Better algorithm for searching through an array of points? - arrays

I have an array of structs, where each struct is a 2D position (pair of 32-bit values). This array is for tracking points of interest on a map.
struct Point {
int x;
int y;
};
// ...
struct Point pointsOfInterest[1024];
The problem is, those points of interest are constantly changing, meaning the entries in the array are very frequently being added or removed. On top of that, each reported point of interest can possibly already exist in the array, so I can't blindly add new ones without checking whether they already exist.
At the moment the array is unsorted (new entries added to the end, swap and pop to remove), and I iterate over the entire list to find entries for removal or duplication check. I'd like to know what my options are for speeding up this process.
In other languages, this is where I break out a dictionary or hash set. Neither exist in C, so I have to weigh the complexity of adding something like that.
I've considered sorting the list (i.e. first by X, then Y). But given the frequency of updates, I feel like I'll be thrashing the table far more than when iterating. But my knowledge of sorting algorithms is minimal.
Would a binary tree of some sort be any better here? Or would I again be spending all of my time re-balancing the tree?
Theoretically, given the (perceived) complexity of these algorithms, is there a threshold below which a linear search remains a viable option?
I'm assuming this is a known solved problem, so I'm hoping to get pointed in the right direction before I spend a lot of time reinventing the wheel and testing possible solutions.

Apart from trivial cases, it's often extremely hard to predict where the performance gains are. That's why you should benchmark your code before and after changes. Also profile your code to find where it spends most time.
In other languages, this is where I break out a dictionary or hash set. Neither exist in C, so I have to weigh the complexity of adding something like that.
TBH, it's not that complicated to implement. If you need the performance, it's a no brainer. But it's not guaranteed that it will be faster.
I've considered sorting the list (i.e. first by X, then Y). But given the frequency of updates, I feel like I'll be thrashing the table far more than when iterating. But my knowledge of sorting algorithms is minimal.
It's very likely that this is not optimal. But you can try it out. And you don't need to do a complete sort. Just do a binary search and move everything that comes after.
Would a binary tree of some sort be any better here? Or would I again be spending all of my time re-balancing the tree?
Only one way to find out. Try it and benchmark.
Theoretically, given the (perceived) complexity of these algorithms, is there a threshold below which a linear search remains a viable option?
I'm sure there are, but these always have to be balanced with reality. Like cache misses that can have a great impact on performance. One thing that might improve cache-friendlyness could be changing
struct Point {
int x;
int y;
};
struct Point pointsOfInterest[1024];
to
int pointsOfInterest[2][1024];
And use the first index for x or y. Might work, depending on what you're doing with the data. I guess it would not work in your case, but it could speed up a function that's only loops over one dimension.

Related

Optimizing AVLTree with B-tree

PREMISE
So lately i have been thinking of a problem that is common to databases: trying to optimize insertion, search, deletion and update of data.
Usually i have seen that most of the databases nowadays use the BTree or B+Tree to solve such a problem, but they are usually used to store data inside the disk and i wanted to work with in-memory data, so i thought about using the AVLTree (the difference should be minimal because the purpose of the BTrees is kind of the same of the AVLTree but the implementation is different and so are the effects).
Before continuing with the reasoning behind this i would like to get in a deeper level of what i am trying to solve.
So in a modern database data stored in a table with a PRIMARY KEY which tends to be INDEXED (i am not very experienced in indexing so what i will say is basic reasoning i put into this problem), usually the PRIMARY KEY is an increasing number (even though nowadays is a bad practice) starting from 1.
Using normally an AVLTree should be more then enough to solve the problem cause this particular tree is always balanced and offers O(log2(n)) operations, BUT i wanted to reach this on a deeper level trying to optimize it even more then needed.
THEORY
So as the title of the question suggests i am trying to optimize the AVLTree merging it with a Btree.
Basically every node of this new Tree is lets say an array of ten elements every node as also the corresponding height in the tree and every element of the array is ordered ascending.
INSERTION
The insertion initally fills the array of the root node when the root node is full it generates the left and right children which also contains an array of 10 elements.
Whenever a new node is added the Tree autorebalances the nodes based on the first key of the vectors of the left and right child using also their height (note that this is actually how the AVLTree behaves but the AVLTree only has 2 nodes and no vector just the values).
SEARCH
Searching an element works this way: staring from the root we compare the value we are searching K with the first and last key of the array of the current node if the value is in between, we know that it surely will be in the array of the current node so we can start using a binarySearch with O(log2(n)) complexity into this array of ten elements, otherise we go on the left if the key we are searcing is smaller then the first key or we go to the right if it is bigger.
DELETION
The same of the searching but we delete the value.
UPDATE
The same of the searching but we update the value.
CONCLUSION
If i am not wrong this should have a complexity of O(log10(log2(10))) which is always logarithmic so we shouldn't care about this optimization, but in my opinion this could make the height of the tree so much smaller while providing also quick time on the search.
B tree and B+ tree are indeed used for disk storage because of the block design. But there is no reason why they could not be used also as in-memory data structure.
The advantages of a B tree include its use of arrays inside a single node. Look-up in a limited vector of maybe 10 entries can be very fast.
Your idea of a compromise between B tree and AVL would certainly work, but be aware that:
You need to perform tree rotations like in AVL in order to keep the tree balanced. In B trees you work with redistributions, merges and splits, but no rotations.
Like with AVL, the tree will not always be perfectly balanced.
You need to describe what will be done when a vector is full and a value needs to be added to it: the node will have to split, and one half will have to be reinjected as a leaf.
You need to describe what will be done when a vector gets a very low fill-factor (due to deletions). If you leave it like that, the tree could degenerate into an AVL tree where every vector only has 1 value, and then the additional vector overhead will make it less efficient than a genuine AVL tree. To keep the fill-factor of a vector above a minimum you cannot easily apply the redistribution mechanism with a sibling node, as would be done in B-trees. It would work with leaf nodes, but not with internal nodes. So this needs to be clarified...
You need to describe what will be done when a value in a vector is updated. Of course, you would insert it in its sorted position: but if it becomes the first or last value in that vector, this may violate the order with regards to left and right children, and so also there you may need to define more precisely the algorithm.
Binary search in a vector of 10 may be overkill: a simple left-to-right scan may be faster, as CPUs are optimised to read consecutive memory. This does not impact the time complexity, since we set that the vector size is limited to 10. So we are talking about doing either at most 4 comparisons (3-4 on average depending on binary search implementation) or at most 10 comparisons (5 on average).
If I am not wrong this should have a complexity of O(log10(log2(n))) which is always logarithmic
Actually, if that were true, it would be sub-logarithmic, i.e. O(loglogn). But there is a mistake here. The binary search in a vector is not related to n, but to 10. Also, this work comes in addition to finding the node with that vector. So it is not a logarithm of a logarithm, but a sum of logarithms:
O(log10n + log210) = O(log n)
Therefore the time complexity is no different than the one for AVL or B-tree -- provided that the algorithm is completed with the missing details, keeping within the logarithmic complexity.
You should maybe also consider to implement a pure B tree or B+ tree: that way you also benefit from some of the advantages that neither the AVL, nor the in-between structure has:
The leaves of the tree are all at the same level
No rotations are needed
The tree height only changes at one spot: the root.
B+ trees provide a very fast mean for iterating all values in their order.

what does worst case big omega(n) means?

If Big-Omega is the lower bound then what does it mean to have a worst case time complexity of Big-Omega(n).
From the book "data structures and algorithms with python" by Michael T. Goodrich:
consider a dynamic array that doubles it size when the element reaches its capacity.
this is from the book:
"we fully explored the append method. In the worst case, it requires
Ω(n) time because the underlying array is resized, but it uses O(1)time in the amortized sense"
The parameterized version, pop(k), removes the element that is at index k < n
of a list, shifting all subsequent elements leftward to fill the gap that results from
the removal. The efficiency of this operation is O(n−k), as the amount of shifting
depends upon the choice of index k. Note well that this
implies that pop(0) is the most expensive call, using Ω(n) time.
how is "Ω(n)" describes the most expensive time?
The number inside the parenthesis is the number of operations you must do to actually carry out the operation, always expressed as a function of the number of items you are dealing with. You never worry about just how hard those operations are, only the total number of them.
If the array is full and has to be resized you need to copy all the elements into the new array. One operation per item in the array, thus an O(n) runtime. However, most of the time you just do one operation for an O(1) runtime.
Common values are:
O(1): One operation only, such as adding it to the list when the list isn't full.
O(log n): This typically occurs when you have a binary search or the like to find your target. Note that the base of the log isn't specified as the difference is just a constant and you always ignore constants.
O(n): One operation per item in your dataset. For example, unsorted search.
O(n log n): Commonly seen in good sort routines where you have to process every item but can divide and conquer as you go.
O(n^2): Usually encountered when you must consider every interaction of two items in your dataset and have no way to organize it. For example a routine I wrote long ago to find near-duplicate pictures. (Exact duplicates would be handled by making a dictionary of hashes and testing whether the hash existed and thus be O(n)--the two passes is a constant and discarded, you wouldn't say O(2n).)
O(n^3): By the time you're getting this high you consider it very carefully. Now you're looking at three-way interactions of items in your dataset.
Higher orders can exist but you need to consider carefully what's it's going to do. I have shipped production code that was O(n^8) but with very heavy pruning of paths and even then it took 12 hours to run. Had the nature of the data not been conductive to such pruning I wouldn't have written it at all--the code would still be running.
You will occasionally encounter even nastier stuff which needs careful consideration of whether it's going to be tolerable or not. For large datasets they're impossible:
O(2^n): Real world example: Attempting to prune paths so as to retain a minimum spanning tree--I computed all possible trees and kept the cheapest. Several experiments showed n never going above 10, I thought I was ok--until a different seed produced n = 22. I rewrote the routine for not-always-perfect answer that was O(n^2) instead.
O(n!): I don't know any examples. It blows up horribly fast.

AI of spaceship's propulsion: land a 3D ship at position=0 and angle=0

This is a very difficult problem about how to maneuver a spaceship that can both translate and rotate in 3D, for a space game.
The spaceship has n jets placing in various positions and directions.
Transformation of i-th jet relative to the CM of spaceship is constant = Ti.
Transformation is a tuple of position and orientation (quaternion or matrix 3x3 or, less preferable, Euler angles).
A transformation can also be denoted by a single matrix 4x4.
In other words, all jet are glued to the ship and cannot rotate.
A jet can exert force to the spaceship only in direction of its axis (green).
As a result of glue, the axis rotated along with the spaceship.
All jets can exert force (vector,Fi) at a certain magnitude (scalar,fi) :
i-th jet can exert force (Fi= axis x fi) only within range min_i<= fi <=max_i.
Both min_i and max_i are constant with known value.
To be clear, unit of min_i,fi,max_i is Newton.
Ex. If the range doesn't cover 0, it means that the jet can't be turned off.
The spaceship's mass = m and inertia tensor = I.
The spaceship's current transformation = Tran0, velocity = V0, angularVelocity = W0.
The spaceship physic body follows well-known physic rules :-
Torque=r x F
F=ma
angularAcceleration = I^-1 x Torque
linearAcceleration = m^-1 x F
I is different for each direction, but for the sake of simplicity, it has the same value for every direction (sphere-like). Thus, I can be thought as a scalar instead of matrix 3x3.
Question
How to control all jets (all fi) to land the ship with position=0 and angle=0?
Math-like specification: Find function of fi(time) that take minimum time to reach position=(0,0,0), orient=identity with final angularVelocity and velocity = zero.
More specifically, what are names of technique or related algorithms to solve this problem?
My research (1 dimension)
If the universe is 1D (thus, no rotation), the problem will be easy to solve.
( Thank Gavin Lock, https://stackoverflow.com/a/40359322/3577745 )
First, find the value MIN_BURN=sum{min_i}/m and MAX_BURN=sum{max_i}/m.
Second, think in opposite way, assume that x=0 (position) and v=0 at t=0,
then create two parabolas with x''=MIN_BURN and x''=MAX_BURN.
(The 2nd derivative is assumed to be constant for a period of time, so it is parabola.)
The only remaining work is to join two parabolas together.
The red dash line is where them join.
In the period of time that x''=MAX_BURN, all fi=max_i.
In the period of time that x''=MIN_BURN, all fi=min_i.
It works really well for 1D, but in 3D, the problem is far more harder.
Note:
Just a rough guide pointing me to a correct direction is really appreciated.
I don't need a perfect AI, e.g. it can take a little more time than optimum.
I think about it for more than 1 week, still find no clue.
Other attempts / opinions
I don't think machine learning like neural network is appropriate for this case.
Boundary-constrained-least-square-optimisation may be useful but I don't know how to fit my two hyper-parabola to that form of problem.
This may be solved by using many iterations, but how?
I have searched NASA's website, but not find anything useful.
The feature may exist in "Space Engineer" game.
Commented by Logman: Knowledge in mechanical engineering may help.
Commented by AndyG: It is a motion planning problem with nonholonomic constraints. It could be solved by Rapidly exploring random tree (RRTs), theory around Lyapunov equation, and Linear quadratic regulator.
Commented by John Coleman: This seems more like optimal control than AI.
Edit: "Near-0 assumption" (optional)
In most case, AI (to be designed) run continuously (i.e. called every time-step).
Thus, with the AI's tuning, Tran0 is usually near-identity, V0 and W0 are usually not so different from 0, e.g. |Seta0|<30 degree,|W0|<5 degree per time-step .
I think that AI based on this assumption would work OK in most case. Although not perfect, it can be considered as a correct solution (I started to think that without this assumption, this question might be too hard).
I faintly feel that this assumption may enable some tricks that use some "linear"-approximation.
The 2nd Alternative Question - "Tune 12 Variables" (easier)
The above question might also be viewed as followed :-
I want to tune all six values and six values' (1st-derivative) to be 0, using lowest amount of time-steps.
Here is a table show a possible situation that AI can face:-
The Multiplier table stores inertia^-1 * r and mass^-1 from the original question.
The Multiplier and Range are constant.
Each timestep, the AI will be asked to pick a tuple of values fi that must be in the range [min_i,max_i] for every i+1-th jet.
Ex. From the table, AI can pick (f0=1,f1=0.1,f2=-1).
Then, the caller will use fi to multiply with the Multiplier table to get values''.
Px'' = f0*0.2+f1*0.0+f2*0.7
Py'' = f0*0.3-f1*0.9-f2*0.6
Pz'' = ....................
SetaX''= ....................
SetaY''= ....................
SetaZ''= f0*0.0+f1*0.0+f2*5.0
After that, the caller will update all values' with formula values' += values''.
Px' += Px''
.................
SetaZ' += SetaZ''
Finally, the caller will update all values with formula values += values'.
Px += Px'
.................
SetaZ += SetaZ'
AI will be asked only once for each time-step.
The objective of AI is to return tuples of fi (can be different for different time-step), to make Px,Py,Pz,SetaX,SetaY,SetaZ,Px',Py',Pz',SetaX',SetaY',SetaZ' = 0 (or very near),
by using least amount of time-steps as possible.
I hope providing another view of the problem will make it easier.
It is not the exact same problem, but I feel that a solution that can solve this version can bring me very close to the answer of the original question.
An answer for this alternate question can be very useful.
The 3rd Alternative Question - "Tune 6 Variables" (easiest)
This is a lossy simplified version of the previous alternative.
The only difference is that the world is now 2D, Fi is also 2D (x,y).
Thus I have to tune only Px,Py,SetaZ,Px',Py',SetaZ'=0, by using least amount of time-steps as possible.
An answer to this easiest alternative question can be considered useful.
I'll try to keep this short and sweet.
One approach that is often used to solve these problems in simulation is a Rapidly-Exploring Random Tree. To give at least a little credibility to my post, I'll admit I studied these, and motion planning was my research lab's area of expertise (probabilistic motion planning).
The canonical paper to read on these is Steven LaValle's Rapidly-exploring random trees: A new tool for path planning, and there have been a million papers published since that all improve on it in some way.
First I'll cover the most basic description of an RRT, and then I'll describe how it changes when you have dynamical constraints. I'll leave fiddling with it afterwards up to you:
Terminology
"Spaces"
The state of your spaceship can be described by its 3-dimension position (x, y, z) and its 3-dimensional rotation (alpha, beta, gamma) (I use those greek names because those are the Euler angles).
state space is all possible positions and rotations your spaceship can inhabit. Of course this is infinite.
collision space are all of the "invalid" states. i.e. realistically impossible positions. These are states where your spaceship is in collision with some obstacle (With other bodies this would also include collision with itself, for example planning for a length of chain). Abbreviated as C-Space.
free space is anything that is not collision space.
General Approach (no dynamics constraints)
For a body without dynamical constraints the approach is fairly straightforward:
Sample a state
Find nearest neighbors to that state
Attempt to plan a route between the neighbors and the state
I'll briefly discuss each step
Sampling a state
Sampling a state in the most basic case means choosing at random values for each entry in your state space. If we did this with your space ship, we'd randomly sample for x, y, z, alpha, beta, gamma across all of their possible values (uniform random sampling).
Of course way more of your space is obstacle space than free space typically (because you usually confine your object in question to some "environment" you want to move about inside of). So what is very common to do is to take the bounding cube of your environment and sample positions within it (x, y, z), and now we have a lot higher chance to sample in the free space.
In an RRT, you'll sample randomly most of the time. But with some probability you will actually choose your next sample to be your goal state (play with it, start with 0.05). This is because you need to periodically test to see if a path from start to goal is available.
Finding nearest neighbors to a sampled state
You chose some fixed integer > 0. Let's call that integer k. Your k nearest neighbors are nearby in state space. That means you have some distance metric that can tell you how far away states are from each other. The most basic distance metric is Euclidean distance, which only accounts for physical distance and doesn't care about rotational angles (because in the simplest case you can rotate 360 degrees in a single timestep).
Initially you'll only have your starting position, so it will be the only candidate in the nearest neighbor list.
Planning a route between states
This is called local planning. In a real-world scenario you know where you're going, and along the way you need to dodge other people and moving objects. We won't worry about those things here. In our planning world we assume the universe is static but for us.
What's most common is to assume some linear interpolation between the sampled state and its nearest neighbor. The neighbor (i.e. a node already in the tree) is moved along this linear interpolation bit by bit until it either reaches the sampled configuration, or it travels some maximum distance (recall your distance metric).
What's going on here is that your tree is growing towards the sample. When I say that you step "bit by bit" I mean you define some "delta" (a really small value) and move along the linear interpolation that much each timestep. At each point you check to see if you the new state is in collision with some obstacle. If you hit an obstacle, you keep the last valid configuration as part of the tree (don't forget to store the edge somehow!) So what you'll need for a local planner is:
Collision checking
how to "interpolate" between two states (for your problem you don't need to worry about this because we'll do something different).
A physics simulation for timestepping (Euler integration is quite common, but less stable than something like Runge-Kutta. Fortunately you already have a physics model!
Modification for dynamical constraints
Of course if we assume you can linearly interpolate between states, we'll violate the physics you've defined for your spaceship. So we modify the RRT as follows:
Instead of sampling random states, we sample random controls and apply said controls for a fixed time period (or until collision).
Before, when we sampled random states, what we were really doing was choosing a direction (in state space) to move. Now that we have constraints, we randomly sample our controls, which is effectively the same thing, except we're guaranteed not to violate our constraints.
After you apply your control for a fixed time interval (or until collision), you add a node to the tree, with the control stored on the edge. Your tree will grow very fast to explore the space. This control application replaces linear interpolation between tree states and sampled states.
Sampling the controls
You have n jets that individually have some min and max force they can apply. Sample within that min and max force for each jet.
Which node(s) do I apply my controls to?
Well you can choose at random, or your can bias the selection to choose nodes that are nearest to your goal state (need the distance metric). This biasing will try to grow nodes closer to the goal over time.
Now, with this approach, you're unlikely to exactly reach your goal, so you need to define some definition of "close enough". That is, you will use your distance metric to find nearest neighbors to your goal state, and then test them for "close enough". This "close enough" metric can be different than your distance metric, or not. If you're using Euclidean distance, but it's very important that you goal configuration is also rotated properly, then you may want to modify the "close enough" metric to look at angle differences.
What is "close enough" is entirely up to you. Also something for you to tune, and there are a million papers that try to get you a lot closer in the first place.
Conclusion
This random sampling may sound ridiculous, but your tree will grow to explore your free space very quickly. See some youtube videos on RRT for path planning. We can't guarantee something called "probabilistic completeness" with dynamical constraints, but it's usually "good enough". Sometimes it'll be possible that a solution does not exist, so you'll need to put some logic in there to stop growing the tree after a while (20,000 samples for example)
More Resources:
Start with these, and then start looking into their citations, and then start looking into who is citing them.
Kinodynamic RRT*
RRT-Connect
This is not an answer, but it's too long to place as a comment.
First of all, a real solution will involve both linear programming (for multivariate optimization with constraints that will be used in many of the substeps) as well as techniques used in trajectory optimization and/or control theory. This is a very complex problem and if you can solve it, you could have a job at any company of your choosing. The only thing that could make this problem worse would be friction (drag) effects or external body gravitation effects. A real solution would also ideally use Verlet integration or 4th order Runge Kutta, which offer improvements over the Euler integration you've implemented here.
Secondly, I believe your "2nd Alternative Version" of your question above has omitted the rotational influence on the positional displacement vector you add into the position at each timestep. While the jet axes all remain fixed relative to the frame of reference of the ship, they do not remain fixed relative to the global coordinate system you are using to land the ship (at global coordinate [0, 0, 0]). Therefore the [Px', Py', Pz'] vector (calculated from the ship's frame of reference) must undergo appropriate rotation in all 3 dimensions prior to being applied to the global position coordinates.
Thirdly, there are some implicit assumptions you failed to specify. For example, one dimension should be defined as the "landing depth" dimension and negative coordinate values should be prohibited (unless you accept a fiery crash). I developed a mockup model for this in which I assumed z dimension to be the landing dimension. This problem is very sensitive to initial state and the constraints placed on the jets. All of my attempts using your example initial conditions above failed to land. For example, in my mockup (without the 3d displacement vector rotation noted above), the jet constraints only allow for rotation in one direction on the z-axis. So if aZ becomes negative at any time (which is often the case) the ship is actually forced to complete another full rotation on that axis before it can even try to approach zero degrees again. Also, without the 3d displacement vector rotation, you will find that Px will only go negative using your example initial conditions and constraints, and the ship is forced to either crash or diverge farther and farther onto the negative x-axis as it attempts to maneuver. The only way to solve this is to truly incorporate rotation or allow for sufficient positive and negative jet forces.
However, even when I relaxed your min/max force constraints, I was unable to get my mockup to land successfully, demonstrating how complex planning will probably be required here. Unless it is possible to completely formulate this problem in linear programming space, I believe you will need to incorporate advanced planning or stochastic decision trees that are "smart" enough to continually use rotational methods to reorient the most flexible jets onto the currently most necessary axes.
Lastly, as I noted in the comments section, "On May 14, 2015, the source code for Space Engineers was made freely available on GitHub to the public." If you believe that game already contains this logic, that should be your starting place. However, I suspect you are bound to be disappointed. Most space game landing sequences simply take control of the ship and do not simulate "real" force vectors. Once you take control of a 3-d model, it is very easy to predetermine a 3d spline with rotation that will allow the ship to land softly and with perfect bearing at the predetermined time. Why would any game programmer go through this level of work for a landing sequence? This sort of logic could control ICBM missiles or planetary rover re-entry vehicles and it is simply overkill IMHO for a game (unless the very purpose of the game is to see if you can land a damaged spaceship with arbitrary jets and constraints without crashing).
I can introduce another technique into the mix of (awesome) answers proposed.
It lies more in AI, and provides close-to-optimal solutions. It's called Machine Learning, more specifically Q-Learning. It's surprisingly easy to implement but hard to get right.
The advantage is that the learning can be done offline, so the algorithm can then be super fast when used.
You could do the learning when the ship is built or when something happens to it (thruster destruction, large chunks torn away...).
Optimality
I observed you're looking for near-optimal solutions. Your method with parabolas is good for optimal control. What you did is this:
Observe the state of the system.
For every state (coming in too fast, too slow, heading away, closing in etc.) you devised an action (apply a strategy) that will bring the system into a state closer to the goal.
Repeat
This is pretty much intractable for a human in 3D (too many cases, will drive you nuts) however a machine may learn where to split the parabolas in every dimensions, and devise an optimal strategy by itself.
THe Q-learning works very similarly to us:
Observe the (secretized) state of the system
Select an action based on a strategy
If this action brought the system into a desirable state (closer to the goal), mark the action/initial state as more desirable
Repeat
Discretize your system's state.
For each state, have a map intialized quasi-randomly, which maps every state to an Action (this is the strategy). Also assign a desirability to each state (initially, zero everywhere and 1000000 to the target state (X=0, V=0).
Your state would be your 3 positions, 3 angles, 3translation speed, and three rotation speed.
Your actions can be any combination of thrusters
Training
Train the AI (offline phase):
Generate many diverse situations
Apply the strategy
Evaluate the new state
Let the algo (see links above) reinforce the selected strategies' desirability value.
Live usage in the game
After some time, a global strategy for navigation emerges. You then store it, and during your game loop you simply sample your strategy and apply it to each situation as they come up.
The strategy may still learn during this phase, but probably more slowly (because it happens real-time). (Btw, I dream of a game where the AI would learn from every user's feedback so we could collectively train it ^^)
Try this in a simple 1D problem, it devises a strategy remarkably quickly (a few seconds).
In 2D I believe excellent results could be obtained in an hour.
For 3D... You're looking at overnight computations. There's a few thing to try and accelerate the process:
Try to never 'forget' previous computations, and feed them as an initial 'best guess' strategy. Save it to a file!
You might drop some states (like ship roll maybe?) without losing much navigation optimality but increasing computation speed greatly. Maybe change referentials so the ship is always on the X-axis, this way you'll drop x&y dimensions!
States more frequently encountered will have a reliable and very optimal strategy. Maybe normalize the state to make your ship state always close to a 'standard' state?
Typically rotation speeds intervals may be bounded safely (you don't want a ship tumbling wildely, so the strategy will always be to "un-wind" that speed). Of course rotation angles are additionally bounded.
You can also probably discretize non-linearly the positions because farther away from the objective, precision won't affect the strategy much.
For these kind of problems there are two techniques available: bruteforce search and heuristics. Bruteforce means to recognize the problem as a blackbox with input and output parameters and the aim is to get the right input parameters for winning the game. To program such a bruteforce search, the gamephysics runs in a simulation loop (physics simulation) and via stochastic search (minimax, alpha-beta-prunning) every possibility is tried out. The disadvantage of bruteforce search is the high cpu consumption.
The other techniques utilizes knowledge about the game. Knowledge about motion primitives and about evaluation. This knowledge is programmed with normal computerlanguages like C++ or Java. The disadvantage of this idea is, that it is often difficult to grasp the knowledge.
The best practice for solving spaceship navigation is to combine both ideas into a hybrid system. For programming sourcecode for this concrete problem I estimate that nearly 2000 lines of code are necessary. These kind of problems are normaly done within huge projects with many programmers and takes about 6 months.

Fast spatial data structure for nearest neighbor search amongst non-uniformly sized hyperspheres

Given a k-dimensional continuous (euclidean) space filled with rather unpredictably moving/growing/shrinking  hyperspheres I need to repeatedly find the hypersphere whose surface is nearest to a given coordinate. If some hyperspheres are of the same distance to my coordinate, then the biggest hypersphere wins. (The total count of hyperspheres is guaranteed to stay the same over time.)
My first thought was to use a KDTree but it won't take the hyperspheres' non-uniform volumes into account.
So I looked further and found BVH (Bounding Volume Hierarchies) and BIH (Bounding Interval Hierarchies), which seem to do the trick. At least in 2-/3-dimensional space. However while finding quite a bit of info and visualizations on BVHs I could barely find anything on BIHs.
My basic requirement is a k-dimensional spatial data structure that takes volume into account and is either super fast to build (off-line) or dynamic with barely any unbalancing.
Given my requirements above, which data structure would you go with? Any other ones I didn't even mention?
Edit 1: Forgot to mention: hypershperes are allowed (actually highly expected) to overlap!
Edit 2: Looks like instead of "distance" (and "negative distance" in particular) my described metric matches the power of a point much better.
I'd expect a QuadTree/Octree/generalized to 2^K-tree for your dimensionality of K would do the trick; these recursively partition space, and presumably you can stop when a K-subcube (or K-rectangular brick if the splits aren't even) does not contain a hypersphere, or contains one or more hyperspheres such that partitioning doesn't separate any, or alternatively contains the center of just a single hypersphere (probably easier).
Inserting and deleting entities in such trees is fast, so a hypersphere changing size just causes a delete/insert pair of operations. (I suspect you can optimize this if your sphere size changes by local additional recursive partition if the sphere gets smaller, or local K-block merging if it grows).
I haven't worked with them, but you might also consider binary space partitions. These let you use binary trees instead of k-trees to partition your space. I understand that KDTrees are a special case of this.
But in any case I thought the insertion/deletion algorithms for 2^K trees and/or BSP/KDTrees was well understood and fast. So hypersphere size changes cause deletion/insertion operations but those are fast. So I don't understand your objection to KD-trees.
I think the performance of all these are asymptotically the same.
I would use the R*Tree extension for SQLite. A table would normally have 1 or 2 dimensional data. SQL queries can combine multiple tables to search in higher dimensions.
The formulation with negative distance is a little weird. Distance is positive in geometry, so there may not be much helpful theory to use.
A different formulation that uses only positive distances may be helpful. Read about hyperbolic spaces. This might help to provide ideas for other ways to describe distance.

Crossover function for genetic

I am writing a Time table generator in java, using AI approaches to satisfy the hard constraints and help find an optimal solution. So far I have implemented and Iterative construction (a most-constrained first heuristic) and Simulated Annealing, and I'm in the process of implementing a genetic algorithm.
Some info on the problem, and how I represent it then :
I have a set of events, rooms , features (that events require and rooms satisfy), students and slots
The problem consists in assigning to each event a slot and a room, such that no student is required to attend two events in one slot, all the rooms assigned fulfill the necessary requirements.
I have a grading function that for each set if assignments grades the soft constraint violations, thus the point is to minimize this.
The way I am implementing the GA is I start with a population generated by the iterative construction (which can leave events unassigned) and then do the normal steps: evaluate, select, cross, mutate and keep the best. Rinse and repeat.
My problem is that my solution appears to improve too little. No matter what I do, the populations tends to a random fitness and is stuck there. Note that this fitness always differ, but nevertheless a lower limit will appear.
I suspect that the problem is in my crossover function, and here is the logic behind it:
Two assignments are randomly chosen to be crossed. Lets call them assignments A and B. For all of B's events do the following procedure (the order B's events are selected is random):
Get the corresponding event in A and compare the assignment. 3 different situations might happen.
If only one of them is unassigned and if it is possible to replicate
the other assignment on the child, this assignment is chosen.
If both of them are assigned, but only one of them creates no
conflicts when assigning to the child, that one is chosen.
If both of them are assigned and none create conflict, on of
them is randomly chosen.
In any other case, the event is left unassigned.
This creates a child with some of the parent's assignments, some of the mother's, so it seems to me it is a valid function. Moreover, it does not break any hard constraints.
As for mutation, I am using the neighboring function of my SA to give me another assignment based on on of the children, and then replacing that child.
So again. With this setup, initial population of 100, the GA runs and always tends to stabilize at some random (high) fitness value. Can someone give me a pointer as to what could I possibly be doing wrong?
Thanks
Edit: Formatting and clear some things
I think GA only makes sense if part of the solution (part of the vector) has a significance as a stand alone part of the solution, so that the crossover function integrates valid parts of a solution between two solution vectors. Much like a certain part of a DNA sequence controls or affects a specific aspect of the individual - eye color is one gene for example. In this problem however the different parts of the solution vector affect each other making the crossover almost meaningless. This results (my guess) in the algorithm converging on a single solution rather quickly with the different crossovers and mutations having only a negative affect on the fitness.
I dont believe GA is the right tool for this problem.
If you could please provide the original problem statement, I will be able to give you a better solution. Here is my answer for the present moment.
A genetic algorithm is not the best tool to satisfy hard constraints. This is an assigment problem that can be solved using integer program, a special case of a linear program.
Linear programs allow users to minimize or maximize some goal modeled by an objective function (grading function). The objective function is defined by the sum of individual decisions (or decision variables) and the value or contribution to the objective function. Linear programs allow for your decision variables to be decimal values, but integer programs force the decision variables to be integer values.
So, what are your decisions? Your decisions are to assign students to slots. And these slots have features which events require and rooms satisfy.
In your case, you want to maximize the number of students that are assigned to a slot.
You also have constraints. In your case, a student may only attend at most one event.
The website below provides a good tutorial on how to model integer programs.
http://people.brunel.ac.uk/~mastjjb/jeb/or/moreip.html
For a java specific implementation, use the link below.
http://javailp.sourceforge.net/
SolverFactory factory = new SolverFactoryLpSolve(); // use lp_solve
factory.setParameter(Solver.VERBOSE, 0);
factory.setParameter(Solver.TIMEOUT, 100); // set timeout to 100 seconds
/**
* Constructing a Problem:
* Maximize: 143x+60y
* Subject to:
* 120x+210y <= 15000
* 110x+30y <= 4000
* x+y <= 75
*
* With x,y being integers
*
*/
Problem problem = new Problem();
Linear linear = new Linear();
linear.add(143, "x");
linear.add(60, "y");
problem.setObjective(linear, OptType.MAX);
linear = new Linear();
linear.add(120, "x");
linear.add(210, "y");
problem.add(linear, "<=", 15000);
linear = new Linear();
linear.add(110, "x");
linear.add(30, "y");
problem.add(linear, "<=", 4000);
linear = new Linear();
linear.add(1, "x");
linear.add(1, "y");
problem.add(linear, "<=", 75);
problem.setVarType("x", Integer.class);
problem.setVarType("y", Integer.class);
Solver solver = factory.get(); // you should use this solver only once for one problem
Result result = solver.solve(problem);
System.out.println(result);
/**
* Extend the problem with x <= 16 and solve it again
*/
problem.setVarUpperBound("x", 16);
solver = factory.get();
result = solver.solve(problem);
System.out.println(result);
// Results in the following output:
// Objective: 6266.0 {y=52, x=22}
// Objective: 5828.0 {y=59, x=16}
I would start by measuring what's going on directly. For example, what fraction of the assignments are falling under your "any other case" catch-all and therefore doing nothing?
Also, while we can't really tell from the information given, it doesn't seem any of your moves can do a "swap", which may be a problem. If a schedule is tightly constrained, then once you find something feasible, it's likely that you won't be able to just move a class from room A to room B, as room B will be in use. You'd need to consider ways of moving a class from A to B along with moving a class from B to A.
You can also sometimes improve things by allowing constraints to be violated. Instead of forbidding crossover from ever violating a constraint, you can allow it, but penalize the fitness in proportion to the "badness" of the violation.
Finally, it's possible that your other operators are the problem as well. If your selection and replacement operators are too aggressive, you can converge very quickly to something that's only slightly better than where you started. Once you converge, it's very difficult for mutations alone to kick you back out into a productive search.
I think there is nothing wrong with GA for this problem, some people just hate Genetic Algorithms no matter what.
Here is what I would check:
First you mention that your GA stabilizes at a random "High" fitness value, but isn't this a good thing? Does "high" fitness correspond to good or bad in your case? It is possible you are favoring "High" fitness in one part of your code and "Low" fitness in another thus causing the seemingly random result.
I think you want to be a bit more careful about the logic behind your crossover operation. Basically there are many situations for all 3 cases where making any of those choices would not cause an increase in fitness at all of the crossed-over individual, but you are still using a "resource" (an assignment that could potentially be used for another class/student/etc.) I realize that a GA traditionally will make assignments via crossover that cause worse behavior, but you are already performing a bit of computation in the crossover phase anyway, why not choose one that actually will improve fitness or maybe don't cross at all?
Optional Comment to Consider : Although your iterative construction approach is quite interesting, this may cause you to have an overly complex Gene representation that could be causing problems with your crossover. Is it possible to model a single individual solution as an array (or 2D array) of bits or integers? Even if the array turns out to be very long, it may be worth it use a more simple crossover procedure. I recommend Googling "ga gene representation time tabling" you may find an approach that you like more and can more easily scale to many individuals (100 is a rather small population size for a GA, but I understand you are still testing, also how many generations?).
One final note, I am not sure what language you are working in but if it is Java and you don't NEED to code the GA by hand I would recommend taking a look at ECJ. Maybe even if you have to code by hand, it could help you develop your representation or breeding pipeline.
Newcomers to GA can make any of a number of standard mistakes:
In general, when doing crossover, make sure that the child has some chance of inheriting that which made the parent or parents winner(s) in the first place. In other words, choose a genome representation where the "gene" fragments of the genome have meaningful mappings to the problem statement. A common mistake is to encode everything as a bitvector and then, in crossover, to split the bitvector at random places, splitting up the good thing the bitvector represented and thereby destroying the thing that made the individual float to the top as a good candidate. A vector of (limited) integers is likely to be a better choice, where integers can be replaced by mutation but not by crossover. Not preserving something (doesn't have to be 100%, but it has to be some aspect) of what made parents winners means you are essentially doing random search, which will perform no better than linear search.
In general, use much less mutation than you might think. Mutation is there mainly to keep some diversity in the population. If your initial population doesn't contain anything with a fractional advantage, then your population is too small for the problem at hand and a high mutation rate will, in general, not help.
In this specific case, your crossover function is too complicated. Do not ever put constraints aimed at keeping all solutions valid into the crossover. Instead the crossover function should be free to generate invalid solutions and it is the job of the goal function to somewhat (not totally) penalize the invalid solutions. If your GA works, then the final answers will not contain any invalid assignments, provided 100% valid assignments are at all possible. Insisting on validity in the crossover prevents valid solutions from taking shortcuts through invalid solutions to other and better valid solutions.
I would recommend anyone who thinks they have written a poorly performing GA to conduct the following test: Run the GA a few times, and note the number of generations it took to reach an acceptable result. Then replace the winner selection step and goal function (whatever you use - tournament, ranking, etc) with a random choice, and run it again. If you still converge roughly at the same speed as with the real evaluator/goal function then you didn't actually have a functioning GA. Many people who say GAs don't work have made some mistake in their code which means the GA converges as slowly as random search which is enough to turn anyone off from the technique.

Resources