How to get a sub-shape of an array in Python? - arrays

Not sure the title is correct, but I have an array with shape (84,84,3) and I need to get subset of this array with shape (84,84), excluding that third dimension.
How can I accomplish this with Python?

your_array[:,:,0]
This is called slicing. This particular example gets the first 'layer' of the array. This assumes your subshape is a single layer.

If you are using numpy arrays, using slices would be a standard way of doing it:
import numpy as np
n = 3 # or any other positive integer
a = np.empty((84, 84, n))
i = 0 # i in [0, n]
b = a[:, :, i]
print(b.shape)
I recommend you have a look at this.

Related

iterating through two numpy arrays applying a function in Python

I have
import numpy as np
a = np.array([np.nan,2,3])
b = np.array([1,np.nan,2])
I want to apply a function to the a,b, is there a fast way of doing this. (like in Pandas, where we can do apply)
Specifically I am interesting in averaging a and b, but take the average to be one of the numbers when the other number is missing.
i.e. I want to return
np.array([1,2,2.5])
for the example above. However, I would like to know the answer to this in a more general setting (where I want to apply an operation element-wise to a number of numpy arrays)
You can use numpy.nanmean, which ignores NaNs:
np.nanmean([a, b], axis=0)
# array([ 1. , 2. , 2.5])
If you want to iterate some custom functions through NumPy arrays with the efficiency of NumPy's universal functions (ufunc), the choices are
Write your own C code
Use the ufuncify method of SymPy to generate code for you.
Here is an example of the latter, where the function is exp(x) + log(y) (since NumPy's ufuncs exp and log are already available, this is just for demonstration):
import numpy as np
import sympy as sym
from sympy.utilities.autowrap import ufuncify
x, y = sym.symbols('x y')
f = ufuncify([x, y], sym.exp(x) + sym.log(y))
Now applying f(np.array([1, 2, 3]), np.array([4, 5, 6])) will return NumPy array [4.10457619, 8.99849401, 21.87729639] in a way that's not a Python loop but a call to (by default) compiled Fortran code.
(But in practice, you are likely to find that NumPy already has some ufuncs that do what you want, if combined in a right way.)

comparing two numpy arrays and adding same rows

I have two large data files, one with two columns and one with three columns. I want to select all the rows from the second file that are contained in the fist array. My idea was to compare the numpy arrays.
Let's say I have:
a = np.array([[1, 2, 3], [3, 4, 5], [1, 4, 6]])
b = np.array([[1, 2], [3, 4]])
and the result should look like this:
[[1, 2, 3], [3, 4, 5]]
Any advice on that?
EDIT:
So in the end this works. Not very handy but it works.
for ii in range(a.shape[0]):
u, v, w = a[ii,:]
for jj in range(b.shape[0]):
if (u == b[jj, 0] and v == b[jj, 1]):
print [u, v, w]
The numpy_indexed package (disclaimer: I am its author) contains functionality to solve such problems efficiently, without using any python loops:
import numpy_indexed as npi
a[npi.contains(b, a[:, :2])]
If you prefer to not use another library but want to do this in numpy only, you can do something similar to what is suggested here and here, namely to use np.in1d (see docs) which does provide you with a mask indicating if an element in one 1D array exists in another 1D array. As the name indicates, this function only works for 1D arrays. But you can use a structured array view (using np.view) to cheat numpy into thinking you have 1D arrays. One caveat is though, that you need a deep copy of the first array a since np.view doesn't mix with slices, well. But if that is not too big of an issue for you, something along the lines of:
a_cp = a[:, :2].copy()
a[np.in1d(a_cp.view((np.void, a_cp.dtype.itemsize*a_cp.shape[1])).ravel(),
b.view((np.void, b.dtype.itemsize*b.shape[1])).ravel())]
might work for you.
This directly uses the masked array to return the correct values from your array a.
Check this, #Ernie. It may help you to get to the solution. ;D
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.in1d.html

Implementing Permutation of Complex Numbers In TensorFlow

In this associative lstm paper, http://arxiv.org/abs/1602.03032, they ask to permute a complex tensor.
They have provided their code here: https://github.com/mohammadpz/Associative_LSTM/blob/master/bricks.py#L79
I'm trying to replicate this in tensorflow. Here is what I have done:
# shape: C x F/2
# output = self.permutations: [num_copies x cell_size]
permutations = []
indices = numpy.arange(self._dim / 2) #[1 ,2 ,3 ...64]
for i in range(self._num_copies):
numpy.random.shuffle(indices) #[4, 48, 32, ...64]
permutations.append(numpy.concatenate(
[indices,
[ind + self._dim / 2 for ind in indices]]))
#you're appending a row with two columns -- a permutation in the first column, and the same permutation + dim/2 for imaginary
# C x F (numpy)
self.permutations = tf.constant(numpy.vstack(permutations), dtype = tf.int32) #This is a permutation tensor that has the stored permutations
# output = self.permutations: [num_copies x cell_size]
def permute(complex_tensor): #complex tensor is [batch_size x cell_size]
gather_tensor = tf.gather_nd(complex_tensor, self.permutations)
return gather_tensor
Basically, my question is: How efficiently can this be done in TensorFlow? Is there anyway to keep the batch size dimension fixed of complex tensor?
Also, is gather_nd the best way to go about this? Or is it better to do a for loop and iterate over each row in self.permutations using tf.gather?
def permute(self, complex_tensor):
inputs_permuted = []
for i in range(self.permutations.get_shape()[0].value):
inputs_permuted.append(
tf.gather(complex_tensor, self.permutations[i]))
return tf.concat(0, inputs_permuted)
I thought that gather_nd would be far more efficient.
Nevermind, I figured it out, the trick is to just use permute the original input tensor using tf transpose. This will allow you then to do a tf.gather on the entire matrix. Then you can tf concat the matrices together. Sorry if this wasted anyone's time.

Julia Approach to python equivalent list of lists

I just started tinkering with Julia and I'm really getting to like it. However, I am running into a road block. For example, in Python (although not very efficient or pythonic), I would create an empty list and append a list of a known size and type, and then convert to a NumPy array:
Python Snippet
a = []
for ....
a.append([1.,2.,3.,4.])
b = numpy.array(a)
I want to be able to do something similar in Julia, but I can't seem to figure it out. This is what I have so far:
Julia snippet
a = Array{Float64}[]
for .....
push!(a,[1.,2.,3.,4.])
end
The result is an n-element Array{Array{Float64,N},1} of size (n,), but I would like it to be an nx4 Array{Float64,2}.
Any suggestions or better way of doing this?
The literal translation of your code would be
# Building up as rows
a = [1. 2. 3. 4.]
for i in 1:3
a = vcat(a, [1. 2. 3. 4.])
end
# Building up as columns
b = [1.,2.,3.,4.]
for i in 1:3
b = hcat(b, [1.,2.,3.,4.])
end
But this isn't a natural pattern in Julia, you'd do something like
A = zeros(4,4)
for i in 1:4, j in 1:4
A[i,j] = j
end
or even
A = Float64[j for i in 1:4, j in 1:4]
Basically allocating all the memory at once.
Does this do what you want?
julia> a = Array{Float64}[]
0-element Array{Array{Float64,N},1}
julia> for i=1:3
push!(a,[1.,2.,3.,4.])
end
julia> a
3-element Array{Array{Float64,N},1}:
[1.0,2.0,3.0,4.0]
[1.0,2.0,3.0,4.0]
[1.0,2.0,3.0,4.0]
julia> b = hcat(a...)'
3x4 Array{Float64,2}:
1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0
It seems to match the python output:
In [9]: a = []
In [10]: for i in range(3):
a.append([1, 2, 3, 4])
....:
In [11]: b = numpy.array(a); b
Out[11]:
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
I should add that this is probably not what you actually want to be doing as the hcat(a...)' can be expensive if a has many elements. Is there a reason not to use a 2d array from the beginning? Perhaps more context to the question (i.e. the code you are actually trying to write) would help.
The other answers don't work if the number of loop iterations isn't known in advance, or assume that the underlying arrays being merged are one-dimensional. It seems Julia lacks a built-in function for "take this list of N-D arrays and return me a new (N+1)-D array".
Julia requires a different concatenation solution depending on the dimension of the underlying data. So, for example, if the underlying elements of a are vectors, one can use hcat(a) or cat(a,dims=2). But, if a is e.g a 2D array, one must use cat(a,dims=3), etc. The dims argument to cat is not optional, and there is no default value to indicate "the last dimension".
Here is a helper function that mimics the np.array functionality for this use case. (I called it collapse instead of array, because it doesn't behave quite the same way as np.array)
function collapse(x)
return cat(x...,dims=length(size(x[1]))+1)
end
One would use this as
a = []
for ...
... compute new_a...
push!(a,new_a)
end
a = collapse(a)

Despite many examples online, I cannot get my MATLAB repmat equivalent working in python

I am trying to do some numpy matrix math because I need to replicate the repmat function from MATLAB. I know there are a thousand examples online, but I cannot seem to get any of them working.
The following is the code I am trying to run:
def getDMap(image, mapSize):
newSize = (float(mapSize[0]) / float(image.shape[1]), float(mapSize[1]) / float(image.shape[0]))
sm = cv.resize(image, (0,0), fx=newSize[0], fy=newSize[1])
for j in range(0, sm.shape[1]):
for i in range(0, sm.shape[0]):
dmap = sm[:,:,:]-np.array([np.tile(sm[j,i,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))])
return dmap
The function getDMap(image, mapSize) expects an OpenCV2 HSV image as its image argument, which is a numpy array with 3 dimensions: [:,:,:]. It also expects a tuple with 2 elements as its imSize argument, of course making sure the function passing the arguments takes into account that in numpy arrays the rows and colums are swapped (not: x, y, but: y, x).
newSize then contains a tuple containing fracions that are used to resize the input image to a specific scale, and sm becomes a resized version of the input image. This all works fine.
This is my goal:
The following line:
np.array([np.tile(sm[i,j,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))]),
should function equivalent to the MATLAB expression:
repmat(sm(j,i,:),[size(sm,1) size(sm,2)]),
This is my problem:
Testing this, an OpenCV2 image with dimensions 800x479x3 is passed as the image argument, and (64, 48) (a tuple) is passed as the imSize argument.
However when testing this, I get the following ValueError:
dmap = sm[:,:,:]-np.array([np.tile(sm[i,j,:], (len(sm[0]),
len(sm[1]))) for k in xrange(len(sm[2]))])
ValueError: operands could not be broadcast together with
shapes (48,64,3) (64,64,192)
So it seems that the array dimensions do not match and numpy has a problem with that. But my question is what? And how do I get this working?
These 2 calculations match:
octave:26> sm=reshape(1:12,2,2,3)
octave:27> x=repmat(sm(1,2,:),[size(sm,1) size(sm,2)])
octave:28> x(:,:,2)
7 7
7 7
In [45]: sm=np.arange(1,13).reshape(2,2,3,order='F')
In [46]: x=np.tile(sm[0,1,:],[sm.shape[0],sm.shape[1],1])
In [47]: x[:,:,1]
Out[47]:
array([[7, 7],
[7, 7]])
This runs:
sm[:,:,:]-np.array([np.tile(sm[0,1,:], (2,2,1)) for k in xrange(3)])
But it produces a (3,2,2,3) array, with replication on the 1st dimension. I don't think you want that k loop.
What's the intent with?
for i in ...:
for j in ...:
data = ...
You'll only get results from the last iteration. Did you want data += ...? If so, this might work (for a (N,M,K) shaped sm)
np.sum(np.array([sm-np.tile(sm[i,j,:], (N,M,1)) for i in xrange(N) for j in xrange(M)]),axis=0)
z = np.array([np.tile(sm[i,j,:], (N,M,1)) for i in xrange(N) for j in xrange(M)]),axis=0)
np.sum(sm - z, axis=0) # let numpy broadcast sm
Actually I don't even need the tile. Let broadcasting do the work:
np.sum(np.array([sm-sm[i,j,:] for i in xrange(N) for j in xrange(M)]),axis=0)
I can get rid of the loops with repeat.
sm1 = sm.reshape(N*M,L) # combine 1st 2 dim to simplify repeat
z1 = np.repeat(sm1, N*M, axis=0).reshape(N*M,N*M,L)
x1 = np.sum(sm1 - z1, axis=0).reshape(N,M,L)
I can also apply broadcasting to the last case
x4 = np.sum(sm1-sm1[:,None,:], 0).reshape(N,M,L)
# = np.sum(sm1[None,:,:]-sm1[:,None,:], 0).reshape(N,M,L)
With sm I have to expand (and sum) 2 dimensions:
x5 = np.sum(np.sum(sm[None,:,None,:,:]-sm[:,None,:,None,:],0),1)
len(sm[0]) and len(sm[1]) are not the sizes of the first and second dimensions of sm. They are the lengths of the first and second row of sm, and should both return the same value. You probably want to replace them with sm.shape[0] and sm.shape[1], which are equivalent to your Matlab code, although I am not sure that it will work as you expect it to.

Resources