Related
I came across this program to convert decimals numbers into their binary equivalent in C. I do not understand how the printf statement works in this program.
int main()
{
int N;
scanf("%d", &N); // Enter decimal equivalent here
for( int j = floor(log2(N)); j >= 0; j-- ){
printf("%d", (N >> j) & 1);
}
}
Let's take an example to get through this problem. Suppose you enter N=65. Its binary representation is - 1000001. When your given code goes through it, j will start at floor(log2(65)), which is 6. So, the given loop will run 7 times, which means 7 numbers will be printed out (which fits the fact that 65's binary representation has 7 digits).
Inside the loop - The number is shifted by j bits each time to the right. When 1000001 is shifted to the right by 6 bits, it becomes 0000001. If shifted by 5, it is 0000010, and so on. It goes down to a shift by 0 bits which is the original number. When each of these shifted numbers are &ed with 1, only the least significant bit (the right most bit) remains. And this digit can either be a 0 or a 1.
If you would have noticed each right shift divides the number by 2. So when 1000001 is shifted by 1 to make 0100000, it is the binary representation of 32, which indeed is 65/2 in C. After all, this is the way someone manually calculates the binary representation of a number. Each division by 2 gives you a digit (starting from the end) of the representation, and that digit is either a 0 or a 1. The & helps in getting the 0 or 1.
In the end, 65 becomes 1000001.
What it is doing is:
Finding the largest number j such that 2^j <= N
Starting at the jth bit (counting from the right) and moving to the right ...
chopping off all of the bits to the right of the current chosen bit
chopping off all of the bits to the left of current chosen bit
printing the value of the single remaining bit
The code actually has undefined behavior because you did not include <stdio.h>, nor <math.h>. Without a proper declaration of floor() and log2(), the compiler infers the prototype from the calling context and gets int log2(int) and int floor(int), which is incompatible with the actual definition in the C library.
With the proper includes, log2(N) gives the logarithm of N in base 2. Its integral part is the power of 2 <= N, hence 1 less than the number of bits in N.
Note however that this method does not work for negative values of N and only works by coincidence for 0 as the conversion of NaN to int gives 0, hence a single binary digit.
When understanding how primitive operators such as +, -, * and / are implemented in C, I found the following snippet from an interesting answer.
// replaces the + operator
int add(int x, int y) {
while(x) {
int t = (x & y) <<1;
y ^= x;
x = t;
}
return y;
}
It seems that this function demonstrates how + actually works in the background. However, it's too confusing for me to understand it. I believed that such operations are done using assembly directives generated by the compiler for a long time!
Is the + operator implemented as the code posted on MOST implementations? Does this take advantage of two's complement or other implementation-dependent features?
To be pedantic, the C specification does not specify how addition is implemented.
But to be realistic, the + operator on integer types smaller than or equal to the word size of your CPU get translated directly into an addition instruction for the CPU, and larger integer types get translated into multiple addition instructions with some extra bits to handle overflow.
The CPU internally uses logic circuits to implement the addition, and does not use loops, bitshifts, or anything that has a close resemblance to how C works.
When you add two bits, following is the result: (truth table)
a | b | sum (a^b) | carry bit (a&b) (goes to next)
--+---+-----------+--------------------------------
0 | 0 | 0 | 0
0 | 1 | 1 | 0
1 | 0 | 1 | 0
1 | 1 | 0 | 1
So if you do bitwise xor, you can get the sum without carry.
And if you do bitwise and you can get the carry bits.
Extending this observation for multibit numbers a and b
a+b = sum_without_carry(a, b) + carry_bits(a, b) shifted by 1 bit left
= a^b + ((a&b) << 1)
Once b is 0:
a+0 = a
So algorithm boils down to:
Add(a, b)
if b == 0
return a;
else
carry_bits = a & b;
sum_bits = a ^ b;
return Add(sum_bits, carry_bits << 1);
If you get rid of recursion and convert it to a loop
Add(a, b)
while(b != 0) {
carry_bits = a & b;
sum_bits = a ^ b;
a = sum_bits;
b = carrry_bits << 1; // In next loop, add carry bits to a
}
return a;
With above algorithm in mind explanation from code should be simpler:
int t = (x & y) << 1;
Carry bits. Carry bit is 1 if 1 bit to the right in both operands is 1.
y ^= x; // x is used now
Addition without carry (Carry bits ignored)
x = t;
Reuse x to set it to carry
while(x)
Repeat while there are more carry bits
A recursive implementation (easier to understand) would be:
int add(int x, int y) {
return (y == 0) ? x : add(x ^ y, (x&y) << 1);
}
Seems that this function demonstrates how + actually works in the
background
No. Usually (almost always) integer addition translates to machine instruction add. This just demonstrate an alternate implementation using bitwise xor and and.
Seems that this function demonstrates how + actually works in the background
No. This is translated to the native add machine instruction, which is actually using the hardware adder, in the ALU.
If you're wondering how does the computer add, here is a basic adder.
Everything in the computer is done using logic gates, which are mostly made of transistors. The full adder has half-adders in it.
For a basic tutorial on logic gates, and adders, see this. The video is extremely helpful, though long.
In that video, a basic half-adder is shown. If you want a brief description, this is it:
The half adder add's two bits given. The possible combinations are:
Add 0 and 0 = 0
Add 1 and 0 = 1
Add 1 and 1 = 10 (binary)
So now how does the half adder work? Well, it is made up of three logic gates, the and, xor and the nand. The nand gives a positive current if both the inputs are negative, so that means this solves the case of 0 and 0. The xor gives a positive output one of the input is positive, and the other negative, so that means that it solves the problem of 1 and 0. The and gives a positive output only if both the inputs are positive, so that solves the problem of 1 and 1. So basically, we have now got our half-adder. But we still can only add bits.
Now we make our full-adder. A full adder consists of calling the half-adder again and again. Now this has a carry. When we add 1 and 1, we get a carry 1. So what the full-adder does is, it takes the carry from the half-adder, stores it, and passes it as another argument to the half-adder.
If you're confused how can you pass the carry, you basically first add the bits using the half-adder, and then add the sum and the carry. So now you've added the carry, with the two bits. So you do this again and again, till the bits you have to add are over, and then you get your result.
Surprised? This is how it actually happens. It looks like a long process, but the computer does it in fractions of a nanosecond, or to be more specific, in half a clock cycle. Sometimes it is performed even in a single clock cycle. Basically, the computer has the ALU (a major part of the CPU), memory, buses, etc..
If you want to learn computer hardware, from logic gates, memory and the ALU, and simulate a computer, you can see this course, from which I learnt all this: Build a Modern Computer from First Principles
It's free if you do not want an e-certificate. The part two of the course is coming up in spring this year
C uses an abstract machine to describe what C code does. So how it works is not specified. There are C "compilers" that actually compile C into a scripting language, for example.
But, in most C implementations, + between two integers smaller than the machine integer size will be translated into an assembly instruction (after many steps). The assembly instruction will be translated into machine code and embedded within your executable. Assembly is a language "one step removed" from machine code, intended to be easier to read than a bunch of packed binary.
That machine code (after many steps) is then interpreted by the target hardware platform, where it is interpreted by the instruction decoder on the CPU. This instruction decoder takes the instruction, and translates it into signals to send along "control lines". These signals route data from registers and memory through the CPU, where the values are added together often in an arithmetic logic unit.
The arithmetic logic unit might have separate adders and multipliers, or might mix them together.
The arithmetic logic unit has a bunch of transistors that perform the addition operation, then produce the output. Said output is routed via the signals generated from the instruction decoder, and stored in memory or registers.
The layout of said transistors in both the arithmetic logic unit and instruction decoder (as well as parts I have glossed over) is etched into the chip at the plant. The etching pattern is often produced by compiling a hardware description language, which takes an abstraction of what is connected to what and how they operate and generates transistors and interconnect lines.
The hardware description language can contain shifts and loops that don't describe things happening in time (like one after another) but rather in space -- it describes the connections between different parts of hardware. Said code may look very vaguely like the code you posted above.
The above glosses over many parts and layers and contains inaccuracies. This is both from my own incompetence (I have written both hardware and compilers, but am an expert in neither) and because full details would take a career or two, and not a SO post.
Here is a SO post about an 8-bit adder. Here is a non-SO post, where you'll note some of the adders just use operator+ in the HDL! (The HDL itself understands + and generates the lower level adder code for you).
Almost any modern processor that can run compiled C code will have builtin support for integer addition. The code you posted is a clever way to perform integer addition without executing an integer add opcode, but it is not how integer addition is normally performed. In fact, the function linkage probably uses some form of integer addition to adjust the stack pointer.
The code you posted relies on the observation that when adding x and y, you can decompose it into the bits they have in common and the bits that are unique to one of x or y.
The expression x & y (bitwise AND) gives the bits common to x and y. The expression x ^ y (bitwise exclusive OR) gives the bits that are unique to one of x or y.
The sum x + y can be rewritten as the sum of two times the bits they have in common (since both x and y contribute those bits) plus the bits that are unique to x or y.
(x & y) << 1 is twice the bits they have in common (the left shift by 1 effectively multiplies by two).
x ^ y is the bits that are unique to one of x or y.
So if we replace x by the first value and y by the second, the sum should be unchanged. You can think of the first value as the carries of the bitwise additions, and the second as the low-order bit of the bitwise additions.
This process continues until x is zero, at which point y holds the sum.
The code that you found tries to explain how very primitive computer hardware might implement an "add" instruction. I say "might" because I can guarantee that this method isn't used by any CPU, and I'll explain why.
In normal life, you use decimal numbers and you have learned how to add them: To add two numbers, you add the lowest two digits. If the result is less than 10, you write down the result and proceed to the next digit position. If the result is 10 or more, you write down the result minus 10, proceed to the next digit, buy you remember to add 1 more. For example: 23 + 37, you add 3+7 = 10, you write down 0 and remember to add 1 more for the next position. At the 10s position, you add (2+3) + 1 = 6 and write that down. Result is 60.
You can do the exact same thing with binary numbers. The difference is that the only digits are 0 and 1, so the only possible sums are 0, 1, 2. For a 32 bit number, you would handle one digit position after the other. And that is how really primitive computer hardware would do it.
This code works differently. You know the sum of two binary digits is 2 if both digits are 1. So if both digits are 1 then you would add 1 more at the next binary position and write down 0. That's what the calculation of t does: It finds all places where both binary digits are 1 (that's the &) and moves them to the next digit position (<< 1). Then it does the addition: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 is 2, but we write down 0. That's what the excludive or operator does.
But all the 1's that you had to handle in the next digit position haven't been handled. They still need to be added. That's why the code does a loop: In the next iteration, all the extra 1's are added.
Why does no processor do it that way? Because it's a loop, and processors don't like loops, and it is slow. It's slow, because in the worst case, 32 iterations are needed: If you add 1 to the number 0xffffffff (32 1-bits), then the first iteration clears bit 0 of y and sets x to 2. The second iteration clears bit 1 of y and sets x to 4. And so on. It takes 32 iterations to get the result. However, each iteration has to process all bits of x and y, which takes a lot of hardware.
A primitive processor would do things just as quick in the way you do decimal arithmetic, from the lowest position to the highest. It also takes 32 steps, but each step processes only two bits plus one value from the previous bit position, so it is much easier to implement. And even in a primitive computer, one can afford to do this without having to implement loops.
A modern, fast and complex CPU will use a "conditional sum adder". Especially if the number of bits is high, for example a 64 bit adder, it saves a lot of time.
A 64 bit adder consists of two parts: First, a 32 bit adder for the lowest 32 bit. That 32 bit adder produces a sum, and a "carry" (an indicator that a 1 must be added to the next bit position). Second, two 32 bit adders for the higher 32 bits: One adds x + y, the other adds x + y + 1. All three adders work in parallel. Then when the first adder has produced its carry, the CPU just picks which one of the two results x + y or x + y + 1 is the correct one, and you have the complete result. So a 64 bit adder only takes a tiny bit longer than a 32 bit adder, not twice as long.
The 32 bit adder parts are again implemented as conditional sum adders, using multiple 16 bit adders, and the 16 bit adders are conditional sum adders, and so on.
My question is: Is the + operator implemented as the code posted on MOST implementations?
Let's answer the actual question. All operators are implemented by the compiler as some internal data structure that eventually gets translated into code after some transformations. You can't say what code will be generated by a single addition because almost no real world compiler generates code for individual statements.
The compiler is free to generate any code as long as it behaves as if the actual operations were performed according to the standard. But what actually happens can be something completely different.
A simple example:
static int
foo(int a, int b)
{
return a + b;
}
[...]
int a = foo(1, 17);
int b = foo(x, x);
some_other_function(a, b);
There's no need to generate any addition instructions here. It's perfectly legal for the compiler to translate this into:
some_other_function(18, x * 2);
Or maybe the compiler notices that you call the function foo a few times in a row and that it is a simple arithmetic and it will generate vector instructions for it. Or that the result of the addition is used for array indexing later and the lea instruction will be used.
You simply can't talk about how an operator is implemented because it is almost never used alone.
In case a breakdown of the code helps anyone else, take the example x=2, y=6:
x isn't zero, so commence adding to y:
while(2) {
x & y = 2 because
x: 0 0 1 0 //2
y: 0 1 1 0 //6
x&y: 0 0 1 0 //2
2 <<1 = 4 because << 1 shifts all bits to the left:
x&y: 0 0 1 0 //2
(x&y) <<1: 0 1 0 0 //4
In summary, stash that result, 4, in t with
int t = (x & y) <<1;
Now apply the bitwise XOR y^=x:
x: 0 0 1 0 //2
y: 0 1 1 0 //6
y^=x: 0 1 0 0 //4
So x=2, y=4. Finally, sum t+y by resetting x=t and going back to the beginning of the while loop:
x = t;
When t=0 (or, at the beginning of the loop, x=0), finish with
return y;
Just out of interest, on the Atmega328P processor, with the avr-g++ compiler, the following code implements adding one by subtracting -1 :
volatile char x;
int main ()
{
x = x + 1;
}
Generated code:
00000090 <main>:
volatile char x;
int main ()
{
x = x + 1;
90: 80 91 00 01 lds r24, 0x0100
94: 8f 5f subi r24, 0xFF ; 255
96: 80 93 00 01 sts 0x0100, r24
}
9a: 80 e0 ldi r24, 0x00 ; 0
9c: 90 e0 ldi r25, 0x00 ; 0
9e: 08 95 ret
Notice in particular that the add is done by the subi instruction (subtract constant from register) where 0xFF is effectively -1 in this case.
Also of interest is that this particular processor does not have a addi instruction, which implies that the designers thought that doing a subtract of the complement would be adequately handled by the compiler-writers.
Does this take advantage of two's complement or other implementation-dependent features?
It would probably be fair to say that compiler-writers would attempt to implement the wanted effect (adding one number to another) in the most efficient way possible for that particularly architecture. If that requires subtracting the complement, so be it.
A buddy of mine had these puzzles and this is one that is eluding me. Here is the problem, you are given a number and you want to return that number times 3 and divided by 16 rounding towards 0. Should be easy. The catch? You can only use the ! ~ & ^ | + << >> operators and of them only a combination of 12.
int mult(int x){
//some code here...
return y;
}
My attempt at it has been:
int hold = x + x + x;
int hold1 = 8;
hold1 = hold1 & hold;
hold1 = hold1 >> 3;
hold = hold >> 4;
hold = hold + hold1;
return hold;
But that doesn't seem to be working. I think I have a problem of losing bits but I can't seem to come up with a way of saving them. Another perspective would be nice. Just to add, you also can only use variables of type int and no loops, if statements or function calls may be used.
Right now I have the number 0xfffffff. It is supposed to return 0x2ffffff but it is returning 0x3000000.
For this question you need to worry about the lost bits before your division (obviously).
Essentially, if it is negative then you want to add 15 after you multiply by 3. A simple if statement (using your operators) should suffice.
I am not going to give you the code but a step by step would look like,
x = x*3
get the sign and store it in variable foo.
have another variable hold x + 15;
Set up an if statement so that if x is negative it uses that added 15 and if not then it uses the regular number (times 3 which we did above).
Then divide by 16 which you already showed you know how to do. Good luck!
This seems to work (as long as no overflow occurs):
((num<<2)+~num+1)>>4
Try this JavaScript code, run in console:
for (var num = -128; num <= 128; ++num) {
var a = Math.floor(num * 3 / 16);
var b = ((num<<2)+~num+1)>>4;
console.log(
"Input:", num,
"Regular math:", a,
"Bit math:", b,
"Equal: ", a===b
);
}
The Maths
When you divide a positive integer n by 16, you get a positive integer quotient k and a remainder c < 16:
(n/16) = k + (c/16).
(Or simply apply the Euclidan algorithm.) The question asks for multiplication by 3/16, so multiply by 3
(n/16) * 3 = 3k + (c/16) * 3.
The number k is an integer, so the part 3k is still a whole number. However, int arithmetic rounds down, so the second term may lose precision if you divide first, And since c < 16, you can safely multiply first without overflowing (assuming sizeof(int) >= 7). So the algorithm design can be
(3n/16) = 3k + (3c/16).
The design
The integer k is simply n/16 rounded down towards 0. So k can be found by applying a single AND operation. Two further operations will give 3k. Operation count: 3.
The remainder c can also be found using an AND operation (with the missing bits). Multiplication by 3 uses two more operations. And shifts finishes the division. Operation count: 4.
Add them together gives you the final answer.
Total operation count: 8.
Negatives
The above algorithm uses shift operations. It may not work well on negatives. However, assuming two's complement, the sign of n is stored in a sign bit. It can be removed beforing applying the algorithm and reapplied on the answer.
To find and store the sign of n, a single AND is sufficient.
To remove this sign, OR can be used.
Apply the above algorithm.
To restore the sign bit, Use a final OR operation on the algorithm output with the stored sign bit.
This brings the final operation count up to 11.
what you can do is first divide by 4 then add 3 times then again devide by 4.
3*x/16=(x/4+x/4+x/4)/4
with this logic the program can be
main()
{
int x=0xefffffff;
int y;
printf("%x",x);
y=x&(0x80000000);
y=y>>31;
x=(y&(~x+1))+(~y&(x));
x=x>>2;
x=x&(0x3fffffff);
x=x+x+x;
x=x>>2;
x=x&(0x3fffffff);
x=(y&(~x+1))+(~y&(x));
printf("\n%x %d",x,x);
}
AND with 0x3fffffff to make msb's zero. it'l even convert numbers to positive.
This uses 2's complement of negative numbers. with direct methods to divide there will be loss of bit accuracy for negative numbers. so use this work arround of converting -ve to +ve number then perform division operations.
Note that the C99 standard states in section section 6.5.7 that right shifts of signed negative integer invokes implementation-defined behavior. Under the provisions that int is comprised of 32 bits and that right shifting of signed integers maps to an arithmetic shift instruction, the following code works for all int inputs. A fully portable solution that also fulfills the requirements set out in the question may be possible, but I cannot think of one right now.
My basic idea is to split the number into high and low bits to prevent intermediate overflow. The high bits are divided by 16 first (this is an exact operation), then multiplied by three. The low bits are first multiplied by three, then divided by 16. Since arithmetic right shift rounds towards negative infinity instead of towards zero like integer division, a correction needs to be applied to the right shift for negative numbers. For a right shift by N, one needs to add 2N-1 prior to the shift if the number to be shifted is negative.
#include <stdio.h>
#include <stdlib.h>
int ref (int a)
{
long long int t = ((long long int)a * 3) / 16;
return (int)t;
}
int main (void)
{
int a, t, r, c, res;
a = 0;
do {
t = a >> 4; /* high order bits */
r = a & 0xf; /* low order bits */
c = (a >> 31) & 15; /* shift correction. Portable alternative: (a < 0) ? 15 : 0 */
res = t + t + t + ((r + r + r + c) >> 4);
if (res != ref(a)) {
printf ("!!!! error a=%08x res=%08x ref=%08x\n", a, res, ref(a));
return EXIT_FAILURE;
}
a++;
} while (a);
return EXIT_SUCCESS;
}
I am stuck in a program while finding modulus of division.
Say for example I have:
((a*b*c)/(d*e)) % n
Now, I cannot simply calculate the expression and then modulo it to n as the multiplication and division are going in a loop and the value is large enough to not fit even in long long.
As clarified in comments, n can be considered prime.
I found that, for multiplication, I can easily calculate it as:
((a%n*b%n)%n*c%n)%n
but couldn't understand how to calculate the division part then.
The problem I am facing is say for a simple example:
((7*3*5)/(5*3)) % 11
The value of above expression would be 7
but if I calculate the multiplication, modulo, it would be like:
((7%11)*(3%11))%11 = 10
((10%11)*(5%11))%11 = 6
now I am left with 6/15 and I have no way to generate correct answer.
Could someone help me. Please make me understand the logic by above example.
Since 11 is prime, Z11 is a field. Since 15 % 11 is 4, 1/15 equals 3 (since 3 * 4 % 11 is 1). Therefore, 6/15 is 6 * 3 which is 7 mod 11.
In your comments below the question, you clarify that the modulus will always be a prime.
To efficiently generate a table of multiplicative inverses, you can raise 2 to successive powers to see which values it generates. Note that in a field Zp, where p is an odd prime, 2p-1 = 1. So, for Z11:
2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 5
2^5 = 10
2^6 = 9
2^7 = 7
2^8 = 3
2^9 = 6
So the multiplicative inverse of 5 (which is 24) is 26 (which is 9).
So, you can generate the above table like this:
power_of_2[0] = 1;
for (int i = 1; i < n; ++i) {
power_of_2[i] = (2*power_of_2[i-1]) % n;
}
And the multiplicative inverse table can be computed like this:
mult_inverse[1] = 1;
for (int i = 1; i < n; ++i) {
mult_inverse[power_of_2[i]] = power_of_2[n-1-i];
}
In your example, since 15 = 4 mod 11, you actually end up with having to evaluate (6/4) mod 11.
In order to find an exact solution to this, rearrange it as 6 = ( (x * 4) mod 11), which makes clearer how the modulo division works.
If nothing else, if the modulus is always small, you can iterate from 0 to modulus-1 to get the solution.
Note that when the modulus is not prime, there may be multiple solutions to the reduced problem. For instance, there are two solutions to 4 = ( ( x * 2) mod 8): 2 and 6. This will happen for a reduced problem of form:
a = ( (x * b) mod c)
whenever b and c are NOT relatively prime (ie whenever they DO share a common divisor).
Similarly, when b and c are NOT relatively prime, there may be no solution to the reduced problem. For instance, 3 = ( (x * 2) mod 8) has no solution. This happens whenever the largest common divisor of b and c does not also divide a.
These latter two circumstances are consequences of the integers from 0 to n-1 not forming a group under multiplication (or equivalently, a field under + and *) when n is not prime, but rather forming simply the less useful structure of a ring.
I think the way the question is asked, it should be assumed that the numerator is divisible by the denominator. In that case the finite field solution for prime n and speculations about possible extensions and caveats for non-prime n is basically overkill. If you have all the numerator terms and denominator terms stored in arrays, you can iteratively test pairs of (numerator term, denominator term) and quickly find the greatest common divisor (gcd), and then divide the numerator term and denominator term by the gcd. (Finding the gcd is a classical problem and you can easily find a simple solution online.) In the worst case you will have to iterate over all possible pairs but at some point, if the denominator indeed divides the numerator, then you'll eventually be left with reduced numerator terms and all denominator terms will be 1. Then you're ready to apply multiplication (avoiding overflow) the way you described.
As n is prime, dividing an integer b is simply multiplying b's inverse. That is:
(a / b) mod n = (a * inv(b)) mod n
where
inv(b) = (b ^ (n - 2)) mod n
Calculating inv(b) can be done in O(log(n)) time using the Exponentiation by squaring algorithm. Here is the code:
int inv(int b, int n)
{
int r = 1, m = n - 2;
while (m)
{
if (m & 1) r = (long long)r * b % n;
b = (long long)b * b % n;
m >>= 1;
}
return r;
}
Why it works? According to Fermat's little theorem, if n is prime, b ^ (n - 1) mod n = 1 for any positive integer b. Therefore we have inv(b) * b mod n = 1.
Another solution for finding inv(b) is the Extended Euclidean algorithm, which needs a bit more code to implement.
I think you can distribute the division like
z = d*e/3
(a/z)*(b/z)*(c/z) % n
Remains only the integer division problem.
I think the problem you had was that you picked a problem that was too simple for an example. In that case the answer was 7 , but what if a*b*c was not evenly divisible by c*d ? You should probably look up how to do division with modulo first, it should be clear to you :)
Instead of dividing, think in terms of multiplicative inverses. For each number in a mod-n system, there ought to be an inverse, if certain conditions are met. For d and e, find those inverses, and then it's all just multiplying. Finding the inverses is not done by dividing! There's plenty of info out there...
I have a number on which I perform a specific operation
I want to make sure that the number is still divisible after the operation.
Let's say I have an integer x which is divisible by PAGE_S
does this produces an integer which is also divisible by PAGE_S ?
x^ ~(PAGE_S-1);
so (x % PAGE_S) == ( (x^ ~(PAGE_S-1)) % PAGE_S) ?
As far as I tested, it works, but I need to understand why...
p.s this is part of a code of translating virtual memory addresses to physical addresses
Yes, but only if PAGE_S is a power of two.
If PAGE_S is a power of two (say, 2k), then its binary representation is a 1 followed by k 0s. So, PAGE_S-1 will be k 1s in binary, so ~(PAGE_S-1) is all 1s followed by k 0s.
The xor operation (^) will flip any bits of the first operand for which the corresponding bit in the second operand is 1; for example, 101101 ^ 111000 is 010101 because the first three bits are flipped.
Since x is divisible by PAGE_S, the last k bits must be zero. Since the last k bits of ~(PAGE_S-1) are also zero, the last k bits of x^~(PAGE_S-1) are zero so it is divisible by PAGE_S. This also inverts all the other bits of x.