c program to calculate multiples in interval - c

How to write a program that calculates the multiples of 7 between 21 and 210 inclusive?
This is an incorrect example:
finding multiples of 7
#include<stdio.h>
int main(){
int multiple;
int sum;
int i=0;
int j=0;
int sum1,sum2;
for (i=1;i>=21;i++){
printf(i);
sum1=i+sum1;
for(j=1;j<=210;j++){
printf(j);
sum2=j+sum2;
}
}
sum=sum1+sum2;
printf("sum",sum);
}

Define lower and upper limit as n1 and n2 with 21 and 210 respectively.
#include <iostream>
#include <stdio.h>
int main()
{
int n1,n2;
n1=21;
n2=210;
while(n1<=n2)
{
if(n1%7==0)
printf("%d ",n1);
n1=n1+1;
}
}
Tested code on Code Chef - https://www.codechef.com/ide
Output:
21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 182 189 196 203 210

Try this:
#include<stdio.h>
int main(void)
{
int i, j, sum = 0;
//set your lower bound and upper bound
for (i = 21 ; i <= 210 ; i++)
{
if ( (i % 7) == 0 )
{
sum += i;
}
}
printf("total sum = %d \n",sum);
}

Related

2d Array Sorting in C [duplicate]

I have the code below that can produce
[p18d541#csci112 program1]$ ./main 17 < inp17.txt
12 25 110 168
35 64 113 134
91 158 183 217
102 129 130 146
26 116 215 223
0 78 81 162
19 25 204 222
124 138 157 245
137 183 201 249
61 67 106 236
60 71 106 236
63 81 106 240
14 27 111 168
17 27 111 168
26 116 215 220
111 137 202 249
111 137 202 246
from an input of
168.12.110.25
64.113.134.35
217.158.91.183
102.130.129.146
215.116.26.223
81.162.78.0
19.204.25.222
245.124.138.157
137.249.183.201
106.61.236.67
106.71.236.60
106.81.240.63
168.14.111.27
168.17.111.27
215.116.26.220
137.249.111.202
137.246.111.202
so my code scans in the input stores the values in network
and then I need to arrange them by the column from least to greatest starting at the first number and working its way to the right. an example of a the first few would be
0 78 81 162
12 25 110 168
14 27 111 168
.
.
.
111 137 202 246
111 137 202 249
.
.
.
.
//declare libraries
#include <stdio.h>
#include <stdlib.h>
//declare other functions/files to be used in the program
void print_fun(void);
int sort_fun(int arg, unsigned char networks[arg][4]);
void read_fun(void);
//read command line input and store the information
int main(int argc, char** argv){
//declar variable
int arg = 0;
//make argv into an int
arg = atoi(argv[1]);
//assign size to networks
unsigned char networks[arg][4];
//assign input to networks
for (int j =0; j<1; ++j){
if(argc == 1)
{
printf("ERROR ERROR, you messed up\n");
}
else
{
// hold network addresses in a 2-d array, with 4 nsigned char
for(int k = 0; k<arg; k++){
for (int i =0; i<4; i++){
scanf("%hhu.", &networks[k][i]);
//checks to see if scanf was working roperly
// printf(" %hhu",networks[k][i]);
}
//printf("\n");
}}}
sort_fun(arg, networks);
//sort array
//count networks
//print info about the array
return(0);
}
int sort_fun(int arg, unsigned char networks[arg][4]){
//declaring variabes
//sorting by comlumn p
for (int k = 0; k < arg; k++){
for( int i = 0; i < 4; i++){
for (int j = i+1; j<4; ++j){
if (networks[k][i] > networks[k][j]) {
int swap = networks[k][i];
networks[k][i] = networks[k][j];
networks[k][j] = swap;
}
}
}
}
for (int i =0; i<arg; i++){
for (int j =0; j < 4; j++){
printf(" %hhu", networks[i][j]);
}
printf("\n");
}
return(0);
}
I have tried switching around the variables in my for loop and messing with the values, but I cannot seem to figure out how to change my code to work in columns instead of rows.
and by the way each value is stored in a separate array element but they need to stick together like in the input, so when one number moves the whole line moves with it. please let me know what you think. thank you.

2d Array Sorting by Column in C

I have the code below that can produce
[p18d541#csci112 program1]$ ./main 17 < inp17.txt
12 25 110 168
35 64 113 134
91 158 183 217
102 129 130 146
26 116 215 223
0 78 81 162
19 25 204 222
124 138 157 245
137 183 201 249
61 67 106 236
60 71 106 236
63 81 106 240
14 27 111 168
17 27 111 168
26 116 215 220
111 137 202 249
111 137 202 246
from an input of
168.12.110.25
64.113.134.35
217.158.91.183
102.130.129.146
215.116.26.223
81.162.78.0
19.204.25.222
245.124.138.157
137.249.183.201
106.61.236.67
106.71.236.60
106.81.240.63
168.14.111.27
168.17.111.27
215.116.26.220
137.249.111.202
137.246.111.202
so my code scans in the input stores the values in network
and then I need to arrange them by the column from least to greatest starting at the first number and working its way to the right. an example of a the first few would be
0 78 81 162
12 25 110 168
14 27 111 168
.
.
.
111 137 202 246
111 137 202 249
.
.
.
.
//declare libraries
#include <stdio.h>
#include <stdlib.h>
//declare other functions/files to be used in the program
void print_fun(void);
int sort_fun(int arg, unsigned char networks[arg][4]);
void read_fun(void);
//read command line input and store the information
int main(int argc, char** argv){
//declar variable
int arg = 0;
//make argv into an int
arg = atoi(argv[1]);
//assign size to networks
unsigned char networks[arg][4];
//assign input to networks
for (int j =0; j<1; ++j){
if(argc == 1)
{
printf("ERROR ERROR, you messed up\n");
}
else
{
// hold network addresses in a 2-d array, with 4 nsigned char
for(int k = 0; k<arg; k++){
for (int i =0; i<4; i++){
scanf("%hhu.", &networks[k][i]);
//checks to see if scanf was working roperly
// printf(" %hhu",networks[k][i]);
}
//printf("\n");
}}}
sort_fun(arg, networks);
//sort array
//count networks
//print info about the array
return(0);
}
int sort_fun(int arg, unsigned char networks[arg][4]){
//declaring variabes
//sorting by comlumn p
for (int k = 0; k < arg; k++){
for( int i = 0; i < 4; i++){
for (int j = i+1; j<4; ++j){
if (networks[k][i] > networks[k][j]) {
int swap = networks[k][i];
networks[k][i] = networks[k][j];
networks[k][j] = swap;
}
}
}
}
for (int i =0; i<arg; i++){
for (int j =0; j < 4; j++){
printf(" %hhu", networks[i][j]);
}
printf("\n");
}
return(0);
}
I have tried switching around the variables in my for loop and messing with the values, but I cannot seem to figure out how to change my code to work in columns instead of rows.
and by the way each value is stored in a separate array element but they need to stick together like in the input, so when one number moves the whole line moves with it. please let me know what you think. thank you.

Finding prime numbers using C does not work

I am currently learning C and trying to solve a problem. I need to find all the prime numbers from 2 to 100, using arrays and loops.
I already know of a solution to this problem however I am having trouble finding the error in my code. This is my first time using StackOverflow so hopefully I commented everything properly :)
#include <stdio.h>
#include <stdlib.h>
int main(){
int prime_numbers[50] = {2,3}; //initializes the array which will be printed at the end
int counter = 1; //initializes the index of the last prime element in array
int checker = 0; //initializes a checker used to determine if the number is prime
for(int i = 5; i <= 100; i++) { //goes through numbers 5 to 100 as the first two primes are hard coded
for(int j = 0; j <= counter; j++){ //goes through array untill it reaches last prime using the before initialized counter
if(i % prime_numbers[j] != 0) { //check to see if a number that is being checked is not divisible by j'th element in array
checker++; //if so, checker is incremented
}
if(checker == counter + 1) { //check to see if number was not divisible by any prime in our array
checker = 0; //if so checker is reset to 0 for the next iteration
++counter; //counter is incremented as there is one more prime in our array
prime_numbers[counter] = i; //add inside array the found prime number
break; //break should not be necessary, however for some reason, it yields a different result when I don't put it in
} //most likely the error in the code. Need to find out why loop does not stop after second if is done
}
}
for(int g = 0; g <= 50; g++) { //prints out all the prime numbers in array
if(prime_numbers[g] != 0) {
printf("%d ", prime_numbers[g]);
}
}
return 0;
}
I expect the program to print all the prime numbers from 0 to 100 with spaces in between.
The program also finds numbers that are not prime. Its logic is a rather strange inversion. The candidate needs to be divisible by only one prime in the array. The reporting also breaks the array bounds.
The corrected code:
#include <stdio.h>
int main(void) { // correct function signature
int prime_numbers[50] = {2,3};
int counter = 1;
int checker; // initialise within each loop
for(int i = 5; i <= 100; i++){
checker = 0; // inintialise here
for(int j = 0; j <= counter; j++) {
if(i % prime_numbers[j] == 0) { // opposite test to yours
checker++; // flag a non-prime
break;
}
}
if(checker == 0) { // moved outside the loop
++counter;
prime_numbers[counter] = i;
}
}
for(int g = 0; g < 50; g++) { // corrected the bounds error
if(prime_numbers[g] != 0){
printf("%d ", prime_numbers[g]);
}
}
printf("\n"); // flush the output buffer
return 0;
}
Program output:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
The reporting loop relies on the array being initialised to 0s and a better way would be
for(int j = 0; j <= counter; j++) {
printf("%d ", prime_numbers[j]);
}
printf("\n");
The following code works well.
int main()
{
int k=1,temp,j;
const int N_prime = 10000; // number of primes to be generated
int primes[N_prime]; // array to save primes
primes[0] = 2;
primes[1] = 3;
temp = 5;
while (k!=N_prime-1){ // generating only N_prime prime numbers
for (j = 0; j <= k && primes[j] * primes[j] <= temp; j++){
if (temp%primes[j] == 0){ // if temp%primes[j] == 0 then temp is divisible by
temp += 2; // a prime and is not a prime itself, therefore
break; // immediately break
}
else if (primes[j+1] * primes[j+1]>temp){ // if no such primes found, temp is prime,
primes[k + 1] = temp; // save it and increase the value for
k++; // next check
temp += 2;
}
}
}
for (int ind = 0; ind < N_prime; ind++) printf("%d\n",primes[ind]);
getch();
return 0;
}
with the output:
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
101
103
107
109
113
127
131
137
139
149
151
157
163
167
173
179
181
191
193
197
199
211
223
227
229
233
239
241
251
257
263
269
271
277
281
283
293
307
311
313
317
331
337
347
349
353
359
367
373
379
383
389
397
401
409
419
421
431
433
439
443
449
457
461
463
467
479
487
491
499
503
509
521
523
541
As I noticed, your code generates all the odd numbers up to 100.

Generate Unique Values

I want to create a C program to generate numbers from 0 to 999999, keeping in mind that the number generated should not have any digits that are repetitive within it. For example, "123" is an acceptable value but not "121" as the '1' is repeated. I have sourced other program codes that check if an integer has repeated digits:
Check if integer has repeating digits. No string methods or arrays
What is the fastest way to check for duplicate digits of a number?
However these do not really solve my problem and they are very inefficient solutions if I were to perform the check for 1,000,000 different values. Moreover, the solution provided is for int and not char[] and char *, which I use in my program. Below is my code thus far. As you can see I have no problems handling values of up to "012", however the possibilities for values with 3 digits and above are too many to list and too inefficient to code. Would appreciate some help.
int i, j;
char genNext[7] = "0";
printf("%s\n", genNext);
// loop through to return next pass in sequence
while (1) {
for (i = 0; i < sizeof(genNext) / sizeof(char); i++) {
if (genNext[i] == '9') {
char * thisPass = strndup(genNext, sizeof(genNext));
int countDigit = (int) strlen(thisPass);
switch (countDigit) {
case 1:
genNext = "01";
break;
case 2:
if (strcmp(genNext, "98")) {
if (i == 0) {
genNext[1] += 1;
} else {
genNext[0] += 1;
genNext[1] == '0';
}
} else {
genNext = "012";
}
break;
case 3:
if (strcmp(genNext, "987")) {
// code to handle all cases
} else {
genNext = "0123";
}
break;
case 4:
case 5:
case 6:
// insert code here
}
break;
} else if (genNext[i] == '\0') {
break;
} else if (genNext[i+1] == '\0') {
genNext[i] += 1;
for (j = 0; j < i; j++) {
if (genNext[i] == genNext[j]) {
genNext[i] += 1;
}
}
} else {
continue;
}
}
printf("%s\n", genNext);
if (strcmp(genNext, "987654") == 0) {
break;
}
}
The main problem that I am facing is the cases when '9' is part of the value that is being tested. For example, the next value in the sequence after "897" is "901" and after "067895" comes "067912" based on the rules of non-repetitiveness as well as sequential returning of the result.
A desired output would be as follows:
0
1
2
3
...
8
9
01
02
03
...
09
10
12
13
...
97
98
012
013
014
...
098
102
103
...
985
986
987
0123
0124
...
etc etc.
Any assistance is appreciated, and if any part of my question was unclear, feel free to clarify. Thanks!
EDIT: How do I generate all permutations of a list of numbers? does not solve my question as the increment from "120398" to "120435" as the next "legal" value in the sequence.
EDIT 2: Updated question to include desired output
There are three variant algorithms below. Adapt variant 3 to suit your requirements.
Variant 1
This is one way to do it. It implements a minor variant of the initialize a table of 10 digit counts to 0; scan the digits, increment the count for each digit encountered, then check whether any of the digit counts is more than 1 algorithm I suggested in a comment. The test function returns as soon as a duplicate digit is spotted.
#include <stdio.h>
#include <stdbool.h>
enum { MAX_ITERATION = 1000000 };
static bool duplicate_digits_1(int value)
{
char buffer[12];
snprintf(buffer, sizeof(buffer), "%d", value);
char digits[10] = { 0 };
char *ptr = buffer;
char c;
while ((c = *ptr++) != '\0')
{
if (++digits[c - '0'] > 1)
return true;
}
return false;
}
int main(void)
{
int count = 0;
for (int i = 0; i < MAX_ITERATION; i++)
{
if (!duplicate_digits_1(i))
{
count += printf(" %d", i);
if (count > 72)
{
putchar('\n');
count = 0;
}
}
}
putchar('\n');
return 0;
}
When run, it produces 168,571 values between 0 and 1,000,000, starting:
0 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29
30 31 32 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 50 51 52 53 54 56 57
58 59 60 61 62 63 64 65 67 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84
85 86 87 89 90 91 92 93 94 95 96 97 98 102 103 104 105 106 107 108 109 120
123 124 125 126 127 128 129 130 132 134 135 136 137 138 139 140 142 143 145
146 147 148 149 150 152 153 154 156 157 158 159 160 162 163 164 165 167 168
169 170 172 173 174 175 176 178 179 180 182 183 184 185 186 187 189 190 192
193 194 195 196 197 198 201 203 204 205 206 207 208 209 210 213 214 215 216
217 218 219 230 231 234 235 236 237 238 239 240 241 243 245 246 247 248 249
250 251 253 254 256 257 258 259 260 261 263 264 265 267 268 269 270 271 273
…
987340 987341 987342 987345 987346 987350 987351 987352 987354 987356 987360
987361 987362 987364 987365 987401 987402 987403 987405 987406 987410 987412
987413 987415 987416 987420 987421 987423 987425 987426 987430 987431 987432
987435 987436 987450 987451 987452 987453 987456 987460 987461 987462 987463
987465 987501 987502 987503 987504 987506 987510 987512 987513 987514 987516
987520 987521 987523 987524 987526 987530 987531 987532 987534 987536 987540
987541 987542 987543 987546 987560 987561 987562 987563 987564 987601 987602
987603 987604 987605 987610 987612 987613 987614 987615 987620 987621 987623
987624 987625 987630 987631 987632 987634 987635 987640 987641 987642 987643
987645 987650 987651 987652 987653 987654
Before you decide this is 'not efficient', measure it. Are you really exercising it often enough that the performance is a real problem?
Variant 2
Creating the alternative version I suggested in the comments: use strchr() iteratively, checking whether the first digit appears in the tail, and if not whether the second digit appears in the tail, and so on is very easy to implement given the framework of the first answer:
static bool duplicate_digits_2(int value)
{
char buffer[12];
snprintf(buffer, sizeof(buffer), "%d", value);
char *ptr = buffer;
char c;
while ((c = *ptr++) != '\0')
{
if (strchr(ptr, c) != NULL)
return true;
}
return false;
}
When the times are compared I got these results (ng41 uses duplicate_digits_1() and ng43 uses duplicate_digits_2().
$ time ng41 > /dev/null
real 0m0.175s
user 0m0.169s
sys 0m0.002s
$ time ng43 > /dev/null
real 0m0.201s
user 0m0.193s
sys 0m0.003s
$
Repeated timings generally showed similar results, but sometimes I got ng43 running faster than ng41 — the timing on just one set of one million numbers isn't clear cut (so YMMV — your mileage may vary!).
Variant 3
You could also use this technique, which is analogous to 'count digits' but without the conversion to string first (so it should be quicker).
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
enum { MAX_ITERATION = 1000000 };
static bool duplicate_digits_3(int value)
{
char digits[10] = { 0 };
while (value > 0)
{
if (++digits[value % 10] > 1)
return true;
value /= 10;
}
return false;
}
int main(void)
{
int count = 0;
const char *pad = "";
for (int i = 0; i < MAX_ITERATION; i++)
{
if (!duplicate_digits_3(i))
{
count += printf("%s%d", pad, i);
pad = " ";
if (count > 72)
{
putchar('\n');
count = 0;
pad = "";
}
}
}
putchar('\n');
return 0;
}
Because it avoids conversions to strings, it is much faster. The slowest timing I got from a series of 3 runs was:
real 0m0.063s
user 0m0.060s
sys 0m0.001s
which is roughly three times as fast as either of the other two.
Extra timing
I also changed the value of MAX_ITERATION to 10,000,000 and ran timing. There are many more rejected outputs, of course.
$ time ng41 >/dev/null
real 0m1.721s
user 0m1.707s
sys 0m0.006s
$ time ng43 >/dev/null
real 0m1.958s
user 0m1.942s
sys 0m0.008s
$ time ng47 >/dev/null
real 0m0.463s
user 0m0.454s
sys 0m0.004s
$ ng41 | wc
69237 712891 5495951
$ ng43 | wc
69237 712891 5495951
$ ng47 | wc
69237 712891 5495951
$ cmp <(ng41) <(ng43)
$ cmp <(ng41) <(ng47)
$ cmp <(ng43) <(ng47)
$
These timings were more stable; variant 1 (ng41) was always quicker than variant 2 (ng43), but variant 3 (ng47) beats both by a significant margin.
JFTR: testing was done on macOS Sierra 10.12.1 with GCC 6.2.0 on an old 17" MacBook Pro — Early 2011, 2.3GHz Intel Core i7 with 16 GB 1333 MHz DDR3 RAM — not that memory is an issue with this code. The program numbers are consecutive 2-digit primes, in case you're wondering.
Leading zeros too
This code generates the sequence of numbers you want (though it is only configured to run up to 100,000 — the change for 1,000,000 is trivial). It's fun in a masochistic sort of way.
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
enum { MAX_ITERATIONS = 100000 };
/* lz = 1 or 0 - consider that the number has a leading zero or not */
static bool has_duplicate_digits(int value, int lz)
{
assert(value >= 0 && value < MAX_ITERATIONS + 1);
assert(lz == 0 || lz == 1);
char digits[10] = { [0] = lz };
while (value > 0)
{
if (++digits[value % 10] > 1)
return true;
value /= 10;
}
return false;
}
int main(void)
{
int lz = 0;
int p10 = 1;
int log_p10 = 0; /* log10(0) is -infinity - but 0 works better */
int linelen = 0;
const char *pad = "";
/* The + 1 allows the cycle to reset for the leading zero pass */
for (int i = 0; i < MAX_ITERATIONS + 1; i++)
{
if (i >= 10 * p10 && lz == 0)
{
/* Passed through range p10 .. (10*p10-1) once without leading zeros */
/* Repeat, adding leading zeros this time */
lz = 1;
i = p10;
}
else if (i >= 10 * p10)
{
/* Passed through range p10 .. (10*p10-1) without and with leading zeros */
/* Continue through next range, without leading zeros to start with */
p10 *= 10;
log_p10++;
lz = 0;
}
if (!has_duplicate_digits(i, lz))
{
/* Adds a leading zero if lz == 1; otherwise, it doesn't */
linelen += printf("%s%.*d", pad, log_p10 + lz + 1, i);
pad = " ";
if (linelen > 72)
{
putchar('\n');
pad = "";
linelen = 0;
}
}
}
putchar('\n');
return 0;
}
Sample output (to 100,000):
0 1 2 3 4 5 6 7 8 9 01 02 03 04 05 06 07 08 09 10 12 13 14 15 16 17 18 19
20 21 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40 41 42 43 45 46 47
48 49 50 51 52 53 54 56 57 58 59 60 61 62 63 64 65 67 68 69 70 71 72 73 74
75 76 78 79 80 81 82 83 84 85 86 87 89 90 91 92 93 94 95 96 97 98 012 013
014 015 016 017 018 019 021 023 024 025 026 027 028 029 031 032 034 035 036
037 038 039 041 042 043 045 046 047 048 049 051 052 053 054 056 057 058 059
061 062 063 064 065 067 068 069 071 072 073 074 075 076 078 079 081 082 083
084 085 086 087 089 091 092 093 094 095 096 097 098 102 103 104 105 106 107
108 109 120 123 124 125 126 127 128 129 130 132 134 135 136 137 138 139 140
…
901 902 903 904 905 906 907 908 910 912 913 914 915 916 917 918 920 921 923
924 925 926 927 928 930 931 932 934 935 936 937 938 940 941 942 943 945 946
947 948 950 951 952 953 954 956 957 958 960 961 962 963 964 965 967 968 970
971 972 973 974 975 976 978 980 981 982 983 984 985 986 987 0123 0124 0125
0126 0127 0128 0129 0132 0134 0135 0136 0137 0138 0139 0142 0143 0145 0146
0147 0148 0149 0152 0153 0154 0156 0157 0158 0159 0162 0163 0164 0165 0167
…
0917 0918 0921 0923 0924 0925 0926 0927 0928 0931 0932 0934 0935 0936 0937
0938 0941 0942 0943 0945 0946 0947 0948 0951 0952 0953 0954 0956 0957 0958
0961 0962 0963 0964 0965 0967 0968 0971 0972 0973 0974 0975 0976 0978 0981
0982 0983 0984 0985 0986 0987 1023 1024 1025 1026 1027 1028 1029 1032 1034
1035 1036 1037 1038 1039 1042 1043 1045 1046 1047 1048 1049 1052 1053 1054
1056 1057 1058 1059 1062 1063 1064 1065 1067 1068 1069 1072 1073 1074 1075
…
9820 9821 9823 9824 9825 9826 9827 9830 9831 9832 9834 9835 9836 9837 9840
9841 9842 9843 9845 9846 9847 9850 9851 9852 9853 9854 9856 9857 9860 9861
9862 9863 9864 9865 9867 9870 9871 9872 9873 9874 9875 9876 01234 01235 01236
01237 01238 01239 01243 01245 01246 01247 01248 01249 01253 01254 01256 01257
01258 01259 01263 01264 01265 01267 01268 01269 01273 01274 01275 01276 01278
01279 01283 01284 01285 01286 01287 01289 01293 01294 01295 01296 01297 01298
…
09827 09831 09832 09834 09835 09836 09837 09841 09842 09843 09845 09846 09847
09851 09852 09853 09854 09856 09857 09861 09862 09863 09864 09865 09867 09871
09872 09873 09874 09875 09876 10234 10235 10236 10237 10238 10239 10243 10245
10246 10247 10248 10249 10253 10254 10256 10257 10258 10259 10263 10264 10265
…
98705 98706 98710 98712 98713 98714 98715 98716 98720 98721 98723 98724 98725
98726 98730 98731 98732 98734 98735 98736 98740 98741 98742 98743 98745 98746
98750 98751 98752 98753 98754 98756 98760 98761 98762 98763 98764 98765 012345
012346 012347 012348 012349 012354 012356 012357 012358 012359 012364 012365
012367 012368 012369 012374 012375 012376 012378 012379 012384 012385 012386
…
098653 098654 098657 098671 098672 098673 098674 098675 098712 098713 098714
098715 098716 098721 098723 098724 098725 098726 098731 098732 098734 098735
098736 098741 098742 098743 098745 098746 098751 098752 098753 098754 098756
098761 098762 098763 098764 098765
Using a loop (from 0 to 999,999, inclusive), and rejecting values with repeating digits sounds like the most straightforward implementation to me.
The reject-if-duplicate-digits function can be made to be pretty fast. Consider, for example,
int has_duplicate_digits(unsigned int value)
{
unsigned int digit_mask = 0U;
do {
/* (value % 10U) is the value of the rightmost
decimal digit of (value).
1U << (value % 10U) refers to the value of
the corresponding bit -- bit 0 to bit 9. */
const unsigned int mask = 1U << (value % 10U);
/* If the bit is already set in digit_mask,
we have a duplicate digit in value. */
if (mask & digit_mask)
return 1;
/* Mark this digit as seen in the digit_mask. */
digit_mask |= mask;
/* Drop the rightmost digit off value.
Note that this is integer division. */
value /= 10U;
/* If we have additional digits, repeat loop. */
} while (value);
/* No duplicate digits found. */
return 0;
}
This is actually a classical combinatorial problem. Below is a proof of concept implementation using Algorithm L in TAOCP 7.2.1.2 and Algorithm T in TAOCP 7.2.1.3. There might be some errors. Refer to the algorithms for details.
Here is a bit of explanation. Let t be the number of digits. For t == 10, the problem is to generate all t! permutations of the set {0,1,2,...,9} in lexicographic order (Algorithm L).
For t > 0 and t < 10, this breaks down to 1) Generate all combinations of t digits from the 10 possible digits. 2). For each combination, generate all t! permutations.
Last, you can sort all 10! + 10! / 2 + 10! / 3! + .. + 10 results. The sorting might look expensive at first. But first, the combination generating is already in lexical order. Second, the permutation generating is also in lexical order. So the sequence is actually highly regular. A QSort is not really too bad here.
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static inline int compare_str(const void *a, const void *b)
{
return strcmp(a, b);
}
static inline int compare_char(const void *a, const void *b)
{
char ca = *((char *) a);
char cb = *((char *) b);
if (ca < cb)
return -1;
if (ca > cb)
return 1;
return 0;
}
// Algorithm L in TAOCP 7.2.1.2
static inline char *algorithm_l(int n, const char *c, char *r)
{
char a[n + 1];
memcpy(a, c, n);
a[n] = '\0';
qsort(a, n, 1, compare_char);
while (1) {
// L1. [Visit]
memcpy(r, a, n + 1);
r += n + 1;
// L2. [Find j]
int j = n - 1;
while (j > 0 && a[j - 1] >= a[j])
--j;
if (j == 0)
break;
// L3. [Increase a[j - 1]]
int l = n;
while (l >= 0 && a[j - 1] >= a[l - 1])
--l;
char tmp = a[j - 1];
a[j - 1] = a[l - 1];
a[l - 1] = tmp;
// L4. [Reverse a[j]...a[n-1]]
int k = j + 1;
l = n;
while (k < l) {
char tmp = a[k - 1];
a[k - 1] = a[l - 1];
a[l - 1] = tmp;
++k;
--l;
}
}
return r;
}
// Algorithm T in TAOCP 7.2.1.2
static inline void algorithm_t(int t, char *r)
{
assert(t > 0);
assert(t < 10);
// Algorithm T in TAOCP 7.2.1.3
// T1. [Initialize]
char c[12]; // the digits
for (int i = 0; i < t; ++i)
c[i] = '0' + i;
c[t] = '9' + 1;
c[t + 1] = '0';
char j = t;
char x = '0';
while (1) {
// T2. [Visit]
r = algorithm_l(t, c, r);
if (j > 0) {
x = '0' + j;
} else {
// T3. [Easy case?]
if (c[0] + 1 < c[1]) {
++c[0];
continue;
}
j = 2;
// T4. [Find j]
while (1) {
c[j - 2] = '0' + j - 2;
x = c[j - 1] + 1;
if (x != c[j])
break;
++j;
}
// T5. [Done?]
if (j > t)
break;
}
// T6. [Increase c[j - 1]]
c[j - 1] = x;
--j;
}
}
static inline void generate(int t)
{
assert(t >= 0 && t <= 10);
if (t == 0)
return;
int n = 1;
int k = 10;
for (int i = 1; i <= t; ++i, --k)
n *= k;
char *r = (char *) malloc((t + 1) * n);
if (t == 10) {
algorithm_l(10, "0123456789", r);
} else {
algorithm_t(t, r);
}
qsort(r, n, t + 1, strcmpv);
for (int i = 0; i < n; ++i, r += t + 1)
printf("%s\n", r);
}
int main()
{
for (int t = 1; t <= 10; ++t)
generate(t);
}
Efficiency: This is implementation is not very efficient. It is a direct translation from the algorithm, for easier understanding. However it is still a lot more efficient than iterating over 10^10 numbers. It takes about 2.5 seconds to generate all numbers from 0 to 9876543210. This includes the time of writing them to a file, a 94MB output file, with one number a line. For up to 6 digits, it takes about 0.05 seconds.
If you want these numbers come in the order you want in program, it might be better to generate the numbers as above to prepare a table and use the table later. Even for the table from 0 to 9876543210, there are less than ten million numbers, which is not a really big number in today's computers. In your case, up to six digits, there are only less than one million numbers.

SIGXFSZ runtime error

I'm trying to submit the solution for Spoj - Prime Intervals problem. But I'm getting a runtime error SIGXFSZ. It is given that, it occurs due to exceeded file size. I have used the Sieve of Eratosthenes algorithm to find the prime numbers. I don't understand what's wrong with my code and this is bugging me from last the 2 days. Please help me with the submission. Here is my code...
#include<stdio.h>
#include<string.h>
#include<stdbool.h>
#include<math.h>
int main(){
int t, turn;
long i, l,u,k,j;
scanf("%d", &t);
/*Looping for t test cases*/
for(turn=0; turn<t; turn++){
scanf("%ld %ld", &l, &u);
bool arr[u-l+1];
/*Assigning whole array with true*/
memset(arr, true, u-l+1);
/*Sieve of Eratosthenes logic for assigning false to composite values*/
for(i=0; i<=(int)sqrt(u)-l; i++){
k=0;
j = i+l;
if(arr[i]==true){
while((j*j + k*j) <= u){
arr[(j*j + k*j) - l] = false;
k++;
}
}
}
/*Printing all the primes in the interval*/
for(i=0; i<u-l; i++){
if(arr[i]==true){
printf("%ld\n", i+l);
}
}
}
return 0;
}
Test Input:
2
2 10
2 100
Output:
2
3
5
7
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
I ran the posted code. the results were far from correct.
Most of the numbers output are not primes and fails to check the last number is the range, as shown in the second set of results
Here are the results:
1 <-- 1 test case
20 100 <-- range 20...100
20 <-- the outputs
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Note: using 1 as the low end of the range usually results with no output produced
here is another run
The output should have been 5 7 11
1 <-- test cases
5 11 <-- range
5 <-- outputs
6
7
8
9
10
The following code does not try to minimize the size of the arr[] array, and if the upper end of the range is less than 16k then could declare the arr[] as short rather than unsigned int
The lowest valid value for the low end of the input is 2, but the code is not checking for that low limit, you might want to add that check.
The code makes no effort to minimize the number of loops executed by checking for the square root of the upper limit, you might want to add that check.
The code compiles cleanly, handles the case when the upper limit is a prime and when the lower limit is a prime as well as when the limit values are not primes.
#include <stdio.h>
#include <string.h>
#include <math.h>
int main()
{
int numTestCases, testCase;
size_t i; // index
size_t lowLimit;
size_t upperLimit;
size_t k; // offset multiplier
scanf("%d", &numTestCases);
/*Looping for t test cases*/
for(testCase=0; testCase<numTestCases; testCase++)
{
scanf("%lu %lu", (unsigned long*)&lowLimit, (unsigned long*)&upperLimit);
unsigned arr[upperLimit+1];
/*Assigning whole array to indicate entry is a prime*/
memset(arr, 0x01, upperLimit+1);
/*Sieve of Eratosthenes logic for assigning false to composite values*/
//size_t sqrtUpperLimit = (size_t)ceil(sqrt(upperLimit));
for(i=2; i<= upperLimit; i++)
{
if(arr[i])
{
if( i >= lowLimit )
{
printf("%ld\n", i);
}
for( k=2; (i*k) <= upperLimit; k++)
{
arr[(i*k)] = 0;
}
}
}
}
return 0;
} // end function; main
here is an edited version of the code, with the addition of some instrumentation in the way of prompts to the user via calls to printf()
#include <stdio.h>
#include <string.h>
#include <math.h>
int main()
{
int numTestCases, testCase;
size_t i; // index
size_t lowLimit;
size_t upperLimit;
size_t k; // offset multiplier
printf("enter number of test cases\n");
scanf("%d", &numTestCases);
/*Looping for t test cases*/
for(testCase=0; testCase<numTestCases; testCase++)
{
printf( "enter lower limit upper limit limits\n");
scanf("%lu %lu", (unsigned long*)&lowLimit, (unsigned long*)&upperLimit);
unsigned arr[upperLimit+1];
/*Assigning whole array to indicate entry is a prime*/
memset(arr, 0x01, upperLimit+1);
/*Sieve of Eratosthenes logic for assigning false to composite values*/
//size_t sqrtUpperLimit = (size_t)ceil(sqrt(upperLimit));
for(i=2; i<= upperLimit; i++)
{
if(arr[i])
{
if( i >= lowLimit )
{
printf("%ld\n", i);
}
for( k=2; (i*k) <= upperLimit; k++)
{
arr[(i*k)] = 0;
}
}
}
}
return 0;
} // end function; main
Using the above instrumented code and the input of:
5 2 3 30 31 20 27 2 3 4 5
it worked perfectly.
This was the output:
enter number of test cases
5
enter upper/lower limits
2 3
sizeof arr[]: 4
2
3
enter upper/lower limits
30 31
sizeof arr[]: 32
31
enter upper/lower limits
20 27
sizeof arr[]: 28
23
enter upper/lower limits
2 3
sizeof arr[]: 4
2
3
enter upper/lower limits
4 5
sizeof arr[]: 6
5

Resources