Cache memories and memory addresses - c

I have to do one class´s exercise where I have to do some subroutines and then check the cache misses, this is the atachment:
I have to create 2 subroutines where s1 is the capacity of my L1 cache 32kb and b1 is the line witdh 64 bytes.
subroutine A: increment all bytes of a memory buffer containing 2*s1 bytes
in the order of increasing memory addresses;
subroutine B: increment each b1-th byte of a memory buffer containing 2*s1
bytes in the order of increasing memory addresses;
For subroutine A I think I just have to do:
char buffer[2*s1];
printf...
buffer++;
printf...
both printf will show:
buffer[0]= 0x7fff36769fe0 buffer[1]= 0x7fff36769fe1
buffer[0]= 0x7fff36769fe1 buffer[1]= 0x7fff36769fe2
All bytes would be increassed,so, I think that it is correct,and for subroutine B, I have no idea...So, I would like to have some help for subroutine B.
It would be nice if someone can help me.
Thank you!

These exercises only makes sense as a lesson in optimisation. Unfortunately, they're not quite hitting the figurative head of the nail.
Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%.
That's a famous quote, along-side its context, from perhaps the most reputable teacher we can agree upon in this field: Donald Knuth. Following on from this exercise, your professor will probably introduce you to profilers by walking you through profiling your unoptimised code.
What can we hope to improve if we apply manual optimisations as though the compiler performs none, and only later enable the compilers automatic optimisations? Perhaps the compiler might automatically perform the same optimisations (or better optimisations) we manually perform, but in a miniscule fraction of the time.
There's a marketing/planning strategy to consider behind those figures in that quote. In the commercial world or even as a hobbyist, you will have spent the 97% of your time up front developing and testing a program that solves the actual problem. Notice the emphasis on actual problem. You won't be writing and testing programs for the purpose of observing cache behaviours. You'll be writing and testing programs to solve real life problems.
Once you've written and tested the entire program thoroughly you'll know whether or not it feels fast enough (e.g. you'll probably be told by your clients/employers to optimise it). If it feels fast enough, you won't optimise it, even if there are cache misses everywhere; you won't even know there are cache misses. If it feels too slow, however, you'll want use a profiler on your fully optimised code to determine where the most significant bottleneck is, and spend roughly 3% of your time on that bottleneck...
It is possible to program optimistically, but that's not an exercise in observation like these exercises; it's an exercise in planning and factoring. One guideline is to avoid repeating yourself, which is what I've done with the code below. By determining the common behaviours between the two exercises (e.g. both loop from low indexes to high indexes, incrementing each element by 1) I've reduced two loops to one, and avoided repeating myself at the same time. Factor your programs to avoid as much repetition as possible and your code will be smaller, resulting in less testing, maintenance and of course less repeated keystrokes. Most of the optimisation is an optimisation of our time, not of the computers time! It just so happens that we are also optimising the computer time by making our code smaller.
void increment_every(char *buffer, size_t multiple, size_t maximum) {
while (maximum > multiple) {
buffer[0]++;
buffer += multiple;
maximum -= multiple;
}
}
You should be able to solve both of these problems in terms of this function. For example:
#define S1 32768 /* 32KB */
#define B1 64 /* 64 B */
int main(void) {
char buffer[2 * S1] = { 0 };
increment_every(buffer, 1, sizeof buffer); // subroutine A
if (B1 < S1) { // subroutine B
increment_every(buffer + B1, B1, sizeof buffer - B1);
}
}
This is assuming S1 and B1 are fixed values that don't come from a file or an interactive device. Such an assumption causes the compiler to be quite aggressive with optimisation. In fact, this program will probably be optimised to int main(void) { } because there's no observable behaviour; there's no input from or output to any files or interactive devices anywhere in this program! Hopefully, now, you'll see a few true lessons behind your next lesson:
Write code optimally rather than write optimal code. e.g. Avoid repeating yourself.
Profile your code only when it feels too slow. e.g. Optimise only after you've written and tested the entire program.

Related

Idiomatic way of performance evaluation?

I am evaluating a network+rendering workload for my project.
The program continuously runs a main loop:
while (true) {
doSomething()
drawSomething()
doSomething2()
sendSomething()
}
The main loop runs more than 60 times per second.
I want to see the performance breakdown, how much time each procedure takes.
My concern is that if I print the time interval for every entrance and exit of each procedure,
It would incur huge performance overhead.
I am curious what is an idiomatic way of measuring the performance.
Printing of logging is good enough?
Generally: For repeated short things, you can just time the whole repeat loop. (But microbenchmarking is hard; easy to distort results unless you understand the implications of doing that; for very short things, throughput and latency are different, so measure both separately by making one iteration use the result of the previous or not. Also beware that branch prediction and caching can make something look fast in a microbenchmark when it would actually be costly if done one at a time between other work in a larger program.
e.g. loop unrolling and lookup tables often look good because there's no pressure on I-cache or D-cache from anything else.)
Or if you insist on timing each separate iteration, record the results in an array and print later; you don't want to invoke heavy-weight printing code inside your loop.
This question is way too broad to say anything more specific.
Many languages have benchmarking packages that will help you write microbenchmarks of a single function. Use them. e.g. for Java, JMH makes sure the function under test is warmed up and fully optimized by the JIT, and all that jazz, before doing timed runs. And runs it for a specified interval, counting how many iterations it completes. See How do I write a correct micro-benchmark in Java? for that and more.
Beware common microbenchmark pitfalls
Failure to warm up code / data caches and stuff: page faults within the timed region for touching new memory, or code / data cache misses, that wouldn't be part of normal operation. (Example of noticing this effect: Performance: memset; or example of a wrong conclusion based on this mistake)
Never-written memory (obtained fresh from the kernel) gets all its pages copy-on-write mapped to the same system-wide physical page (4K or 2M) of zeros if you read without writing, at least on Linux. So you can get cache hits but TLB misses. e.g. A large allocation from new / calloc / malloc, or a zero-initialized array in static storage in .bss. Use a non-zero initializer or memset.
Failure to give the CPU time to ramp up to max turbo: modern CPUs clock down to idle speeds to save power, only clocking up after a few milliseconds. (Or longer depending on the OS / HW).
related: on modern x86, RDTSC counts reference cycles, not core clock cycles, so it's subject to the same CPU-frequency variation effects as wall-clock time.
Most integer and FP arithmetic asm instructions (except divide and square root which are already slower than others) have performance (latency and throughput) that doesn't depend on the actual data. Except for subnormal aka denormal floating point being very slow, and in some cases (e.g. legacy x87 but not SSE2) also producing NaN or Inf can be slow.
On modern CPUs with out-of-order execution, some things are too short to truly time meaningfully, see also this. Performance of a tiny block of assembly language (e.g. generated by a compiler for one function) can't be characterized by a single number, even if it doesn't branch or access memory (so no chance of mispredict or cache miss). It has latency from inputs to outputs, but different throughput if run repeatedly with independent inputs is higher. e.g. an add instruction on a Skylake CPU has 4/clock throughput, but 1 cycle latency. So dummy = foo(x) can be 4x faster than x = foo(x); in a loop. Floating-point instructions have higher latency than integer, so it's often a bigger deal. Memory access is also pipelined on most CPUs, so looping over an array (address for next load easy to calculate) is often much faster than walking a linked list (address for next load isn't available until the previous load completes).
Obviously performance can differ between CPUs; in the big picture usually it's rare for version A to be faster on Intel, version B to be faster on AMD, but that can easily happen in the small scale. When reporting / recording benchmark numbers, always note what CPU you tested on.
Related to the above and below points: you can't "benchmark the * operator" in C in general, for example. Some use-cases for it will compile very differently from others, e.g. tmp = foo * i; in a loop can often turn into tmp += foo (strength reduction), or if the multiplier is a constant power of 2 the compiler will just use a shift. The same operator in the source can compile to very different instructions, depending on surrounding code.
You need to compile with optimization enabled, but you also need to stop the compiler from optimizing away the work, or hoisting it out of a loop. Make sure you use the result (e.g. print it or store it to a volatile) so the compiler has to produce it. For an array, volatile double sink = output[argc]; is a useful trick: the compiler doesn't know the value of argc so it has to generate the whole array, but you don't need to read the whole array or even call an RNG function. (Unless the compiler aggressively transforms to only calculate the one output selected by argc, but that tends not to be a problem in practice.)
For inputs, use a random number or argc or something instead of a compile-time constant so your compiler can't do constant-propagation for things that won't be constants in your real use-case. In C you can sometimes use inline asm or volatile for this, e.g. the stuff this question is asking about. A good benchmarking package like Google Benchmark will include functions for this.
If the real use-case for a function lets it inline into callers where some inputs are constant, or the operations can be optimized into other work, it's not very useful to benchmark it on its own.
Big complicated functions with special handling for lots of special cases can look fast in a microbenchmark when you run them repeatedly, especially with the same input every time. In real life use-cases, branch prediction often won't be primed for that function with that input. Also, a massively unrolled loop can look good in a microbenchmark, but in real life it slows everything else down with its big instruction-cache footprint leading to eviction of other code.
Related to that last point: Don't tune only for huge inputs, if the real use-case for a function includes a lot of small inputs. e.g. a memcpy implementation that's great for huge inputs but takes too long to figure out which strategy to use for small inputs might not be good. It's a tradeoff; make sure it's good enough for large inputs (for an appropriate definition of "enough"), but also keep overhead low for small inputs.
Litmus tests:
If you're benchmarking two functions in one program: if reversing the order of testing changes the results, your benchmark isn't fair. e.g. function A might only look slow because you're testing it first, with insufficient warm-up. example: Why is std::vector slower than an array? (it's not, whichever loop runs first has to pay for all the page faults and cache misses; the 2nd just zooms through filling the same memory.)
Increasing the iteration count of a repeat loop should linearly increase the total time, and not affect the calculated time-per-call. If not, then you have non-negligible measurement overhead or your code optimized away (e.g. hoisted out of the loop and runs only once instead of N times).
Vary other test parameters as a sanity check.
For C / C++, see also Simple for() loop benchmark takes the same time with any loop bound where I went into some more detail about microbenchmarking and using volatile or asm to stop important work from optimizing away with gcc/clang.

Is there "compiler-friendly" code / convention [duplicate]

Many years ago, C compilers were not particularly smart. As a workaround K&R invented the register keyword, to hint to the compiler, that maybe it would be a good idea to keep this variable in an internal register. They also made the tertiary operator to help generate better code.
As time passed, the compilers matured. They became very smart in that their flow analysis allowing them to make better decisions about what values to hold in registers than you could possibly do. The register keyword became unimportant.
FORTRAN can be faster than C for some sorts of operations, due to alias issues. In theory with careful coding, one can get around this restriction to enable the optimizer to generate faster code.
What coding practices are available that may enable the compiler/optimizer to generate faster code?
Identifying the platform and compiler you use, would be appreciated.
Why does the technique seem to work?
Sample code is encouraged.
Here is a related question
[Edit] This question is not about the overall process to profile, and optimize. Assume that the program has been written correctly, compiled with full optimization, tested and put into production. There may be constructs in your code that prohibit the optimizer from doing the best job that it can. What can you do to refactor that will remove these prohibitions, and allow the optimizer to generate even faster code?
[Edit] Offset related link
Here's a coding practice to help the compiler create fast code—any language, any platform, any compiler, any problem:
Do not use any clever tricks which force, or even encourage, the compiler to lay variables out in memory (including cache and registers) as you think best. First write a program which is correct and maintainable.
Next, profile your code.
Then, and only then, you might want to start investigating the effects of telling the compiler how to use memory. Make 1 change at a time and measure its impact.
Expect to be disappointed and to have to work very hard indeed for small performance improvements. Modern compilers for mature languages such as Fortran and C are very, very good. If you read an account of a 'trick' to get better performance out of code, bear in mind that the compiler writers have also read about it and, if it is worth doing, probably implemented it. They probably wrote what you read in the first place.
Write to local variables and not output arguments! This can be a huge help for getting around aliasing slowdowns. For example, if your code looks like
void DoSomething(const Foo& foo1, const Foo* foo2, int numFoo, Foo& barOut)
{
for (int i=0; i<numFoo, i++)
{
barOut.munge(foo1, foo2[i]);
}
}
the compiler doesn't know that foo1 != barOut, and thus has to reload foo1 each time through the loop. It also can't read foo2[i] until the write to barOut is finished. You could start messing around with restricted pointers, but it's just as effective (and much clearer) to do this:
void DoSomethingFaster(const Foo& foo1, const Foo* foo2, int numFoo, Foo& barOut)
{
Foo barTemp = barOut;
for (int i=0; i<numFoo, i++)
{
barTemp.munge(foo1, foo2[i]);
}
barOut = barTemp;
}
It sounds silly, but the compiler can be much smarter dealing with the local variable, since it can't possibly overlap in memory with any of the arguments. This can help you avoid the dreaded load-hit-store (mentioned by Francis Boivin in this thread).
The order you traverse memory can have profound impacts on performance and compilers aren't really good at figuring that out and fixing it. You have to be conscientious of cache locality concerns when you write code if you care about performance. For example two-dimensional arrays in C are allocated in row-major format. Traversing arrays in column major format will tend to make you have more cache misses and make your program more memory bound than processor bound:
#define N 1000000;
int matrix[N][N] = { ... };
//awesomely fast
long sum = 0;
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
sum += matrix[i][j];
}
}
//painfully slow
long sum = 0;
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
sum += matrix[j][i];
}
}
Generic Optimizations
Here as some of my favorite optimizations. I have actually increased execution times and reduced program sizes by using these.
Declare small functions as inline or macros
Each call to a function (or method) incurs overhead, such as pushing variables onto the stack. Some functions may incur an overhead on return as well. An inefficient function or method has fewer statements in its content than the combined overhead. These are good candidates for inlining, whether it be as #define macros or inline functions. (Yes, I know inline is only a suggestion, but in this case I consider it as a reminder to the compiler.)
Remove dead and redundant code
If the code isn't used or does not contribute to the program's result, get rid of it.
Simplify design of algorithms
I once removed a lot of assembly code and execution time from a program by writing down the algebraic equation it was calculating and then simplified the algebraic expression. The implementation of the simplified algebraic expression took up less room and time than the original function.
Loop Unrolling
Each loop has an overhead of incrementing and termination checking. To get an estimate of the performance factor, count the number of instructions in the overhead (minimum 3: increment, check, goto start of loop) and divide by the number of statements inside the loop. The lower the number the better.
Edit: provide an example of loop unrolling
Before:
unsigned int sum = 0;
for (size_t i; i < BYTES_TO_CHECKSUM; ++i)
{
sum += *buffer++;
}
After unrolling:
unsigned int sum = 0;
size_t i = 0;
**const size_t STATEMENTS_PER_LOOP = 8;**
for (i = 0; i < BYTES_TO_CHECKSUM; **i = i / STATEMENTS_PER_LOOP**)
{
sum += *buffer++; // 1
sum += *buffer++; // 2
sum += *buffer++; // 3
sum += *buffer++; // 4
sum += *buffer++; // 5
sum += *buffer++; // 6
sum += *buffer++; // 7
sum += *buffer++; // 8
}
// Handle the remainder:
for (; i < BYTES_TO_CHECKSUM; ++i)
{
sum += *buffer++;
}
In this advantage, a secondary benefit is gained: more statements are executed before the processor has to reload the instruction cache.
I've had amazing results when I unrolled a loop to 32 statements. This was one of the bottlenecks since the program had to calculate a checksum on a 2GB file. This optimization combined with block reading improved performance from 1 hour to 5 minutes. Loop unrolling provided excellent performance in assembly language too, my memcpy was a lot faster than the compiler's memcpy. -- T.M.
Reduction of if statements
Processors hate branches, or jumps, since it forces the processor to reload its queue of instructions.
Boolean Arithmetic (Edited: applied code format to code fragment, added example)
Convert if statements into boolean assignments. Some processors can conditionally execute instructions without branching:
bool status = true;
status = status && /* first test */;
status = status && /* second test */;
The short circuiting of the Logical AND operator (&&) prevents execution of the tests if the status is false.
Example:
struct Reader_Interface
{
virtual bool write(unsigned int value) = 0;
};
struct Rectangle
{
unsigned int origin_x;
unsigned int origin_y;
unsigned int height;
unsigned int width;
bool write(Reader_Interface * p_reader)
{
bool status = false;
if (p_reader)
{
status = p_reader->write(origin_x);
status = status && p_reader->write(origin_y);
status = status && p_reader->write(height);
status = status && p_reader->write(width);
}
return status;
};
Factor Variable Allocation outside of loops
If a variable is created on the fly inside a loop, move the creation / allocation to before the loop. In most instances, the variable doesn't need to be allocated during each iteration.
Factor constant expressions outside of loops
If a calculation or variable value does not depend on the loop index, move it outside (before) the loop.
I/O in blocks
Read and write data in large chunks (blocks). The bigger the better. For example, reading one octect at a time is less efficient than reading 1024 octets with one read.
Example:
static const char Menu_Text[] = "\n"
"1) Print\n"
"2) Insert new customer\n"
"3) Destroy\n"
"4) Launch Nasal Demons\n"
"Enter selection: ";
static const size_t Menu_Text_Length = sizeof(Menu_Text) - sizeof('\0');
//...
std::cout.write(Menu_Text, Menu_Text_Length);
The efficiency of this technique can be visually demonstrated. :-)
Don't use printf family for constant data
Constant data can be output using a block write. Formatted write will waste time scanning the text for formatting characters or processing formatting commands. See above code example.
Format to memory, then write
Format to a char array using multiple sprintf, then use fwrite. This also allows the data layout to be broken up into "constant sections" and variable sections. Think of mail-merge.
Declare constant text (string literals) as static const
When variables are declared without the static, some compilers may allocate space on the stack and copy the data from ROM. These are two unnecessary operations. This can be fixed by using the static prefix.
Lastly, Code like the compiler would
Sometimes, the compiler can optimize several small statements better than one complicated version. Also, writing code to help the compiler optimize helps too. If I want the compiler to use special block transfer instructions, I will write code that looks like it should use the special instructions.
The optimizer isn't really in control of the performance of your program, you are. Use appropriate algorithms and structures and profile, profile, profile.
That said, you shouldn't inner-loop on a small function from one file in another file, as that stops it from being inlined.
Avoid taking the address of a variable if possible. Asking for a pointer isn't "free" as it means the variable needs to be kept in memory. Even an array can be kept in registers if you avoid pointers — this is essential for vectorizing.
Which leads to the next point, read the ^#$# manual! GCC can vectorize plain C code if you sprinkle a __restrict__ here and an __attribute__( __aligned__ ) there. If you want something very specific from the optimizer, you might have to be specific.
On most modern processors, the biggest bottleneck is memory.
Aliasing: Load-Hit-Store can be devastating in a tight loop. If you're reading one memory location and writing to another and know that they are disjoint, carefully putting an alias keyword on the function parameters can really help the compiler generate faster code. However if the memory regions do overlap and you used 'alias', you're in for a good debugging session of undefined behaviors!
Cache-miss: Not really sure how you can help the compiler since it's mostly algorithmic, but there are intrinsics to prefetch memory.
Also don't try to convert floating point values to int and vice versa too much since they use different registers and converting from one type to another means calling the actual conversion instruction, writing the value to memory and reading it back in the proper register set.
The vast majority of code that people write will be I/O bound (I believe all the code I have written for money in the last 30 years has been so bound), so the activities of the optimiser for most folks will be academic.
However, I would remind people that for the code to be optimised you have to tell the compiler to to optimise it - lots of people (including me when I forget) post C++ benchmarks here that are meaningless without the optimiser being enabled.
use const correctness as much as possible in your code. It allows the compiler to optimize much better.
In this document are loads of other optimization tips: CPP optimizations (a bit old document though)
highlights:
use constructor initialization lists
use prefix operators
use explicit constructors
inline functions
avoid temporary objects
be aware of the cost of virtual functions
return objects via reference parameters
consider per class allocation
consider stl container allocators
the 'empty member' optimization
etc
Attempt to program using static single assignment as much as possible. SSA is exactly the same as what you end up with in most functional programming languages, and that's what most compilers convert your code to to do their optimizations because it's easier to work with. By doing this places where the compiler might get confused are brought to light. It also makes all but the worst register allocators work as good as the best register allocators, and allows you to debug more easily because you almost never have to wonder where a variable got it's value from as there was only one place it was assigned.
Avoid global variables.
When working with data by reference or pointer pull that into local variables, do your work, and then copy it back. (unless you have a good reason not to)
Make use of the almost free comparison against 0 that most processors give you when doing math or logic operations. You almost always get a flag for ==0 and <0, from which you can easily get 3 conditions:
x= f();
if(!x){
a();
} else if (x<0){
b();
} else {
c();
}
is almost always cheaper than testing for other constants.
Another trick is to use subtraction to eliminate one compare in range testing.
#define FOO_MIN 8
#define FOO_MAX 199
int good_foo(int foo) {
unsigned int bar = foo-FOO_MIN;
int rc = ((FOO_MAX-FOO_MIN) < bar) ? 1 : 0;
return rc;
}
This can very often avoid a jump in languages that do short circuiting on boolean expressions and avoids the compiler having to try to figure out how to handle keeping
up with the result of the first comparison while doing the second and then combining them.
This may look like it has the potential to use up an extra register, but it almost never does. Often you don't need foo anymore anyway, and if you do rc isn't used yet so it can go there.
When using the string functions in c (strcpy, memcpy, ...) remember what they return -- the destination! You can often get better code by 'forgetting' your copy of the pointer to destination and just grab it back from the return of these functions.
Never overlook the oppurtunity to return exactly the same thing the last function you called returned. Compilers are not so great at picking up that:
foo_t * make_foo(int a, int b, int c) {
foo_t * x = malloc(sizeof(foo));
if (!x) {
// return NULL;
return x; // x is NULL, already in the register used for returns, so duh
}
x->a= a;
x->b = b;
x->c = c;
return x;
}
Of course, you could reverse the logic on that if and only have one return point.
(tricks I recalled later)
Declaring functions as static when you can is always a good idea. If the compiler can prove to itself that it has accounted for every caller of a particular function then it can break the calling conventions for that function in the name of optimization. Compilers can often avoid moving parameters into registers or stack positions that called functions usually expect their parameters to be in (it has to deviate in both the called function and the location of all callers to do this). The compiler can also often take advantage of knowing what memory and registers the called function will need and avoid generating code to preserve variable values that are in registers or memory locations that the called function doesn't disturb. This works particularly well when there are few calls to a function. This gets much of the benifit of inlining code, but without actually inlining.
I wrote an optimizing C compiler and here are some very useful things to consider:
Make most functions static. This allows interprocedural constant propagation and alias analysis to do its job, otherwise the compiler needs to presume that the function can be called from outside the translation unit with completely unknown values for the paramters. If you look at the well-known open-source libraries they all mark functions static except the ones that really need to be extern.
If global variables are used, mark them static and constant if possible. If they are initialized once (read-only), it's better to use an initializer list like static const int VAL[] = {1,2,3,4}, otherwise the compiler might not discover that the variables are actually initialized constants and will fail to replace loads from the variable with the constants.
NEVER use a goto to the inside of a loop, the loop will not be recognized anymore by most compilers and none of the most important optimizations will be applied.
Use pointer parameters only if necessary, and mark them restrict if possible. This helps alias analysis a lot because the programmer guarantees there is no alias (the interprocedural alias analysis is usually very primitive). Very small struct objects should be passed by value, not by reference.
Use arrays instead of pointers whenever possible, especially inside loops (a[i]). An array usually offers more information for alias analysis and after some optimizations the same code will be generated anyway (search for loop strength reduction if curious). This also increases the chance for loop-invariant code motion to be applied.
Try to hoist outside the loop calls to large functions or external functions that don't have side-effects (don't depend on the current loop iteration). Small functions are in many cases inlined or converted to intrinsics that are easy to hoist, but large functions might seem for the compiler to have side-effects when they actually don't. Side-effects for external functions are completely unknown, with the exception of some functions from the standard library which are sometimes modeled by some compilers, making loop-invariant code motion possible.
When writing tests with multiple conditions place the most likely one first. if(a || b || c) should be if(b || a || c) if b is more likely to be true than the others. Compilers usually don't know anything about the possible values of the conditions and which branches are taken more (they could be known by using profile information, but few programmers use it).
Using a switch is faster than doing a test like if(a || b || ... || z). Check first if your compiler does this automatically, some do and it's more readable to have the if though.
In the case of embedded systems and code written in C/C++, I try and avoid dynamic memory allocation as much as possible. The main reason I do this is not necessarily performance but this rule of thumb does have performance implications.
Algorithms used to manage the heap are notoriously slow in some platforms (e.g., vxworks). Even worse, the time that it takes to return from a call to malloc is highly dependent on the current state of the heap. Therefore, any function that calls malloc is going to take a performance hit that cannot be easily accounted for. That performance hit may be minimal if the heap is still clean but after that device runs for a while the heap can become fragmented. The calls are going to take longer and you cannot easily calculate how performance will degrade over time. You cannot really produce a worse case estimate. The optimizer cannot provide you with any help in this case either. To make matters even worse, if the heap becomes too heavily fragmented, the calls will start failing altogether. The solution is to use memory pools (e.g., glib slices ) instead of the heap. The allocation calls are going to be much faster and deterministic if you do it right.
A dumb little tip, but one that will save you some microscopic amounts of speed and code.
Always pass function arguments in the same order.
If you have f_1(x, y, z) which calls f_2, declare f_2 as f_2(x, y, z). Do not declare it as f_2(x, z, y).
The reason for this is that C/C++ platform ABI (AKA calling convention) promises to pass arguments in particular registers and stack locations. When the arguments are already in the correct registers then it does not have to move them around.
While reading disassembled code I've seen some ridiculous register shuffling because people didn't follow this rule.
Two coding technics I didn't saw in the above list:
Bypass linker by writing code as an unique source
While separate compilation is really nice for compiling time, it is very bad when you speak of optimization. Basically the compiler can't optimize beyond compilation unit, that is linker reserved domain.
But if you design well your program you can can also compile it through an unique common source. That is instead of compiling unit1.c and unit2.c then link both objects, compile all.c that merely #include unit1.c and unit2.c. Thus you will benefit from all the compiler optimizations.
It's very like writing headers only programs in C++ (and even easier to do in C).
This technique is easy enough if you write your program to enable it from the beginning, but you must also be aware it change part of C semantic and you can meet some problems like static variables or macro collision. For most programs it's easy enough to overcome the small problems that occurs. Also be aware that compiling as an unique source is way slower and may takes huge amount of memory (usually not a problem with modern systems).
Using this simple technique I happened to make some programs I wrote ten times faster!
Like the register keyword, this trick could also become obsolete soon. Optimizing through linker begin to be supported by compilers gcc: Link time optimization.
Separate atomic tasks in loops
This one is more tricky. It's about interaction between algorithm design and the way optimizer manage cache and register allocation. Quite often programs have to loop over some data structure and for each item perform some actions. Quite often the actions performed can be splitted between two logically independent tasks. If that is the case you can write exactly the same program with two loops on the same boundary performing exactly one task. In some case writing it this way can be faster than the unique loop (details are more complex, but an explanation can be that with the simple task case all variables can be kept in processor registers and with the more complex one it's not possible and some registers must be written to memory and read back later and the cost is higher than additional flow control).
Be careful with this one (profile performances using this trick or not) as like using register it may as well give lesser performances than improved ones.
I've actually seen this done in SQLite and they claim it results in performance boosts ~5%: Put all your code in one file or use the preprocessor to do the equivalent to this. This way the optimizer will have access to the entire program and can do more interprocedural optimizations.
Most modern compilers should do a good job speeding up tail recursion, because the function calls can be optimized out.
Example:
int fac2(int x, int cur) {
if (x == 1) return cur;
return fac2(x - 1, cur * x);
}
int fac(int x) {
return fac2(x, 1);
}
Of course this example doesn't have any bounds checking.
Late Edit
While I have no direct knowledge of the code; it seems clear that the requirements of using CTEs on SQL Server were specifically designed so that it can optimize via tail-end recursion.
Don't do the same work over and over again!
A common antipattern that I see goes along these lines:
void Function()
{
MySingleton::GetInstance()->GetAggregatedObject()->DoSomething();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingElse();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingCool();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingReallyNeat();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingYetAgain();
}
The compiler actually has to call all of those functions all of the time. Assuming you, the programmer, knows that the aggregated object isn't changing over the course of these calls, for the love of all that is holy...
void Function()
{
MySingleton* s = MySingleton::GetInstance();
AggregatedObject* ao = s->GetAggregatedObject();
ao->DoSomething();
ao->DoSomethingElse();
ao->DoSomethingCool();
ao->DoSomethingReallyNeat();
ao->DoSomethingYetAgain();
}
In the case of the singleton getter the calls may not be too costly, but it is certainly a cost (typically, "check to see if the object has been created, if it hasn't, create it, then return it). The more complicated this chain of getters becomes, the more wasted time we'll have.
Use the most local scope possible for all variable declarations.
Use const whenever possible
Dont use register unless you plan to profile both with and without it
The first 2 of these, especially #1 one help the optimizer analyze the code. It will especially help it to make good choices about what variables to keep in registers.
Blindly using the register keyword is as likely to help as hurt your optimization, It's just too hard to know what will matter until you look at the assembly output or profile.
There are other things that matter to getting good performance out of code; designing your data structures to maximize cache coherency for instance. But the question was about the optimizer.
Align your data to native/natural boundaries.
I was reminded of something that I encountered once, where the symptom was simply that we were running out of memory, but the result was substantially increased performance (as well as huge reductions in memory footprint).
The problem in this case was that the software we were using made tons of little allocations. Like, allocating four bytes here, six bytes there, etc. A lot of little objects, too, running in the 8-12 byte range. The problem wasn't so much that the program needed lots of little things, it's that it allocated lots of little things individually, which bloated each allocation out to (on this particular platform) 32 bytes.
Part of the solution was to put together an Alexandrescu-style small object pool, but extend it so I could allocate arrays of small objects as well as individual items. This helped immensely in performance as well since more items fit in the cache at any one time.
The other part of the solution was to replace the rampant use of manually-managed char* members with an SSO (small-string optimization) string. The minimum allocation being 32 bytes, I built a string class that had an embedded 28-character buffer behind a char*, so 95% of our strings didn't need to do an additional allocation (and then I manually replaced almost every appearance of char* in this library with this new class, that was fun or not). This helped a ton with memory fragmentation as well, which then increased the locality of reference for other pointed-to objects, and similarly there were performance gains.
A neat technique I learned from #MSalters comment on this answer allows compilers to do copy elision even when returning different objects according to some condition:
// before
BigObject a, b;
if(condition)
return a;
else
return b;
// after
BigObject a, b;
if(condition)
swap(a,b);
return a;
If you've got small functions you call repeatedly, i have in the past got large gains by putting them in headers as "static inline". Function calls on the ix86 are surprisingly expensive.
Reimplementing recursive functions in a non-recursive way using an explicit stack can also gain a lot, but then you really are in the realm of development time vs gain.
Here's my second piece of optimisation advice. As with my first piece of advice this is general purpose, not language or processor specific.
Read the compiler manual thoroughly and understand what it is telling you. Use the compiler to its utmost.
I agree with one or two of the other respondents who have identified selecting the right algorithm as critical to squeezing performance out of a program. Beyond that the rate of return (measured in code execution improvement) on the time you invest in using the compiler is far higher than the rate of return in tweaking the code.
Yes, compiler writers are not from a race of coding giants and compilers contain mistakes and what should, according to the manual and according to compiler theory, make things faster sometimes makes things slower. That's why you have to take one step at a time and measure before- and after-tweak performance.
And yes, ultimately, you might be faced with a combinatorial explosion of compiler flags so you need to have a script or two to run make with various compiler flags, queue the jobs on the large cluster and gather the run time statistics. If it's just you and Visual Studio on a PC you will run out of interest long before you have tried enough combinations of enough compiler flags.
Regards
Mark
When I first pick up a piece of code I can usually get a factor of 1.4 -- 2.0 times more performance (ie the new version of the code runs in 1/1.4 or 1/2 of the time of the old version) within a day or two by fiddling with compiler flags. Granted, that may be a comment on the lack of compiler savvy among the scientists who originate much of the code I work on, rather than a symptom of my excellence. Having set the compiler flags to max (and it's rarely just -O3) it can take months of hard work to get another factor of 1.05 or 1.1
When DEC came out with its alpha processors, there was a recommendation to keep the number of arguments to a function under 7, as the compiler would always try to put up to 6 arguments in registers automatically.
For performance, focus first on writing maintenable code - componentized, loosely coupled, etc, so when you have to isolate a part either to rewrite, optimize or simply profile, you can do it without much effort.
Optimizer will help your program's performance marginally.
You're getting good answers here, but they assume your program is pretty close to optimal to begin with, and you say
Assume that the program has been
written correctly, compiled with full
optimization, tested and put into
production.
In my experience, a program may be written correctly, but that does not mean it is near optimal. It takes extra work to get to that point.
If I can give an example, this answer shows how a perfectly reasonable-looking program was made over 40 times faster by macro-optimization. Big speedups can't be done in every program as first written, but in many (except for very small programs), it can, in my experience.
After that is done, micro-optimization (of the hot-spots) can give you a good payoff.
i use intel compiler. on both Windows and Linux.
when more or less done i profile the code. then hang on the hotspots and trying to change the code to allow compiler make a better job.
if a code is a computational one and contain a lot of loops - vectorization report in intel compiler is very helpful - look for 'vec-report' in help.
so the main idea - polish the performance critical code. as for the rest - priority to be correct and maintainable - short functions, clear code that could be understood 1 year later.
One optimization i have used in C++ is creating a constructor that does nothing. One must manually call an init() in order to put the object into a working state.
This has benefit in the case where I need a large vector of these classes.
I call reserve() to allocate the space for the vector, but the constructor does not actually touch the page of memory the object is on. So I have spent some address space, but not actually consumed a lot of physical memory. I avoid the page faults associated the associated construction costs.
As i generate objects to fill the vector, I set them using init(). This limits my total page faults, and avoids the need to resize() the vector while filling it.
One thing I've done is try to keep expensive actions to places where the user might expect the program to delay a bit. Overall performance is related to responsiveness, but isn't quite the same, and for many things responsiveness is the more important part of performance.
The last time I really had to do improvements in overall performance, I kept an eye out for suboptimal algorithms, and looked for places that were likely to have cache problems. I profiled and measured performance first, and again after each change. Then the company collapsed, but it was interesting and instructive work anyway.
I have long suspected, but never proved that declaring arrays so that they hold a power of 2, as the number of elements, enables the optimizer to do a strength reduction by replacing a multiply by a shift by a number of bits, when looking up individual elements.
Put small and/or frequently called functions at the top of the source file. That makes it easier for the compiler to find opportunities for inlining.

Array access/write performance differences?

This is probably going to language dependent, but in general, what is the performance difference between accessing and writing to an array?
For example, if I am trying to write a prime sieve and am representing the primes as a boolean array.
Upon finding a prime, I can say
for(int i = 2; n * i < end; i++)
{
prime[n * i] = false;
}
or
for(int i = 2; n * i < end; i++)
{
if(prime[n * i])
{
prime[n * i] = false;
}
}
The intent in the latter case is to check the value before writing it to avoid having to rewrite many values that have already been checked. Is there any realistic gain in performance here, or are access and write mostly equivalent in speed?
Impossible to answer such a generic question without the specifics of the machine/OS this is running on, but in general the latter is going to be slower because:
The second example you have to get the value from RAM to L2/L1 cache and read it to a register, make a chance on the value and write it back. In the first case you might very well get away with simply writing a value to the L1/L2 caches. It can written to RAM from the caches later while your program is doing something else.
The second form has much more code to execute per iteration. For large enough number of iterations, the difference gets big real fast.
In general this depends much more on the machine than the programing language. The writes often will take a few more clock cycles because, depending on the machine, more cache values need to be updated in memory.
However, your second segment of code will be WAY slower, and it's not just because there's "more code". The big reason is that anytime you use an if-statement on most machines the CPU uses a branch predictor. The CPU literally predicts which way the if-statement will run ahead of time, and if it's wrong it has to backtrack. See http://en.wikipedia.org/wiki/Pipeline_%28computing%29 and http://en.wikipedia.org/wiki/Branch_predictor to understand why.
If you want to do some optimization, I would recommend the following:
Profile! See what's really taking up time.
Multiplication is much harder than addition. Try rewriting the loop so that i += n, and use this for your array index.
The loop condition "should" be totally reevaluated at every iteration unless the compiler optimizes it away. So try avoiding multiplication in there.
Use -O2 or -O3 as a compiler option
You might find that some values of n are faster than others because of cache locality. You might think of some clever ways to rewrite your code to take advantage of this.
Disassemble the code and look at what it's actually doing on your processor
It's a hard question and it heavily depends on your hardware, OS and complier. But for sake of theory, you should consider two things: branching and memory access. As branching is generally evil, you want to avoid it. I wouldn't even surprise if some compiler optimization took place and your second snippet would be reduced to the first one (compilers love avoiding branches, they probably consider it as a hobby, but they have a reason). So in these terms the first example is much cleaner and easier to deal with.
There're also CPU caches and other memory related issues. I believe that in both examples you have to actually load the memory into the CPU cache, so you can either read it or update. While reading is not a problem, writing have to propagate the changes up. I wouldn't be worried if you use the function in a single thread (as #gby pointed out, OS can push the changes a little bit later).
There is only one scenario I can come up with, that would make me consider solution from your second example. If I shared the table between threads to work on it in parallel (without locking) and had separate caches for different CPUs. Then, every time you amend the cache line from one thread, the other thread have to update it's copy before reading or writing to the same memory block. It's known as a cache coherence and it actually may hurt your performance badly; in such a case I could consider conditional writes. But wait, it's probably far away from your question...

How can I speed up crc32 calculation?

I'm trying to write a crc32 implementation on linux that's as fast as possible, as an exercise in learning to optimise C. I've tried my best, but I haven't been able to find many good resources online. I'm not even sure if my buffer size is sensible; it was chosen by repeated experimentation.
#include <stdio.h>
#define BUFFSIZE 1048567
const unsigned long int lookupbase = 0xEDB88320;
unsigned long int crctable[256] = {
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
/* LONG LIST OF PRECALCULTED VALUES */
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D};
int main(int argc, char *argv[]){
register unsigned long int x;
int i;
register unsigned char *c, *endbuff;
unsigned char buff[BUFFSIZE];
register FILE *thisfile=NULL;
for (i = 1; i < argc; i++){
thisfile = fopen(argv[i], "r");
if (thisfile == NULL) {
printf("Unable to open ");
} else {
x = 0xFFFFFFFF;
c = &(buff[0]);
endbuff = &(buff[fread(buff, (sizeof (unsigned char)), BUFFSIZE, thisfile)]);
while (c != endbuff){
while (c != endbuff){
x=(x>>8) ^ crctable[(x&0xFF)^*c];
c++;
}
c = &(buff[0]);
endbuff = &(buff[fread(buff, (sizeof (unsigned char)), BUFFSIZE, thisfile)]);
}
fclose(thisfile);
x = x ^ 0xFFFFFFFF;
printf("%0.8X ", x);
}
printf("%s\n", argv[i]);
}
return 0;
}
Thanks in advance for any suggestions or resources I can read through.
On Linux? Forget about the register keyword, that's just a suggestion to the compiler and, from my experience with gcc, it's a waste of space. gcc is more than capable of figuring that out for itself.
I would just make sure you're compiling with the insane optimisation level, -O3, and check that. I've seen gcc produce code at that level which took me hours to understand, so sneaky that it was.
And, on the buffer size, make it as large as you possibly can. Even with buffering, the cost of calling fread is still a cost, so the less you do it, the better. You would see a huge improvement if you increased the buffer size from 1K to 1M, not so much if you up it from 1M to 2M, but even a small amount of increased performance is an increase. And, 2M isn't the upper bound of what you can use, I'd set it to one or more gigabytes if possible.
You may then want to put it at file level (rather than inside main). At some point, the stack won't be able to hold it.
As with most optimisations, you can usually trade space for time. Keep in mind that, for small files (less than 1M), you won't see any improvement since there is still only one read no matter how big you make the buffer. You may even find a slight slowdown if the loading of the process has to take more time to set up memory.
But, since this would only be for small files (where the performance isn't a problem anyway), it shouldn't really matter. Large files, where the performance is an issue, should hopefully find an improvement.
And I know I don't need to tell you this (since you indicate you are doing it), but I will mention it anyway for those who don't know: Measure, don't guess! The ground is littered with the corpses of those who optimised with guesswork :-)
You've asked for three values to be stored in registers, but standard x86 only has four general purpose registers: that's an awful lot of burden to place on the last remaining register, which is one reason why I expect register really only prevents you from ever using &foo to find the address of the variable. I don't think any modern compiler even uses it as a hint, these days. Feel free to remove all three uses and re-time your application.
Since you're reading in huge chunks of the file yourself, you might as well use open(2) and read(2) directly, and remove all the standard IO handling behind the scenes. Another common approach is to open(2) and mmap(2) the file into memory: let the OS page it in as pages are required. This may allow future pages to be optimistically read from disk while you're doing your computation: this is a common access pattern, and one the OS designers have attempted to optimize. (The simple mechanism of mapping the entire file at once does put an upper limit on the size of the files you can handle, probably about 2.5 gigabytes on 32-bit platforms and absolutely huge on 64-bit platforms. Mapping the file in chunks will allow you to handle arbitrary sized files even on 32-bit platforms, but at the cost of loops like you've got now for reading, but for mapping.)
As David Gelhar points out, you're using an odd-length buffer -- this might complicate the code path of reading the file into memory. If you want to stick with reading from files into buffers, I suggest using a multiple of 8192 (two pages of memory), as it won't have special cases until the last loop.
If you're really into eeking out of the last bit of speed and don't mind drastically increasing the size of your pre-computation table, you can look at the file in 16-bit chunks, rather than just 8-bit chunks. Frequently, accessing memory along 16-bit alignment is faster than along 8-bit alignment, and you'd cut the number of iterations through your loop in half, which usually gives a huge speed boost. The downside, of course, is increased memory pressure (65k entries, each of 8 bytes, rather than just 256 entries each of 4 bytes), and the much larger table is much less likely to fit entirely in the CPU cache.
And the last optimization idea that crosses my mind is to fork(2) into 2, 3, or 4 processes (or use threading), each of which can compute the crc32 of a portion of the file, and then combine the end results after all processes have completed. crc32 may not be computationally intensive enough to actually benefit from trying to use multiple cores out of SMP or multicore computers, and figuring out how to combine partial computations of crc32 may not be feasible -- I haven't looked into it myself :) -- but it might repay the effort, and learning how to write multi-process or multi-threaded software is well worth the effort regardless.
You are not going to be able to speed up the actual arithmetic of the CRC calculation, so the areas you can look at are the overhead of (a) reading the file, and (b) looping.
You're using a pretty large buffer size, which is good (but why is it an odd number?). Using a read(2) system call (assuming you're on a unix-like system) instead of the fread(3) standard library function may save you one copy operation (copying the data from fread's internal buffer into your bufffer).
For the loop overhead, look into loop unrolling.
Your code also has some redundancies that you might want to eliminate.
sizeof (unsigned char) is 1 (by definition in C); no need to explicitly compute it
c = &(buff[0]) is exactly equivalent to c = buff
Neither of these changes will improve the performance of the code (assuming a decent compiler), but they will make it clearer and more in accordance with usual C style.

Which of the following would be more efficient?

In C:
Lets say function "Myfuny()" has 50 line of codes in which other smaller functions also get called. Which one of the following code would be more efficient?
void myfunction(long *a, long *b);
int i;
for(i=0;i<8;i++)
myfunction(&a, &b);
or
myfunction(&a, &b);
myfunction(&a, &b);
myfunction(&a, &b);
myfunction(&a, &b);
myfunction(&a, &b);
myfunction(&a, &b);
myfunction(&a, &b);
myfunction(&a, &b);
any help would be appreciated.
That's premature optimization, you just shouldn't care...
Now, from a code maintenance point of view the first form (with the loop) is definitely better.
From a run-time point of view and if the function is inline and defined in the same compilation unit, and with a compiler that does not unroll the loop itself, and if code is already in instruction cache (I don't know for moon phases, I still believe it shouldn't have any noticable effect) the second one may be marginally fastest.
As you can see, there is many conditions for it to be fastest, so you shouldn't do that. There is probably many other parameters to optimize in your program that would have a much greater effect for code speed than this one. Any change that would affect algorithmic complexity of the program will have a much greater effect. More generally speaking any code change that does not affect algorithmic complexity is probably premature optimization.
If you really want to be sure, measure. On x86 you can use the kind of trick I used in this question to get a fairly accurate measure. The trick is to read a processor register that count the number of cycles spent. The question also illustrate how code optimization questions can become tricky, even for very simple problems.
I'd assume the compiler will translate the first variant into the second.
The first. Any have half-decent compiler will optimize that for you. It's easier to read/understand and easier to write.
Secondly, write first, optimize second. Even if your compiler was completely brain dead and retarded, it at best would only save you a few nano/ms seconds on a modern CPU. Chances are there are bigger bottlenecks in your applications that could/should be optimized first.
It depends on so many things your best bet is to do it both ways and measure.
It would take less (of your) time to write out the for loop. I'd also say it's clearer to read with the loop. It would probably save a few instructions to write them out, but with modern processors and compilers it may amount to exactly the same result...
The first. It is easier to read.
First, are you sure you have a code execution performance problem? If you don't, then you're talking about making your code less readable and writable for no reason at all.
Second, have you profiled your program to see if this is in a place where it will take a significant amount of time? Humans are very bad at guessing the hot spots in programs, and without profiling you're likely to spend time and effort fiddling with things that don't make a difference.
Third, are you going to check the assembler code produced to see if there's a difference? If you're using an optimizing compiler with optimizations on, it's likely to produce what it sees fit for either. If you aren't, and you have a performance problem, get a better computer or turn on more optimizations.
Fourth, if there is a difference, are you going to test both ways to see which is better? On at least a representative sample of the systems your users will be running on?
And, to give you my best answer to which is more efficient: it depends. If they're in fact compiled to different code, the unrolled version might be faster because it doesn't have the loop overhead (which includes a conditional branch), and the rolled-up version might be faster because it's shorter code and will work better in the instruction cache. The usual wisdom was to unroll, but I once sped up a long-running section by rolling the execution up as tightly as I could.
On modern processors the size of compiled code becomes very importand. If this loop could run entirly from processor's cache it would be the fastest solution. As n8wrl said test yourself.
I created a short test for this, with surprising results. At least for me, anyway, I would've thought it was the other way round.
So, I wrote two versions of a program iterating over a function nothing(), that did nothing interesting (inc on a variable).
The first used proper loops (a million iterations of 1000 iterations, two nested fors), the second one did a million iterations of 1000 consecutive calls to nothing().
I used the time command to measure. The version with the proper loop took about 3.5 seconds on average, and the consecutive calling version took about 2.5 seconds on average.
I then tried to compile with optimization flags, but gcc detected that the program did essentially nothing and execution was instantaneous on both versions =P. Didn't bother fixing that.
Edit: if you were actually thinking of writing 8 consecutive calls in your code, please don't. Remember the famous quote: "Programs must be written for people to read, and only incidentally for machines to execute.".
Also note that my tests did nothing except nothing() (=P) and are no proper benchmarks to consider in any actual program.
Loop unrolling can make execution faster (otherwise Duff's Device wouldn't have been invented), but that's a function of so many variables (processor, cache size, compiler settings, what myfunction is actually doing, etc.) that you can't rely on it to always be true, or for whatever improvement to be worth the cost in readability and maintainability. The only way to know for sure if it makes a difference for your particular platform is to code up both versions and profile them.
Depending on what myfunction actually does, the difference could be so far down in the noise as to be undetectable.
This kind of micro-optimization should only be done if all of the following are true:
You're failing to meet a hard performance requirement;
You've already picked the proper algorithm and data structure for the problem at hand (e.g., in the average case a poorly optimized Quicksort will beat the pants off of a highly optimized bubble sort, and in the worst case they'll be equally bad);
You're compiling with the highest level of optimization that the compiler offers;
How much does myFunction(long *a, long *b) do?
If it does much more than *a = *b + 1; the cost of calling the function can be so small compared to what goes on inside the function that you are really focussing in the wrong place.
On the other hand, in the overall picture of your application program, what percent of time is spent in these 8 calls? If it's not very much, then it won't make much difference no matter how tightly you optimize it.
As others say, profile, but that's not necessarily as simple as it sounds. Here's the method I and some others use.

Resources