Encoding number through editing last bit of array elements - c

I'm trying to write a simple encoding program in C and I definitely have something wrong with my bitwise operations so I tried to write a simplified version to fix that mistake - so far it's still not working. I have an encoding and decoding method where, given a "key" I encode one number by hiding bits of it in a large array of unsigned ints.
I hide it by using srand(key) (so that I can generate the same numbers afterword with the same key) choosing array elements and then taking one bit of number (iterating through all) and swapping the least significant bit of array element for the bit coming through the number.
In decode method I try to reverse the steps, get all the bits from array elements back and glue them together to get back the original number.
That's the code I have so far:
unsigned int * encode(unsigned int * original_array, char * message, unsigned int mSize, unsigned int secret) {//disregard message, that's the later part, for now just encoding mSize - size of message
int size = MAX; //amount of elementas in array, max defined at top
int i, j, tmp;
unsigned int *array;
srand(secret); //seed rand with the given key
array = (unsigned int *)malloc(MAX*sizeof(unsigned int));
//copy to array from im
for (i=0; i<MAX; i++){
array[i] = original_array[i];
}
//encode message length first. it's a unsigned int therefore it's size is 4 bytes - 32 bits.
for (i=0; i<32; i++){
tmp = rand() % size;
if (((mSize >> i) & 1)==1) //check if the bit is 1
array[tmp] = (1 << 0) | array[tmp]; // then write 1 as last bit
else //else bit is 0
array[tmp] = array[tmp] & (~(1 << 0)); //write 0 as last bit
}
return array;
}
unsigned int decode(unsigned int * im, unsigned int secret) {
char * message;
int i, tmp;
unsigned int result = 2;
int size = MAX;
srand(secret);
for (i=0; i<32; i++){
tmp = rand() % size;
if (((im[tmp] << 0) & 1)==1)
result = (1 >> i) | result;
else
result = result & (~(1 >> i));
}//last
return result;
}
However running it and trying to print decoded result will give me 2, which is the dummy value I gave to result in decode() -therefore I know that at least my method of recovering the changed bits is clearly not working. Unfortunately since decoding is not working, I have no idea if encoding actually works and I can't seem to pinpoint the mistake.
I'm trying to understand how the hiding of such bits works since, ultimately, I want to hide entire message in a slightly more complicated structure then array, but first I wanted to get it working on a simpler level since I have troubles working with bitwise operators.
Edit: Through some debugging I think the encoding function works correctly - or at least does seem to change the array elements by one sometimes which would indicate flipping one bit if conditions are met.
Decoding doesn't seem to affect result variable at all - it doesn't change thgoughour all the bitwise operations and I don't know why.

The main bit of the encode function is the following which is same as your original just tidied it up a little by removing the uncessary 0 shifts and brackets:
//encode message length first. it's a unsigned int therefore it's size is 4 bytes - 32 bits.
for (i=0; i<32; i++){
tmp = rand() % size;
if (((mSize >> i) & 1)==1) //check if the bit is 1
array[tmp] |= 1; // then write 1 as last bit
else //else bit is 0
array[tmp] &= ~1; //write 0 as last bit
}
The problem you have is when you either set the last bit to 1 or 0 then you effectively lose information. There is no way of telling what the original last bit was. And so you will not be able to decode or reverse it.
In short the decode function will never work. As the encode function is not invertible.
EDIT
Following on from your comment. I would say the following about the decode function (again tidied up this should be the same as the original):
unsigned int decode(unsigned int * im, unsigned int secret) {
char * message;
int i, tmp;
unsigned int result = 2;
int size = MAX;
srand(secret);
for (i=0; i<32; i++){
tmp = rand() % size;
if ((im[tmp] & 1)==1)
result |= 1 >> i;
else
result &= ~(1 >> i);
}//last
return result;
}
The thing to note here is that for all values of i > 0 the following will apply:
1 >> i
is the same as
0
This means that for majority of your loop the code will be doing the following
if ((im[tmp] & 1)==1)
result |= 0;
else
result &= ~0;
And since 2 = 2 | 0 and 2 = 2 & ~0 then regardless of which branch of the if is executed the result will always be 2. This would be the same for any even number.
When i = 0 then the following is the case:
if ((im[tmp] & 1)==1)
result |= 1;
else
result &= ~1;
And so since 2 | 1 = 3 and 2 & ~1 = 2 your decode function will only ever return 2 or occasionally 3.

Related

CRC-15 giving wrong values

I am trying to create a CRC-15 check in c and the output is never correct for each line of the file. I am trying to output the CRC for each line cumulatively next to each line. I use: #define POLYNOMIAL 0xA053 for the divisor and text for the dividend. I need to represent numbers as 32-bit unsigned integers. I have tried printing out the hex values to keep track and flipping different shifts around. However, I just can't seem to figure it out! I have a feeling it has something to do with the way I am padding things. Is there a flaw to my logic?
The CRC is to be represented in four hexadecimal numbers, that sequence will have four leading 0's. For example, it will look like 0000xxxx where the x's are the hexadecimal digits. The polynomial I use is 0xA053.
I thought about using a temp variable and do 4 16 bit chunks of code per line every XOR, however, I'm not quite sure how I could use shifts to accomplish this so I settled for a checksum of the letters on the line and then XORing that to try to calculate the CRC code.
I am testing my code using the following input and padding with . until the string is of length 504 because that is what the pad character needs to be via the requirements given:
"This is the lesson: never give in, never give in, never, never, never, never - in nothing, great or small, large or petty - never give in except to convictions of honor and good sense. Never yield to force; never yield to the apparently overwhelming might of the enemy."
The CRC of the first 64 char line ("This is the lesson: never give in, never give in, never, never,) is supposed to be 000015fa and I am getting bfe6ec00.
My logic:
In CRCCalculation I add each character to a 32-bit unsigned integer and after 64 (the length of one line) I send it into the XOR function.
If it the top bit is not 1, I shift the number to the left one
causing 0s to pad the right and loop around again.
If the top bit is 1, I XOR the dividend with the divisor and then shift the dividend to the left one.
After all calculations are done, I return the dividend shifted to the left four ( to add four zeros to the front) to the calculation function
Add result to the running total of the result
Code:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <ctype.h>
#define POLYNOMIAL 0xA053
void crcCalculation(char *text, int length)
{
int i;
uint32_t dividend = atoi(text);
uint32_t result;
uint32_t sumText = 0;
// Calculate CRC
printf("\nCRC 15 calculation progress:\n");
i = length;
// padding
if(i < 504)
{
for(; i!=504; i++)
{
// printf("i is %d\n", i);
text[i] = '.';
}
}
// Try calculating by first line of crc by summing the values then calcuating, then add in the next line
for (i = 0; i < 504; i++)
{
if(i%64 == 0 && i != 0)
{
result = XOR(POLYNOMIAL, sumText);
printf(" - %x\n",result);
}
sumText +=(uint32_t)text[i];
printf("%c", text[i]);
}
printf("\n\nCRC15 result : %x\n", result);
}
uint32_t XOR(uint32_t divisor, uint32_t dividend)
{
uint32_t divRemainder = dividend;
uint32_t currentBit;
// Note: 4 16 bit chunks
for(currentBit = 32; currentBit > 0; --currentBit)
{
// if topbit is 1
if(divRemainder & 0x80)
{
//divRemainder = (divRemainder << 1) ^ divisor;
divRemainder ^= divisor;
printf("%x %x\n", divRemainder, divisor);
}
// else
// divisor = divisor >> 1;
divRemainder = (divRemainder << 1);
}
//return divRemainder; , have tried shifting to right and left, want to add 4 zeros to front so >>
//return divRemainder >> 4;
return divRemainder >> 4;
}
The first issue I see is the top bit check, it should be:
if(divRemainder & 0x8000)
The question doesn't state if the CRC is bit reflected (xor data into low order bits of CRC, right shift for cycle) or not (xor data into high order bits of CRC, left shift for cycle), so I can't offer help for the rest of the code.
The question doesn't state the initial value of CRC (0x0000 or 0x7fff), or if the CRC is post complemented.
The logic for a conventional CRC is:
xor a byte of data into the CRC (upper or lower bits)
cycle the CRC 8 times (or do a table lookup)
After generating the CRC for an entire message, the CRC can be appended to the message. If a CRC is generated for a message with the appended CRC and there are no errors, the CRC will be zero (or a constant value if the CRC is post complemented).
here is a typical CRC16, extracted from: <www8.cs.umu.se/~isak/snippets/crc-16.c>
#define POLY 0x8408
/*
// 16 12 5
// this is the CCITT CRC 16 polynomial X + X + X + 1.
// This works out to be 0x1021, but the way the algorithm works
// lets us use 0x8408 (the reverse of the bit pattern). The high
// bit is always assumed to be set, thus we only use 16 bits to
// represent the 17 bit value.
*/
unsigned short crc16(char *data_p, unsigned short length)
{
unsigned char i;
unsigned int data;
unsigned int crc = 0xffff;
if (length == 0)
return (~crc);
do
{
for (i=0, data=(unsigned int)0xff & *data_p++;
i < 8;
i++, data >>= 1)
{
if ((crc & 0x0001) ^ (data & 0x0001))
crc = (crc >> 1) ^ POLY;
else crc >>= 1;
}
} while (--length);
crc = ~crc;
data = crc;
crc = (crc << 8) | (data >> 8 & 0xff);
return (crc);
}
Since you want to calculate a CRC15 rather than a CRC16, the logic will be more complex as cannot work with whole bytes, so there will be a lot of bit shifting and ANDing to extract the desire 15 bits.
Note: the OP did not mention if the initial value of the CRC is 0x0000 or 0x7FFF, nor if the result is to be complemented, nor certain other criteria, so this posted code can only be a guide.

Iterate through bits in C

I have a big char *str where the first 8 chars (which equals 64 bits if I'm not wrong), represents a bitmap. Is there any way to iterate through these 8 chars and see which bits are 0? I'm having alot of trouble understanding the concept of bits, as you can't "see" them in the code, so I can't think of any way to do this.
Imagine you have only one byte, a single char my_char. You can test for individual bits using bitwise operators and bit shifts.
unsigned char my_char = 0xAA;
int what_bit_i_am_testing = 0;
while (what_bit_i_am_testing < 8) {
if (my_char & 0x01) {
printf("bit %d is 1\n", what_bit_i_am_testing);
}
else {
printf("bit %d is 0\n", what_bit_i_am_testing);
}
what_bit_i_am_testing++;
my_char = my_char >> 1;
}
The part that must be new to you, is the >> operator. This operator will "insert a zero on the left and push every bit to the right, and the rightmost will be thrown away".
That was not a very technical description for a right bit shift of 1.
Here is a way to iterate over each of the set bits of an unsigned integer (use unsigned rather than signed integers for well-defined behaviour; unsigned of any width should be fine), one bit at a time.
Define the following macros:
#define LSBIT(X) ((X) & (-(X)))
#define CLEARLSBIT(X) ((X) & ((X) - 1))
Then you can use the following idiom to iterate over the set bits, LSbit first:
unsigned temp_bits;
unsigned one_bit;
temp_bits = some_value;
for ( ; temp_bits; temp_bits = CLEARLSBIT(temp_bits) ) {
one_bit = LSBIT(temp_bits);
/* Do something with one_bit */
}
I'm not sure whether this suits your needs. You said you want to check for 0 bits, rather than 1 bits — maybe you could bitwise-invert the initial value. Also for multi-byte values, you could put it in another for loop to process one byte/word at a time.
It's true for little-endian memory architecture:
const int cBitmapSize = 8;
const int cBitsCount = cBitmapSize * 8;
const unsigned char cBitmap[cBitmapSize] = /* some data */;
for(int n = 0; n < cBitsCount; n++)
{
unsigned char Mask = 1 << (n % 8);
if(cBitmap[n / 8] & Mask)
{
// if n'th bit is 1...
}
}
In the C language, chars are 8-bit wide bytes, and in general in computer science, data is organized around bytes as the fundamental unit.
In some cases, such as your problem, data is stored as boolean values in individual bits, so we need a way to determine whether a particular bit in a particular byte is on or off. There is already an SO solution for this explaining how to do bit manipulations in C.
To check a bit, the usual method is to AND it with the bit you want to check:
int isBitSet = bitmap & (1 << bit_position);
If the variable isBitSet is 0 after this operation, then the bit is not set. Any other value indicates that the bit is on.
For one char b you can simply iterate like this :
for (int i=0; i<8; i++) {
printf("This is the %d-th bit : %d\n",i,(b>>i)&1);
}
You can then iterate through the chars as needed.
What you should understand is that you cannot manipulate directly the bits, you can just use some arithmetic properties of number in base 2 to compute numbers that in some way represents some bits you want to know.
How does it work for example ? In a char there is 8 bits. A char can be see as a number written with 8 bits in base 2. If the number in b is b7b6b5b4b3b2b1b0 (each being a digit) then b>>i is b shifted to the right by i positions (in the left 0's are pushed). So, 10110111 >> 2 is 00101101, then the operation &1 isolate the last bit (bitwise and operator).
If you want to iterate through all char.
char *str = "MNO"; // M=01001101, N=01001110, O=01001111
int bit = 0;
for (int x = strlen(str)-1; x > -1; x--){ // Start from O, N, M
printf("Char %c \n", str[x]);
for(int y=0; y<8; y++){ // Iterate though every bit
// Shift bit the the right with y step and mask last position
if( str[x]>>y & 0b00000001 ){
printf("bit %d = 1\n", bit);
}else{
printf("bit %d = 0\n", bit);
}
bit++;
}
}
output
Char O
bit 0 = 1
bit 1 = 1
bit 2 = 1
bit 3 = 1
bit 4 = 0
bit 5 = 0
bit 6 = 1
bit 7 = 0
Char N
bit 8 = 0
bit 9 = 1
bit 10 = 1
...

Finding Bit Positions in an unsigned 32-bit integer

I think I might have been asleep in my CS class when they talked about Bit Positions, so I am hoping someone can lend a hand.
I have a unsigned 32-bit integer (Lets use the value: 28)
According to some documentation I am going over, the value of the integer contains flags specifying various things.
Bit positions within the flag are numbered from 1 (low-order) to 32 (high-order).
All undefined flag bits are reserved and must be set to 0.
I have a Table that shows the meanings of the flags, with meaning for the numbers 1-10.
I am hoping that someone can try and explain to me what this all means and how to find the "flag" value(s) from a number like, 28, based off of bit position.
Thanks
28 converts to 11100 in binary. That means bits 1 and 2 are not set and bits 3, 4 and 5 are set.
A few points: first, anybody who's really accustomed to C will usually start the numbering at 0, not 1. Second, you can test of individual flags with the bitwise and operator (&), as in:
#define flag1 1 // 1 = 00 0001
#define flag2 2 // 2 = 00 0010
#define flag3 4 // 4 = 00 0100
#define flag4 8 // 8 = 00 1000
#define flag5 16 // 16 = 01 0000
#define flag6 32 // 32 = 10 0000
if (myvalue & flag1)
// flag1 was set
if (myvalue & flag4)
// flag4 was set
and so on. You can also check which bits are set in a loop:
#include <stdio.h>
int main() {
int myvalue = 28;
int i, iter;
for (i=1, iter=1; i<256; i<<=1, iter++)
if (myvalue & i)
printf("Flag: %d set\n", iter);
return 0;
}
should print:
Flag: 3 set
Flag: 4 set
Flag: 5 set
Instead of looping through every single bit, you can instead loop through only the set bits, which can be faster if you expect bits to be sparsely set:
Assume the bit field is in (scalar integer) variable field.
while (field){
temp = field & -field; //extract least significant bit on a 2s complement machine
field ^= temp; // toggle the bit off
//now you could have a switch statement or bunch of conditionals to test temp
//or get the index of the bit and index into a jump table, etc.
}
Works pretty well when the bit field is not limited to the size of a single data type, but could be of some arbitrary size. In that case, you can extract 32 (or whatever your register size is) bits at a time, test it against 0, and then move on to the next word.
To get an int with the value 0 or 1 representing just the nth bit from that integer, use:
int bitN = (value >> n) & 1;
But that's not usually what you want to do. A more common idiom is this:
int bitN = value & (1 << n);
In this case bitN will be 0 if the nth bit is not set, and non-zero in the case that the nth bit is set. (Specifically, it'll be whatever value comes out with just the nth bit set.)
Assuming flags is unsigned...
int flag_num = 1;
while (flags != 0)
{
if ((flags&1) != 0)
{
printf("Flag %d set\n", flags);
}
flags >>= 1;
flag_num += 1;
}
If flags is signed you should replace
flags >>= 1;
with
flags = (flags >> 1) & 0x7fffffff;
Use a log function, with base 2. In python, that would look like:
import math
position = math.log(value, 2)
If position is not an integer, then more than 1 bit was set to 1.
A slight variation of #invaliddata's answer-
unsigned int tmp_bitmap = x;
while (tmp_bitmap > 0) {
int next_psn = __builtin_ffs(tmp_bitmap) - 1;
tmp_bitmap &= (tmp_bitmap-1);
printf("Flag: %d set\n", next_psn);
}
// You can check the bit set positions of 32 bit integer.
// That's why the check is added "i != 0 && i <= val" to iterate till
// the end bit position.
void find_bit_pos(unsigned int val) {
unsigned int i;
int bit_pos;
printf("%u::\n", val);
for(i = 1, bit_pos = 1; i != 0 && i <= val; i <<= 1, bit_pos++) {
if(val & i)
printf("set bit pos: %d\n", bit_pos);
}
}
An MSVC variation of #boolAeon's answer
#include <vector>
#include <intrin.h>
std::vector<unsigned long> poppos(const unsigned long input)
{
std::vector<unsigned long> result;
result.reserve(sizeof(input) * CHAR_BIT);
unsigned long num = input;
unsigned long index = -1;
while (_BitScanForward(&index, num))
{
result.push_back(index);
num &= num - 1;
}
return result;
}
Let's say that you have an array of integers, and you want to find all the positions (32-bit positions) where the bits are set collectively i.e. for a particular bit position how many set bits you will have in total by considering all the integers. In this case what you can do is that check for every Integer and mark its set bit position :
// let arr[n] is an array of integers of size n.
int fq[33] = {0} // frequency array that will contain frequency of set bits at a particular position as 1 based indexing.
for(int i=0; i<n; i++) {
int x = arr[i];
int pos = 1; // bit position
for(int i=1; i<=pow(2,32); i= i<<1) { // i is the bit mask for checking every position and will go till 2^32 because x is an integer.
if(x & i) fq[pos]++;
pos++;
}
}

Fastest way to count number of bit transitions in an unsigned int

I'm looking for the fastest way of counting the number of bit transitions in an unsigned int.
If the int contains: 0b00000000000000000000000000001010
The number of transitions are: 4
If the int contains: 0b00000000000000000000000000001001
The number of transitions are: 3
Language is C.
int numTransitions(int a)
{
int b = a >> 1; // sign-extending shift properly counts bits at the ends
int c = a ^ b; // xor marks bits that are not the same as their neighbors on the left
return CountBits(c); // count number of set bits in c
}
For an efficient implementation of CountBits see http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
Fastest depends on your scenario:
As you specified your datatype as constant sized (unsigned int), it is possible with lookup table. But when you need this operation only once the constant overhead to init the table is too big, and scanning+counting through the int is far faster despite.
I guess the overall best would be a combination: Look up table for a byte or word (256 or 64k entries is not so much), and then combine the bytes/words by their last/first bit.
In C/C++ I would do the following:
unsigned int Transitions(unsigned int value)
{
unsigned int result = 0;
for (unsigned int markers = value ^ (value >> 1); markers; markers = markers >> 1)
{
if (markers & 0x01) result++;
}
return result;
}
Here's the code using arithmetic shift + xor and Kernighan's method for bit counting:
int count_transitions(int x)
{
assert((-1 >> 1) < 0); // check for arithmetic shift
int count = 0;
for(x ^= (x >> 1); x; x &= x - 1)
++count;
return count;
}
What language?
I would loop 64 times and then bit shift your number to inspect of the bits, then store the previous bit and compare it to the current one. If it's different, incremember your count.
Ok, with transitions you mean if you walk through the string of 0-s and 1-s, you count each occurance that a 0 follows a 1 or a 1 follows a 0.
This is easy by shifting bits out and counting the changes:
transitions(n)
result = 0
prev = n mod 2
n = n div 2
while n<>0
if n mod 2 <> prev then
result++
prev = n mod 2
fi
n = n div 2
elihw
return result
you can replace the mod and div with shifts.

Bit reversal of an integer, ignoring integer size and endianness

Given an integer typedef:
typedef unsigned int TYPE;
or
typedef unsigned long TYPE;
I have the following code to reverse the bits of an integer:
TYPE max_bit= (TYPE)-1;
void reverse_int_setup()
{
TYPE bits= (TYPE)max_bit;
while (bits <<= 1)
max_bit= bits;
}
TYPE reverse_int(TYPE arg)
{
TYPE bit_setter= 1, bit_tester= max_bit, result= 0;
for (result= 0; bit_tester; bit_tester>>= 1, bit_setter<<= 1)
if (arg & bit_tester)
result|= bit_setter;
return result;
}
One just needs first to run reverse_int_setup(), which stores an integer with the highest bit turned on, then any call to reverse_int(arg) returns arg with its bits reversed (to be used as a key to a binary tree, taken from an increasing counter, but that's more or less irrelevant).
Is there a platform-agnostic way to have in compile-time the correct value for max_int after the call to reverse_int_setup(); Otherwise, is there an algorithm you consider better/leaner than the one I have for reverse_int()?
Thanks.
#include<stdio.h>
#include<limits.h>
#define TYPE_BITS sizeof(TYPE)*CHAR_BIT
typedef unsigned long TYPE;
TYPE reverser(TYPE n)
{
TYPE nrev = 0, i, bit1, bit2;
int count;
for(i = 0; i < TYPE_BITS; i += 2)
{
/*In each iteration, we swap one bit on the 'right half'
of the number with another on the left half*/
count = TYPE_BITS - i - 1; /*this is used to find how many positions
to the left (and right) we gotta move
the bits in this iteration*/
bit1 = n & (1<<(i/2)); /*Extract 'right half' bit*/
bit1 <<= count; /*Shift it to where it belongs*/
bit2 = n & 1<<((i/2) + count); /*Find the 'left half' bit*/
bit2 >>= count; /*Place that bit in bit1's original position*/
nrev |= bit1; /*Now add the bits to the reversal result*/
nrev |= bit2;
}
return nrev;
}
int main()
{
TYPE n = 6;
printf("%lu", reverser(n));
return 0;
}
This time I've used the 'number of bits' idea from TK, but made it somewhat more portable by not assuming a byte contains 8 bits and instead using the CHAR_BIT macro. The code is more efficient now (with the inner for loop removed). I hope the code is also slightly less cryptic this time. :)
The need for using count is that the number of positions by which we have to shift a bit varies in each iteration - we have to move the rightmost bit by 31 positions (assuming 32 bit number), the second rightmost bit by 29 positions and so on. Hence count must decrease with each iteration as i increases.
Hope that bit of info proves helpful in understanding the code...
The following program serves to demonstrate a leaner algorithm for reversing bits, which can be easily extended to handle 64bit numbers.
#include <stdio.h>
#include <stdint.h>
int main(int argc, char**argv)
{
int32_t x;
if ( argc != 2 )
{
printf("Usage: %s hexadecimal\n", argv[0]);
return 1;
}
sscanf(argv[1],"%x", &x);
/* swap every neigbouring bit */
x = (x&0xAAAAAAAA)>>1 | (x&0x55555555)<<1;
/* swap every 2 neighbouring bits */
x = (x&0xCCCCCCCC)>>2 | (x&0x33333333)<<2;
/* swap every 4 neighbouring bits */
x = (x&0xF0F0F0F0)>>4 | (x&0x0F0F0F0F)<<4;
/* swap every 8 neighbouring bits */
x = (x&0xFF00FF00)>>8 | (x&0x00FF00FF)<<8;
/* and so forth, for say, 32 bit int */
x = (x&0xFFFF0000)>>16 | (x&0x0000FFFF)<<16;
printf("0x%x\n",x);
return 0;
}
This code should not contain errors, and was tested using 0x12345678 to produce 0x1e6a2c48 which is the correct answer.
typedef unsigned long TYPE;
TYPE reverser(TYPE n)
{
TYPE k = 1, nrev = 0, i, nrevbit1, nrevbit2;
int count;
for(i = 0; !i || (1 << i && (1 << i) != 1); i+=2)
{
/*In each iteration, we swap one bit
on the 'right half' of the number with another
on the left half*/
k = 1<<i; /*this is used to find how many positions
to the left (or right, for the other bit)
we gotta move the bits in this iteration*/
count = 0;
while(k << 1 && k << 1 != 1)
{
k <<= 1;
count++;
}
nrevbit1 = n & (1<<(i/2));
nrevbit1 <<= count;
nrevbit2 = n & 1<<((i/2) + count);
nrevbit2 >>= count;
nrev |= nrevbit1;
nrev |= nrevbit2;
}
return nrev;
}
This works fine in gcc under Windows, but I'm not sure if it's completely platform independent. A few places of concern are:
the condition in the for loop - it assumes that when you left shift 1 beyond the leftmost bit, you get either a 0 with the 1 'falling out' (what I'd expect and what good old Turbo C gives iirc), or the 1 circles around and you get a 1 (what seems to be gcc's behaviour).
the condition in the inner while loop: see above. But there's a strange thing happening here: in this case, gcc seems to let the 1 fall out and not circle around!
The code might prove cryptic: if you're interested and need an explanation please don't hesitate to ask - I'll put it up someplace.
#ΤΖΩΤΖΙΟΥ
In reply to ΤΖΩΤΖΙΟΥ 's comments, I present modified version of above which depends on a upper limit for bit width.
#include <stdio.h>
#include <stdint.h>
typedef int32_t TYPE;
TYPE reverse(TYPE x, int bits)
{
TYPE m=~0;
switch(bits)
{
case 64:
x = (x&0xFFFFFFFF00000000&m)>>16 | (x&0x00000000FFFFFFFF&m)<<16;
case 32:
x = (x&0xFFFF0000FFFF0000&m)>>16 | (x&0x0000FFFF0000FFFF&m)<<16;
case 16:
x = (x&0xFF00FF00FF00FF00&m)>>8 | (x&0x00FF00FF00FF00FF&m)<<8;
case 8:
x = (x&0xF0F0F0F0F0F0F0F0&m)>>4 | (x&0x0F0F0F0F0F0F0F0F&m)<<4;
x = (x&0xCCCCCCCCCCCCCCCC&m)>>2 | (x&0x3333333333333333&m)<<2;
x = (x&0xAAAAAAAAAAAAAAAA&m)>>1 | (x&0x5555555555555555&m)<<1;
}
return x;
}
int main(int argc, char**argv)
{
TYPE x;
TYPE b = (TYPE)-1;
int bits;
if ( argc != 2 )
{
printf("Usage: %s hexadecimal\n", argv[0]);
return 1;
}
for(bits=1;b;b<<=1,bits++);
--bits;
printf("TYPE has %d bits\n", bits);
sscanf(argv[1],"%x", &x);
printf("0x%x\n",reverse(x, bits));
return 0;
}
Notes:
gcc will warn on the 64bit constants
the printfs will generate warnings too
If you need more than 64bit, the code should be simple enough to extend
I apologise in advance for the coding crimes I committed above - mercy good sir!
There's a nice collection of "Bit Twiddling Hacks", including a variety of simple and not-so simple bit reversing algorithms coded in C at http://graphics.stanford.edu/~seander/bithacks.html.
I personally like the "Obvious" algorigthm (http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious) because, well, it's obvious. Some of the others may require less instructions to execute. If I really need to optimize the heck out of something I may choose the not-so-obvious but faster versions. Otherwise, for readability, maintainability, and portability I would choose the Obvious one.
Here is a more generally useful variation. Its advantage is its ability to work in situations where the bit length of the value to be reversed -- the codeword -- is unknown but is guaranteed not to exceed a value we'll call maxLength. A good example of this case is Huffman code decompression.
The code below works on codewords from 1 to 24 bits in length. It has been optimized for fast execution on a Pentium D. Note that it accesses the lookup table as many as 3 times per use. I experimented with many variations that reduced that number to 2 at the expense of a larger table (4096 and 65,536 entries). This version, with the 256-byte table, was the clear winner, partly because it is so advantageous for table data to be in the caches, and perhaps also because the processor has an 8-bit table lookup/translation instruction.
const unsigned char table[] = {
0x00,0x80,0x40,0xC0,0x20,0xA0,0x60,0xE0,0x10,0x90,0x50,0xD0,0x30,0xB0,0x70,0xF0,
0x08,0x88,0x48,0xC8,0x28,0xA8,0x68,0xE8,0x18,0x98,0x58,0xD8,0x38,0xB8,0x78,0xF8,
0x04,0x84,0x44,0xC4,0x24,0xA4,0x64,0xE4,0x14,0x94,0x54,0xD4,0x34,0xB4,0x74,0xF4,
0x0C,0x8C,0x4C,0xCC,0x2C,0xAC,0x6C,0xEC,0x1C,0x9C,0x5C,0xDC,0x3C,0xBC,0x7C,0xFC,
0x02,0x82,0x42,0xC2,0x22,0xA2,0x62,0xE2,0x12,0x92,0x52,0xD2,0x32,0xB2,0x72,0xF2,
0x0A,0x8A,0x4A,0xCA,0x2A,0xAA,0x6A,0xEA,0x1A,0x9A,0x5A,0xDA,0x3A,0xBA,0x7A,0xFA,
0x06,0x86,0x46,0xC6,0x26,0xA6,0x66,0xE6,0x16,0x96,0x56,0xD6,0x36,0xB6,0x76,0xF6,
0x0E,0x8E,0x4E,0xCE,0x2E,0xAE,0x6E,0xEE,0x1E,0x9E,0x5E,0xDE,0x3E,0xBE,0x7E,0xFE,
0x01,0x81,0x41,0xC1,0x21,0xA1,0x61,0xE1,0x11,0x91,0x51,0xD1,0x31,0xB1,0x71,0xF1,
0x09,0x89,0x49,0xC9,0x29,0xA9,0x69,0xE9,0x19,0x99,0x59,0xD9,0x39,0xB9,0x79,0xF9,
0x05,0x85,0x45,0xC5,0x25,0xA5,0x65,0xE5,0x15,0x95,0x55,0xD5,0x35,0xB5,0x75,0xF5,
0x0D,0x8D,0x4D,0xCD,0x2D,0xAD,0x6D,0xED,0x1D,0x9D,0x5D,0xDD,0x3D,0xBD,0x7D,0xFD,
0x03,0x83,0x43,0xC3,0x23,0xA3,0x63,0xE3,0x13,0x93,0x53,0xD3,0x33,0xB3,0x73,0xF3,
0x0B,0x8B,0x4B,0xCB,0x2B,0xAB,0x6B,0xEB,0x1B,0x9B,0x5B,0xDB,0x3B,0xBB,0x7B,0xFB,
0x07,0x87,0x47,0xC7,0x27,0xA7,0x67,0xE7,0x17,0x97,0x57,0xD7,0x37,0xB7,0x77,0xF7,
0x0F,0x8F,0x4F,0xCF,0x2F,0xAF,0x6F,0xEF,0x1F,0x9F,0x5F,0xDF,0x3F,0xBF,0x7F,0xFF};
const unsigned short masks[17] =
{0,0,0,0,0,0,0,0,0,0X0100,0X0300,0X0700,0X0F00,0X1F00,0X3F00,0X7F00,0XFF00};
unsigned long codeword; // value to be reversed, occupying the low 1-24 bits
unsigned char maxLength; // bit length of longest possible codeword (<= 24)
unsigned char sc; // shift count in bits and index into masks array
if (maxLength <= 8)
{
codeword = table[codeword << (8 - maxLength)];
}
else
{
sc = maxLength - 8;
if (maxLength <= 16)
{
codeword = (table[codeword & 0X00FF] << sc)
| table[codeword >> sc];
}
else if (maxLength & 1) // if maxLength is 17, 19, 21, or 23
{
codeword = (table[codeword & 0X00FF] << sc)
| table[codeword >> sc] |
(table[(codeword & masks[sc]) >> (sc - 8)] << 8);
}
else // if maxlength is 18, 20, 22, or 24
{
codeword = (table[codeword & 0X00FF] << sc)
| table[codeword >> sc]
| (table[(codeword & masks[sc]) >> (sc >> 1)] << (sc >> 1));
}
}
How about:
long temp = 0;
int counter = 0;
int number_of_bits = sizeof(value) * 8; // get the number of bits that represent value (assuming that it is aligned to a byte boundary)
while(value > 0) // loop until value is empty
{
temp <<= 1; // shift whatever was in temp left to create room for the next bit
temp |= (value & 0x01); // get the lsb from value and set as lsb in temp
value >>= 1; // shift value right by one to look at next lsb
counter++;
}
value = temp;
if (counter < number_of_bits)
{
value <<= counter-number_of_bits;
}
(I'm assuming that you know how many bits value holds and it is stored in number_of_bits)
Obviously temp needs to be the longest imaginable data type and when you copy temp back into value, all the extraneous bits in temp should magically vanish (I think!).
Or, the 'c' way would be to say :
while(value)
your choice
We can store the results of reversing all possible 1 byte sequences in an array (256 distinct entries), then use a combination of lookups into this table and some oring logic to get the reverse of integer.
Here is a variation and correction to TK's solution which might be clearer than the solutions by sundar. It takes single bits from t and pushes them into return_val:
typedef unsigned long TYPE;
#define TYPE_BITS sizeof(TYPE)*8
TYPE reverser(TYPE t)
{
unsigned int i;
TYPE return_val = 0
for(i = 0; i < TYPE_BITS; i++)
{/*foreach bit in TYPE*/
/* shift the value of return_val to the left and add the rightmost bit from t */
return_val = (return_val << 1) + (t & 1);
/* shift off the rightmost bit of t */
t = t >> 1;
}
return(return_val);
}
The generic approach hat would work for objects of any type of any size would be to reverse the of bytes of the object, and the reverse the order of bits in each byte. In this case the bit-level algorithm is tied to a concrete number of bits (a byte), while the "variable" logic (with regard to size) is lifted to the level of whole bytes.
Here's my generalization of freespace's solution (in case we one day get 128-bit machines). It results in jump-free code when compiled with gcc -O3, and is obviously insensitive to the definition of foo_t on sane machines. Unfortunately it does depend on shift being a power of 2!
#include <limits.h>
#include <stdio.h>
typedef unsigned long foo_t;
foo_t reverse(foo_t x)
{
int shift = sizeof (x) * CHAR_BIT / 2;
foo_t mask = (1 << shift) - 1;
int i;
for (i = 0; shift; i++) {
x = ((x & mask) << shift) | ((x & ~mask) >> shift);
shift >>= 1;
mask ^= (mask << shift);
}
return x;
}
int main() {
printf("reverse = 0x%08lx\n", reverse(0x12345678L));
}
In case bit-reversal is time critical, and mainly in conjunction with FFT, the best is to store the whole bit reversed array. In any case, this array will be smaller in size than the roots of unity that have to be precomputed in FFT Cooley-Tukey algorithm. An easy way to compute the array is:
int BitReverse[Size]; // Size is power of 2
void Init()
{
BitReverse[0] = 0;
for(int i = 0; i < Size/2; i++)
{
BitReverse[2*i] = BitReverse[i]/2;
BitReverse[2*i+1] = (BitReverse[i] + Size)/2;
}
} // end it's all

Resources