I'm looking for a portable database solution I can use with a website that is designed to handle service outages. I need to nightly retrieve a list of users from SQL Server and upsert their details into a portable database. It's roughly about 250,000 users (and growing) and each one has probably 25 fields that are required. Of those fields, i'd say less than 5 need to be searched on. The rest just need retrieving.
The idea is, in times of a service outage, we can use a website that's designed to work from the portable database rather than SQL Server. Our long term goal, is to move to the cloud and handle things in an entirely different way, but for the short term this is our aim.
The website is going to be a .Net Core web api so will be being accessed by multiple users in multiple threads. The website will only ever need read access, it will not be updating these details what-so-ever.
To keep the portable database up-to-date i'm thinking of having another application that just runs nightly to update the data. Our business is 24 hours (albeit quieter overnight), so there is a potential this updater is in use while the website is in use. While service outage would assume the SQL Server is down, this may not be the case. There are other factors in play that could cause what we would describe as outages. This will be the only piece of software updating the database.
I've tried using LiteDB but I couldn't get it working in a way that worked with my concurrency requirements. It did seem to do some of the job, and was easy to get running. However, i'd often run into locked files due to the nature of web api. I did work out a solution for that, but then the updater app couldn't access the database file.
Does anyone have any recommendations I can look into?
Given the description of the problem (1 table, 250k rows with - I assume - relative fast growth rate) and requirements, I don't think a relational database is what you are looking for.
I think nosql databases, or, more specifically, document oriented databases are more fitted to meet your requirements. There are many choices: Mongo, Cassandra, CouchDB, ... the choice is yours.
Personally I have some experience with ElasticSearch (https://www.elastic.co/elasticsearch), that is quite easy to learn, is portable (runs on Linux, Windows, Containers, etc...), is scalable, and it is fast. I mean, really, really fast, you can get results in 10-20 milliseconds (even less, sometimes).
The NEST nuget package acts as a high level client for working with ElasticSearch (https://www.elastic.co/guide/en/elasticsearch/client/net-api/7.x/nest-getting-started.html)
Related
I am writing a web application with nodeJS that can be used by other applications to store logs and accessed later in a web interface or by applications themselves providing an API. Similar to Graylog2 but schema free.
I've already tried couchDB in which each document would be a log doc but since I'm not really using revisions it seems to me I'm not using its all features. And beside that I think if the logs exceeds a limit it would be pretty hard to manage in couchDB.
What I'm really looking for, is a big array of logs that can be sorted, filtered, searched and capped on. Then the last events of it accessed. It should be schema free and writing to it should be non-blocking.
I'm considering using Cassandra(I'm not really familiar with it) due to the points here said. MongoDB seems good here too, since Graylog2 uses in mongoDB, in here it has some good points about it.
I've already have seen this question, but not satisfied with the answers.
Edit:
For some reasons I can't use Cassandra in production, now I'm trying MongoDB.
One more reason to use mongoDB :
http://www.slideshare.net/WombatNation/logging-app-behavior-to-mongo-db
More edits:
It is similar to graylog2, but the difference I want to make that instead of having a message field, having fileds defined by the client, which is why I want it to be schema free, and because of that, I may need to query in the user defined fields. We can build it on SQL, but querying on the user defined fields would be reinventing wheel. Same goes with files.
Technically what I'm looking for is to get rich statistical data in the end, or easy debugging and a lot of other stuff that we can't get out of the logs.
Where shall it be stored and how shall it be retrieved?
I guess it depends on how much data you are dealing with. If you have a huge amount (terabytes and petabytes per day) of logs then Apache Kafka, which is designed to allow data to be PULLED by HDFS in parallel, is a interesting solution - still in the incubation stage. I believe if you want to consume Kafka messages with MongoDb, you'd need to develop your own adapter to ingest it as a consumer of a particular Kafka topic. Although MongoDb data (e.g. shards and replicas) is distributed, it may be a sequential process to ingest each message. So, there may be a bottleneck or even race conditions depending on the rate and size of message traffic. Kafka is optimized to pump and append that data to HDFS nodes using message brokers FAST. Then once it is in HDFS you can map/reduce to analyze your information in a variety of ways.
If MongoDb can handle the ingestion load, then it is an excellent, scalable, real-time solution to find information, particularly documents. Otherwise, if you have more time to process data (i.e. batch processes that take hours and sometimes days), then Hadoop or some other Map Reduce database is warranted. Finally, Kafka can distribute that load of messages and hookup that fire-hose to a variety of consumers. Overall, these new technologies spread the load and huge amounts of data across cheap hardware using software to manage failure and recover with a very low probability of losing data.
Even with a small amount of data, MongoDb is a nice option to traditional relational database solutions which require more overhead of developer resources to design, build and maintain.
General Approach
You have a lot of work ahead of you. Whichever database you use, you have many features which you must build on top of the DB foundation. You have done good research about all of your options. It sounds like you suspect that all have pros and cons but all are imperfect. Your suspicion is correct. At this point it is probably time to start writing code.
You could just choose one arbitrarily and start building your application. If your guess was correct that the pros and cons balance out and it's all about the same, then why not simply start building immediately? When you hit difficulty X on your database, remember that it gave you convenience Y and Z and that's just life.
You could also establish the fundamental core of your application and implement various prototypes on each of the databases. That might give you true insight to help discriminate between the databases for your specific application. For example, besides the interface, indexing, and querying questions, what about deployment? What about backups? What about maintenance and security? Maybe "wasting" time to build the same prototype on each platform will make the answer very clear for you.
Notes about CouchDB
I suppose CouchDB is "NoSQL" if you say so. Other things which are "no SQL" include bananas, poems, and cricket. It is not a very meaningful word. We have general-purpose languages and domain-specific languages; similarly CouchDB is a domain-specific database. It can save you time if you need the following features:
Built-in web API: clients may query directly
Incremental map-reduce: CouchDB runs the job once, but you can query repeatedly at no cost. Updates to the data set are immediately reflected in the map/reduce result without full re-processing
Easy to start small but expand to large clusters without changing application code.
Have you considered Apache Kafka?
Kafka is a distributed messaging system developed at LinkedIn for
collecting and delivering high volumes of log data with low latency.
Our system incorporates ideas from existing log aggregators and
messaging systems, and is suitable for both offline and online message
consumption.
In our web application we need to trace what users click, what they write into search box, etc. Lots of data will be sent by AJAX. Generally functionality is a bit similar to google analytics, but we need to customize it in different ways.
Data will be collected and once per day aggregated and exported to PostgreSQL, so backend should be able to handle dozens of inserts. I don't consider usage of traditional SQL database, because probably it won't handle so many inserts efficiently.
I wonder which backend would you use for such task? Actually I think about MongoDB or Cassandra. But maybe you know better software for that task? Maybe something different then NoSQL database?
Web application is written in Ruby on Rails so support for Ruby would be nice but that's definitely not the most important.
Sounds like you need to analyse your specific requirements.
It may be that the best solution is to split / partition / shard a conventional database and then push the data up from there.
Depending on what your tolerance for data loss is, there are a lot of options. If you choose a system which has single-server durability, a major source of write bottleneck will be fdatasync() (assuming you use hard drives to store your data on).
If you can tolerate syncing less often than on every commit, then you may be able to tune your database to commit at timed intervals.
Depending on your table, index structure etc, I'd expect that you can get rather a lot of inserts with a "conventional" db (e.g. postgresql), if you manage it correctly and tune the durability (if it supports that) to your liking.
Sharding this into several instances of course will enable you to scale this up. However, you need to be mindful of operational requirements (i.e. what happens if some of the instances are down). Talk to your Ops team about what they're comfortable managing.
I'm considering using SQLite as a production database for a site that would receive perhaps 20 simultaneous users, but with the potential for a peak that could be many multiples of that (since the site would be accessible on the open internet and there's always a possibility that someone will post a link somewhere that could drive many people to the site all at once).
Is SQLite a possibility?
I know it's not an ideal production scenario. I'm only asking if this is within the realm of being a realistic possibility.
SQLite doesn't support any kind of concurrency, so you may have problems running it on a production website. If you're looking for a 'lighter' database, perhaps consider trying a contemporary object-document store like CouchDB.
By all means, continue to develop against SQLite, and you're probably fine to use it initially. If you find your application has more users down the track, you're going to want to transition to Postgres or MySQL however.
The author of SQLite addresses this on the website:
SQLite works great as the database engine for most low to medium traffic websites (which is to say, most websites). The amount of web traffic that SQLite can handle depends on how heavily the website uses its database. Generally speaking, any site that gets fewer than 100K hits/day should work fine with SQLite. The 100K hits/day figure is a conservative estimate, not a hard upper bound. SQLite has been demonstrated to work with 10 times that amount of traffic.
The SQLite website (https://www.sqlite.org/) uses SQLite itself, of course, and as of this writing (2015), it handles about 400K to 500K HTTP requests per day, about 15-20% of which are dynamic pages touching the database. Dynamic content uses about 200 SQL statements per webpage. This setup runs on a single VM that shares a physical server with 23 others and yet still keeps the load average below 0.1 most of the time.
So I think the long and short of it is, go for it, and if it's not working well for you, making the transition to an enterprise-class database is fairly trivial anyway. Do take care of your schema, however, and design your database with growth and efficiency in mind.
Here's a thread with some more independent comments around using SQLite for a production web application. It sounds like it has been used with some mixed results.
Edit (2014):
Since this answer was posted, SQLite now features a multi-threaded mode and write ahead logging mode which may influence your evaluation of its suitability for low-medium traffic sites.
Charles Leifer has written a blog post about SQLite's WAL (write ahead logging) feature and some well-considered opinions on appropriate use cases.
The small excerpt from SQLite website says it all.
Is the data separated from the application by a network? → choose
client/server
Many concurrent writers? → choose client/server
Big data? → choose client/server
Otherwise → choose SQLite!
SQLite "just works" (until it doesn't of course)
We often use SQLite for internal databases; The employee directory, our calendar of events, and other intranet services all run on lightweight databases. It would be major overkill to be running these apps at the scale we do on a "real" database like mySQL. This is especially true when you factor in that they're running along side 4 other virtual machines on a single mid-range computer.
At one point we had an outward facing site that ran on an sqlite db for months with only a single reboot required. Obviously, it was very low traffic, but it putted along nicely for what it did.
We have encountered a similar option on an environment with absolutely no writes, and we selected using SQLite.
See my blog post on the subject:
Well, the main assumption which makes this solution theoretically
possible is that our SQLite database is totally read-only. Our server
code should never change it. This would solve any locking problems, as
there are no read locks. We could find nowhere on the internet anyone
saying there is a problem in high-throughput reading of SQLite when
there are no writes - it could be possible!
I think it would depend mostly on what your read/write ratio will be. If it's mostly reading from the database, you may be okay. Multi-user writing in SQLite can be a problem because of how it locks the database.
People speak about concurrency problems, but sqlite has a way to cache incoming requests and have them wait for some time. It doesn't timeout immediately.
I've read things about the default timeout setting begin zero, meaning it times out immediately and that's nonsense. Maybe people didn't adjust this setting?
Depends on the usage of the site. If most of the time you're just reading data, you can pretty much use anything for a DB and cache the data in the application to achieve good performance.
I am using it in a very low traffic web server (it is a genomic database) and I don't have any problems. But there are only SELECT statements, no writing to the DB involved.
To add to an already brilliant answer: Since you are working with a server-less solution in this case, you can say goodbye to replication, or any sort of horizontal scaling of your db, as well as other advanced options. It also isn't the best choice if you have multiple users updating the same exact chunk of information. If you were to shard the database in the future you would have to migrate the data and move to something else. Also if you have a load balancer and multiple systems involved it would be difficult to maintain data centrality if using sqlite. These are just some of the reasons why it isn't recommended. Its great for smaller projects, and great for development.
It seems like with queuing you could also get away with avoiding a lot of the concurrency write problems with SQLite. Instead of writing directly to the sqlite db you would write to a queue that then in turn sequentially writes to the sqlite db in a first in first out mode. Not sure if your application reaches to where you would need this if it would be worth writing or just moving on to client/server DB...but a thought.
I'm using SqlServer to drive a WPF application, I'm currently using NHibernate and pre-read all the data so it's cached for performance reasons. That works for a single client app, but I was wondering if there's an in memory database that I could use so I can share the information across multiple apps on the same machine. Ideally this would sit below my NHibernate stack, so my code wouldn't have to change. Effectively I'm looking to move my DB from it's traditional format on the server to be an in memory DB on the client.
Note I only need select functionality.
I would be incredibly surprised if you even need to load all your information in memory. I say this because, just as one example, I'm working on a Web app at the moment that (for various reasons) loads thousands of records on many pages. This is PHP + MySQL. And even so it can do it and render a page in well under 100ms.
Before you go down this route make sure that you have to. First make your database as performant as possible. Now obviously this includes things like having appropriate indexes and tuning your database but even though are putting the horse before the cart.
First and foremost you need to make sure you have a good relational data model: one that lends itself to performant queries. This is as much art as it is science.
Also, you may like NHibernate but ORMs are not always the best choice. There are some corner cases, for example, that hand-coded SQL will be vastly superior in.
Now assuming you have a good data model and assuming you've then optimized your indexes and database parameters and then you've properly configured NHibernate, then and only then should you consider storing data in memory if and only if performance is still an issue.
To put this in perspective, the only times I've needed to do this are on systems that need to perform millions of transactions per day.
One reason to avoid in-memory caching is because it adds a lot of complexity. You have to deal with issues like cache expiry, independent updates to the underlying data store, whether you use synchronous or asynchronous updates, how you give the client a consistent (if not up-to-date) view of your data, how you deal with failover and replication and so on. There is a huge complexity cost to be paid.
Assuming you've done all the above and you still need it, it sounds to me like what you need is a cache or grid solution. Here is an overview of Java grid/cluster solutions but many of them (eg Coherence, memcached) apply to .Net as well. Another choice for .Net is Velocity.
It needs to be pointed out and stressed that something like NHibernate is only consistent so long as nothing externally updates the database and that there is exactly one NHibernate-enabled process (barring clustered solutions). If two desktop apps on two different PCs are both updating the same database with NHibernate the caching simply won't work because the persistence units simply won't be aware of the changes the other is making.
http://www.db4o.com/ can be your friend!
Velocity is an out of process object caching server designed by Microsoft to do pretty much what you want although it's only in CTP form at the moment.
I believe there are also wrappers for memcached, which can also be used to cache objects.
You can use HANA, express edition. You can download it for free, it's in-memory, columnar and allows for further analytics capabilities such as text analytics, geospatial or predictive. You can also access with ODBC, JDBC, node.js hdb library, REST APIs among others.
I'm working on a web app that is somewhere between an email service and a social network. I feel it has the potential to grow really big in the future, so I'm concerned about scalability.
Instead of using one centralized MySQL/InnoDB database and then partitioning it when that time comes, I've decided to create a separate SQLite database for each active user: one active user per 'shard'.
That way backing up the database would be as easy as copying each user's small database file to a remote location once a day.
Scaling up will be as easy as adding extra hard disks to store the new files.
When the app grows beyond a single server I can link the servers together at the filesystem level using GlusterFS and run the app unchanged, or rig up a simple SQLite proxy system that will allow each server to manipulate sqlite files in adjacent servers.
Concurrency issues will be minimal because each HTTP request will only touch one or two database files at a time, out of thousands, and SQLite only blocks on reads anyway.
I'm betting that this approach will allow my app to scale gracefully and support lots of cool and unique features. Am I betting wrong? Am I missing anything?
UPDATE I decided to go with a less extreme solution, which is working fine so far. I'm using a fixed number of shards - 256 sqlite databases, to be precise. Each user is assigned and bound to a random shard by a simple hash function.
Most features of my app require access to just one or two shards per request, but there is one in particular that requires the execution of a simple query on 10 to 100 different shards out of 256, depending on the user. Tests indicate it would take about 0.02 seconds, or less, if all the data is cached in RAM. I think I can live with that!
UPDATE 2.0 I ported the app to MySQL/InnoDB and was able to get about the same performance for regular requests, but for that one request that requires shard walking, innodb is 4-5 times faster. For this reason, and other reason, I'm dropping this architecture, but I hope someone somewhere finds a use for it...thanks.
The place where this will fail is if you have to do what's called "shard walking" - which is finding out all the data across a bunch of different users. That particular kind of "query" will have to be done programmatically, asking each of the SQLite databases in turn - and will very likely be the slowest aspect of your site. It's a common issue in any system where data has been "sharded" into separate databases.
If all the of the data is self-contained to the user, then this should scale pretty well - the key to making this an effective design is to know how the data is likely going to be used and if data from one person will be interacting with data from another (in your context).
You may also need to watch out for file system resources - SQLite is great, awesome, fast, etc - but you do get some caching and writing benefits when using a "standard database" (i.e. MySQL, PostgreSQL, etc) because of how they're designed. In your proposed design, you'll be missing out on some of that.
Sounds to me like a maintenance nightmare. What happens when the schema changes on all those DBs?
http://freshmeat.net/projects/sphivedb
SPHiveDB is a server for sqlite database. It use JSON-RPC over HTTP to expose a network interface to use SQLite database. It supports combining multiple SQLite databases into one file. It also supports the use of multiple files. It is designed for the extreme sharding schema -- one SQLite database per user.
One possible problem is that having one database for each user will use disk space and RAM very inefficiently, and as the user base grows the benefit of using a light and fast database engine will be lost completely.
A possible solution to this problem is to create "minishards" consisting of maybe 1024 SQLite databases housing up to 100 users each. This will be more efficient than the DB per user approach, because data is packed more efficiently. And lighter than the Innodb database server approach, because we're using Sqlite.
Concurrency will also be pretty good, but queries will be less elegant (shard_id yuckiness). What do you think?
If you're creating a separate database for each user, it sounds like you're not setting up relationships... so why use a relational database at all?
If your data is this easy to shard, why not just use a standard database engine, and if you scale large enough that the DB becomes the bottleneck, shard the database, with different users in different instances? The effect is the same, but you're not using scores of tiny little databases.
In reality, you probably have at least some shared data that doesn't belong to any single user, and you probably frequently need to access data for more than one user. This will cause problems with either system, though.
I am considering this same architecture as I basically wanted to use the server side SQLLIte databases as backup and synching copy for clients. My idea for querying across all the data is to use Sphinx for full-text search and run Hadoop jobs from flat dumps of all the data to Scribe and then expose the results as webservies. This post gives me some pause for thought however, so I hope people will continue to respond with their opinion.
Having one database per user would make it really easy to restore individual users data of course, but as #John said, schema changes would require some work.
Not enough to make it hard, but enough to make it non-trivial.