suited for data analytics. For example, eBay uses Cassandra for managing time-series data.
References:
Cassandra, Hive, and Hadoop: How We Picked Our Analytics Stack
Cassandra at eBay - Cassandra Summit
An Introduction to Real-Time Analytics with Cassandra and Hadoop
4) We want to run machine learning algorithms on the data to be able to learn "relations"
Again, Cassandra and Hadoop are well-suited. Regarding Apache Spark + Cassandra,
Spark was developed in 2009 at UC Berkeley AMPLab, open sourced in
2010, and became a top-level Apache project in February, 2014. It has
since become one of the largest open source communities in big data, with over 200 contributors in 50+ organizations (ref).
Regarding Hadoop,
With the rapid adoption of Apache Hadoop, enterprises use machine learning as a key technology to extract tangible business value from their massive data assets.
References:
Getting Started with Apache Spark and Cassandra
What is Apache Mahout?
Data Science with Apache Hadoop: Predicting Airline Delays
5) Finally, we want to have a nice clicks-based interface that visualize the data.
Visualization tools (paid) that work with the above databases include Pentaho, JasperReports, and Datameer Analytics Solutions. Alternatively, there are several open-source interactive visualization tools such as D3 and Dygraphs (for big data sets).
References:
Data Science Central - Resources
Big Data Visualization
Start looking at:
what kind of data you want to store in the Database?
what kind of relationship between data you got?
how this data will be accessed? (for instance you need to access a certain set of data quite often)
are they documents? text? something else?
Once you got an answer for all those questions, you can start looking at which NoSQL Database you could use that would give you the best results for your needs.
You can choose between 4 different types: Key-Value, Document, Column family stores, and graph databases.
Which one will be the best fit can be determined answering the question above.
There are ready to use stack that may really help to start with your project:
Elasticsearch that would be your Database (it has a REST API that you can use to write them to the DB and to make queries and analysis)
Kibana is a visualization tool, it will allows you to explore and visualize your data, it it quite powerful and will be more than enough for most of your needs
Logstash can centralize the data processing and help you process and save them in elasticsearch, it already support quite few sources of logs and events, and you can also write your own plugin as well.
Some people refers to them as the ELK stack.
I don't believe you should worry about the programming language you have to use at this point, try to select the tools first, sometimes the choices are limited by the tools you want to use and you can still use a mixture of languages and make the effort only if/when it make sense.
A common way to solve such a requirements is to use Amazon Redshift and the ecosystem around it.
Redshift is a peta-scale data warehouse (it can also start with giga-scale), that exposes Ansi SQL interface. As you can put as much data as you like into the DWH and you can run any type of SQL you wish against this data, this is a good infrastructure to build almost any agile and big data analytics system.
Redshift has many analytics functions, mainly using Window functions. You can calculate averages and medians, but also percentiles, dense rank etc.
You can connect almost every SQL client you want using JDBS/ODBC drivers. It can be from R, R studio, psql, but also from MS-Excel.
AWS added lately a new service for Machine Learning. Amazon ML is integrating nicely with Redshift. You can build predictive models based on data from Redshift, by simply giving an SQL query that is pulling the data needed to train the model, and Amazon ML will build a model that you can use both for batch prediction as well as for real-time predictions. You can check this blog post from AWS big data blog that shows such a scenario: http://blogs.aws.amazon.com/bigdata/post/TxGVITXN9DT5V6/Building-a-Binary-Classification-Model-with-Amazon-Machine-Learning-and-Amazon-R
Regarding visualization, there are plenty of great visualization tools that you can connect to Redshift. The most common ones are Tableau, QliView, Looker or YellowFin, especially if you don't have any existing DWH, where you might want to keep on using tools like JasperSoft or Oracle BI. Here is a link to a list of such partners that are providing free trial for their visualization on top of Redshift: http://aws.amazon.com/redshift/partners/
BTW, Redshift also provides a free trial for 2 months that you can quickly test and see if it fits your needs: http://aws.amazon.com/redshift/free-trial/
Big Data is a tough problem primarily because it isn't one single problem. First if your original database is a normal OLTP database that is handling business transactions throughout the day, you will not want to also do your big data analysis on this system since the data-analysis you will want to do will interfere with the normal business traffic.
Problem #1 is what type of database do you want to use for data-analysis? You have many choices ranging from RDBMS, Hadoop, MongoDB, and Spark. If you go with RDBMS then you will want to change the schema to be more compliant with data-analysis. You will want to create a data warehouse with a star schema. Doing this will make many tools available to you because this method of data analysis has been around for a very long time. All of the other "big data" and data analysis databases do not have the same level of tooling available, but they are quickly catching up. Each one of these will require research on which one you will want to use based on your problem set. If you have big batches of data RDBMS and Hadoop will be good. If you have streaming types of data then you will want to look at MongoDB and Spark. If you are a Java shop then RDBMS, Hadoop or Spark. If you are JavaScript MongoDB. If you are good with Scala then Spark.
Problem #2 is getting your data from your transactional database into your big data storage. You will need to find a programming language that has libraries to talk to both databases and you will have to decide when and where you will be moving this data. You can use Python, Java or Ruby to do this work.
Problem #3 is your UI. If you decide to go with RDBMS then you can use many of the available tools available or you can build your own. The other data storage solutions will have tool support but it isn't as mature is that available for the RDBMS. You are most likely going to build your own here anyway because your analysts will want to have the tools built to their specifications. Java works with all of these storage mechanisms but you can probably get Python to work too. You may want to provide a service layer built in Java that provides a RESTful interface and then put a web layer in front of that service layer. If you do this, then your web layer can be built in any language you prefer.
These three languages are most commonly used for machine learning and data mining on the Server side: R, Python, SQL. If you are aiming for heavy mathematical functions and graph generation, Haskell is very popular.

Building OLAP style applications with SalesForce/Apex

We are considering moving a planning and budgeting app to the Salesforce platform. The existing app is built on a dimensional data model, and has extensive ad-hoc query capability implemented through star joins.
We see how the platform will allow us to put together the data entry screens quickly, but the underlying datamodel and query languages do not seem suitable for our reporting requirements.
Is it possible to have fast and flexible reporting with this platform? If not, how cumbersome is it to extract the data on a regular basis to bring it into an analytical application?
Hmm - I guess I answer my own question? The relative silence on this (even with bounty- who wants to have anything to do with something that is ignored on stackoverflow?) is a kind of answer.
So - No, this platform is not well suited for applications that have any kind of ROLAP requirements. I guess shame on me for asking a silly question, but I welcome any responses...
Doing native, fast, OLAP-like queries: possible, but somewhat cumbersome since SFDC is basically a traditional-style RDBMS with somewhat limited joining capability within its native reporting. You can do OLAP-like things with custom code but it can get cumbersome if you are used to using established high-end OLAP solutions.
Extracting data from SFDC to use in other applications: really easy and supported across a number of technologies, the most common is extracting CSV files or using the data web service. There are tools like the SFDC data loader which also let you extract/load data via command line or UI. That's probably what I would recommend to a client who has pre-existing expertise in a given analysis tool.
I would not attempt to build an OLAP data model in salesforce. The limitations in both the joins and roll-up of data from child to parent make it difficult to implement a star schema with aggregations.
There are some products such as IQ 20/20 that can integrate with salesforce and provide near real time business intelligence functionality.
Analytical snapshots can also help as they provide a way to build aggregate tables. The snapshots pull data from a report and can be scheduled to run periodically. The different salesforce editions give different features regarding the scheduling so it is best to check the limits for your edition before going too far into the design.

What database is good enough for logging application?

I am writing a web application with nodeJS that can be used by other applications to store logs and accessed later in a web interface or by applications themselves providing an API. Similar to Graylog2 but schema free.
I've already tried couchDB in which each document would be a log doc but since I'm not really using revisions it seems to me I'm not using its all features. And beside that I think if the logs exceeds a limit it would be pretty hard to manage in couchDB.
What I'm really looking for, is a big array of logs that can be sorted, filtered, searched and capped on. Then the last events of it accessed. It should be schema free and writing to it should be non-blocking.
I'm considering using Cassandra(I'm not really familiar with it) due to the points here said. MongoDB seems good here too, since Graylog2 uses in mongoDB, in here it has some good points about it.
I've already have seen this question, but not satisfied with the answers.
Edit:
For some reasons I can't use Cassandra in production, now I'm trying MongoDB.
One more reason to use mongoDB :
http://www.slideshare.net/WombatNation/logging-app-behavior-to-mongo-db
More edits:
It is similar to graylog2, but the difference I want to make that instead of having a message field, having fileds defined by the client, which is why I want it to be schema free, and because of that, I may need to query in the user defined fields. We can build it on SQL, but querying on the user defined fields would be reinventing wheel. Same goes with files.
Technically what I'm looking for is to get rich statistical data in the end, or easy debugging and a lot of other stuff that we can't get out of the logs.
Where shall it be stored and how shall it be retrieved?
I guess it depends on how much data you are dealing with. If you have a huge amount (terabytes and petabytes per day) of logs then Apache Kafka, which is designed to allow data to be PULLED by HDFS in parallel, is a interesting solution - still in the incubation stage. I believe if you want to consume Kafka messages with MongoDb, you'd need to develop your own adapter to ingest it as a consumer of a particular Kafka topic. Although MongoDb data (e.g. shards and replicas) is distributed, it may be a sequential process to ingest each message. So, there may be a bottleneck or even race conditions depending on the rate and size of message traffic. Kafka is optimized to pump and append that data to HDFS nodes using message brokers FAST. Then once it is in HDFS you can map/reduce to analyze your information in a variety of ways.
If MongoDb can handle the ingestion load, then it is an excellent, scalable, real-time solution to find information, particularly documents. Otherwise, if you have more time to process data (i.e. batch processes that take hours and sometimes days), then Hadoop or some other Map Reduce database is warranted. Finally, Kafka can distribute that load of messages and hookup that fire-hose to a variety of consumers. Overall, these new technologies spread the load and huge amounts of data across cheap hardware using software to manage failure and recover with a very low probability of losing data.
Even with a small amount of data, MongoDb is a nice option to traditional relational database solutions which require more overhead of developer resources to design, build and maintain.
General Approach
You have a lot of work ahead of you. Whichever database you use, you have many features which you must build on top of the DB foundation. You have done good research about all of your options. It sounds like you suspect that all have pros and cons but all are imperfect. Your suspicion is correct. At this point it is probably time to start writing code.
You could just choose one arbitrarily and start building your application. If your guess was correct that the pros and cons balance out and it's all about the same, then why not simply start building immediately? When you hit difficulty X on your database, remember that it gave you convenience Y and Z and that's just life.
You could also establish the fundamental core of your application and implement various prototypes on each of the databases. That might give you true insight to help discriminate between the databases for your specific application. For example, besides the interface, indexing, and querying questions, what about deployment? What about backups? What about maintenance and security? Maybe "wasting" time to build the same prototype on each platform will make the answer very clear for you.
Notes about CouchDB
I suppose CouchDB is "NoSQL" if you say so. Other things which are "no SQL" include bananas, poems, and cricket. It is not a very meaningful word. We have general-purpose languages and domain-specific languages; similarly CouchDB is a domain-specific database. It can save you time if you need the following features:
Built-in web API: clients may query directly
Incremental map-reduce: CouchDB runs the job once, but you can query repeatedly at no cost. Updates to the data set are immediately reflected in the map/reduce result without full re-processing
Easy to start small but expand to large clusters without changing application code.
Have you considered Apache Kafka?
Kafka is a distributed messaging system developed at LinkedIn for
collecting and delivering high volumes of log data with low latency.
Our system incorporates ideas from existing log aggregators and
messaging systems, and is suitable for both offline and online message
consumption.

Database selection for a web-scale analytics application

I want to build a web-application similar to Google-Analytics, in which I collect statistics on my customers' end-users, and show my customers analysis based on that data.
Characteristics:
High scalability, handle very large volume
Compartmentalized - Queries always run on a single customer's data
Support analytical queries (drill-down, slices, etc.)
Due to the analytical need, I'm considering to use an OLAP/BI suite, but I'm not sure it's meant for this scale. NoSQL database? Simple RDBMS would do?
These what I am using at work in a production environnement and it works like a charm.
I copled three things
PostgreSQL + LucidDB + Mondrian (More generally the whole Pentaho BI suite components)
PostgreSQL : I am not going to describe postgresql, really strong open source RDBMS will let you do - certainly - everything you need. I use it to store my operational data.
LucidDB : LucidDB is an Open source column-store database. Highly scalable and will provide a really gain of processing time compare to PostgreSQL for retrieving a large amount of data. It is not optimized for transaction processing but for intensive reads. This is my Datawarehouse database
Mondrian : Mondrian is an Open Source R-OLAP cube. LucidDB made it easy to connect those two programs together.
I would recommend you to look at the whole Pentaho BI Suite, it worth it, you might want to use some of there components.
Hope I could help,
There are two main architectures you could opt for for true web-scale:
1. "BI" architecture
Event journaller (e.g. LWES Journaller) or immutable event store (e.g. HDFS) feeds
Analytics/column-store database (e.g. Greenplum, InfiniDB, LucidDB, Infobright) feeds
Business intelligence reporting tool (e.g. Microstrategy, Pentaho Business Analytics)
2. "NoSQL" architecture
(Optional) Event journaller or immutable event store feeds
NoSQL database (e.g. Cassandra, Riak, HBase) feeds
A custom analytics UI (e.g. using D3.js)
The immutable event store or journaller is there because in most cases you want to be batching your analytics events and doing bulk updates to your database (even with something like HDFS) - rather than doing an atomic write for every single page view etc.
For SnowPlow, our open-source analytics platform built on Hadoop and Hive, the event logs are all collected on S3 first before being batch loaded into Hive.
Note that the "NoSQL architecture" will involve a fair bit more development work. Remember that with either architecture, you can always shard by customer if the volumes grow truly epic (billions of rows per customer) - because there's no need (I'm guessing) for cross-customer analytics.
I'd say that having put in place OLAP analysis is always nice and then has great potential for sophisticated data analysis using MDX.
What do you mean by large volume ?
Where are your customer user information?
What kind of front-end and reporting are you going to use?
Cheers.
Disclaimer : I'll make some publicity for my own solution - have a look to www.icCube.com and contact me for more details

Which NoSQL backend to store trace data from webpage

In our web application we need to trace what users click, what they write into search box, etc. Lots of data will be sent by AJAX. Generally functionality is a bit similar to google analytics, but we need to customize it in different ways.
Data will be collected and once per day aggregated and exported to PostgreSQL, so backend should be able to handle dozens of inserts. I don't consider usage of traditional SQL database, because probably it won't handle so many inserts efficiently.
I wonder which backend would you use for such task? Actually I think about MongoDB or Cassandra. But maybe you know better software for that task? Maybe something different then NoSQL database?
Web application is written in Ruby on Rails so support for Ruby would be nice but that's definitely not the most important.
Sounds like you need to analyse your specific requirements.
It may be that the best solution is to split / partition / shard a conventional database and then push the data up from there.
Depending on what your tolerance for data loss is, there are a lot of options. If you choose a system which has single-server durability, a major source of write bottleneck will be fdatasync() (assuming you use hard drives to store your data on).
If you can tolerate syncing less often than on every commit, then you may be able to tune your database to commit at timed intervals.
Depending on your table, index structure etc, I'd expect that you can get rather a lot of inserts with a "conventional" db (e.g. postgresql), if you manage it correctly and tune the durability (if it supports that) to your liking.
Sharding this into several instances of course will enable you to scale this up. However, you need to be mindful of operational requirements (i.e. what happens if some of the instances are down). Talk to your Ops team about what they're comfortable managing.

Resources