Any Faster RMS Value Calculation in C? - c

I am writing a software for a small 8-bit microcontroller in C. Part of the code is to read the ADC value of a current transformer (ZCT), and then calculate the RMS value. The current flowing through the ZCT is sinusoidal but it can be distorted. My code as follow:
float adc_value, inst_current;
float acc_load_current; // accumulator = (I1*I1 + I2*I2 + ... + In*In)
double rms_current;
// Calculate the real instantanous value from the ADC reading
inst_current = (adc_value/1024)*2.5; // 10bit ADC, Voltage ref. 2.5V, so formula is: x=(adc/1024)*2.5V
// Update the RMS value with the new instananous value:
// Substract 1 sample from the accumulator (sample size is 512, so divide accumulator by 512 and substract it from the accumulator)
acc_load_current -= (acc_load_current / 512);
inst_current *= inst_current; // square the instantanous current
acc_load_current += inst_current; // Add it to the accumulator
rms_current = (acc_load_current / 512); // Get the mean square value. (sample size is 512)
rms_current = sqrt(rms_current); // Get RMS value
// Now the < rms_current > is the real RMS current
However, it has many floating point calculations. This adds a large burden to my small MCU. And I found that the sqrt() function does not work in my compiler.
Is there any code that could run faster?

When you need to get faster on an processor that lacks an FPU, your best
bet is to replace floating point calculations with fixed point. Combine
this with joop's suggestion (a one Newton-Raphson sqrt) and you get
something like this:
#define INITIAL 512 /* Initial value of the filter memory. */
#define SAMPLES 512
uint16_t rms_filter(uint16_t sample)
{
static uint16_t rms = INITIAL;
static uint32_t sum_squares = 1UL * SAMPLES * INITIAL * INITIAL;
sum_squares -= sum_squares / SAMPLES;
sum_squares += (uint32_t) sample * sample;
if (rms == 0) rms = 1; /* do not divide by zero */
rms = (rms + sum_squares / SAMPLES / rms) / 2;
return rms;
}
Just run your raw ADC samples through this filter. You may add a few
bit-shifts here and there to get more resolution, but you have to be
careful not to overflow your variables. And I doubt you really need the
extra resolution.
The output of the filter is in the same unit as its input. In this case,
it is the unit of your ADC:
2.5 V / 1024 ≈ 2.44 mV. If you can keep
this unit in subsequent calculations, you will save cycles by avoiding
unnecessary conversions. If you really need the value to be in volts (it
may be an I/O requirement), then you will have to convert to floating
point. If you want millivolts, you can stay in the integer realm:
uint16_t rms_in_mV = rms_filter(raw_sample) * 160000UL >> 16;

Since your sum-of-squares value acc_load_current does not vary very much between iterations, its square root will be almost constant. A Newton-Raphson sqrt() function normally converges in only a few iterations. By using one iteration per step, the computation is smeared out.
static double one_step_newton_raphson_sqrt(double val, double hint)
{
double probe;
if (hint <= 0) return val /2;
probe = val / hint;
return (probe+hint) /2;
}
static double acc_load_current = 0.0; // accumulator = (I1*I1 + I2*I2 + ... + In*In)
static double rms_current = 1.0;
float adc_value, inst_current;
double tmp_rms_current;
// Calculate the real instantanous value from the ADC reading
inst_current = (adc_value/1024)*2.5; // 10bit ADC, Voltage ref. 2.5V, so formula is: x=(adc/1024)*2.5V
// Update the RMS value with the new instananous value:
// Substract 1 sample from the accumulator (sample size is 512, so divide accumulator by 512 and substract it from the accumulator)
acc_load_current -= (acc_load_current / 512);
inst_current *= inst_current; // square the instantanous current
acc_load_current += inst_current; // Add it to the accumulator
tmp_rms_current = (acc_load_current / 512);
rms_current = one_step_newton_raphson_sqrt(tmp_rms_current, rms_current); // Polish RMS value
// Now the <rms_current> is the APPROXIMATE RMS current
Notes:
I changed some of the data types from float to double (which is normal on a general purpose machine/desktop) If double is very expensive on your microcomputer you could change them back.
I also added static, because I did not know if the code was from a function or from a loop.
I made the function static to force it to be inlined. If the compiler does not inline static functions, you should inline it manually.

Hopefully your project is for measuring "Big" AC voltages ( and not something like 9v motor control. ) If this happens to be the case then you can cheat because your error can then be within accepted limits..
Do all of the maths in integer, and use a simple lookup map for the sqrt operation. ( which you can pre-calculate at startup, you would only REALLY need about ~600 odd values if you are doing 3 phase..
Also this begs the question do you ACTUALLY need VAC RMS or some other measure of power ? (for example can you get away with a simple box mean algorythm? )

To find the square root use the below app note from microchip for 8 bit controllers
Fast Integer Square Root
which is much fast and can find square root in just 9 loops

divisions/multiplications by power of 2
can be done by changing the exponent only via bit mask operations and +,- so mask/extract the exponent to integer value then apply bias. After that add/sub the value log2(operand) and encode back to your double value
sqrt
how fast and accurate it should be? You can use binary search on fixed point or use sqrt(x)=pow(x,0.5)=exp2(0.5*log2(x)). Again on fixed point it is quite easy to implement. You can temporarily make double a fixed point by taking the mantissa and bit shift it to some known exponent around your used values + handle the offset or to 2^0 if you have enough bits ...
compute sqrt and then store back to double. If you do not need too big precision then you can stay on operand exponent and do the binary search directly on mantissa only.
[edit1] binary search in C++
//---------------------------------------------------------------------------
double f64_sqrt(double x)
{
const int h=1; // may be platform dependent MSB/LSB order
const int l=0;
DWORD b; // bit mask
int e; // exponent
union // semi result
{
double f; // 64bit floating point
DWORD u[2]; // 2x32 bit uint
} y;
// fabs
y.f=x;
y.u[h]&=0x7FFFFFFF; x=y.f;
// set safe exponent (~ abs half)
e=((y.u[h]>>20)&0x07FF)-1023;
e/=2; // here can use bit shift with copying MSB ...
y.u[h]=((e+1023)&0x07FF)<<20;
// mantisa=0
y.u[l] =0x00000000;
y.u[h]&=0xFFF00000;
// correct exponent
if (y.f*y.f>x) { e--; y.u[h]=((e+1023)&0x07FF)<<20; }
// binary search
for (b =0x00080000;b;b>>=1) { y.u[h]|=b; if (y.f*y.f>x) y.u[h]^=b; }
for (b =0x80000000;b;b>>=1) { y.u[l]|=b; if (y.f*y.f>x) y.u[l]^=b; }
return y.f;
}
//---------------------------------------------------------------------------
it returns sqrt(abs(x)) the results match "math.h" implementation from mine C++ IDE (BDS2006 Turbo C++). Exponent starts at half of the x value and is corrected by 1 for values x>1.0 if needed. The rest is pretty obvious
Code is in C++ but it is still not optimized it can be surely improved ... If your platform does not know DWORD use unsigned int instead. If your platform does not support 32 bit integer types then chunk it to 4 x 16 bit values or 8 x 8 bit values. If you have 64 bit then use single value to speed up the process
Do not forget to handle exponent also as 11 bit .... so for 8 bit registers only use 2 ... The FPU operations can be avoided if you multiply and compare just mantissas as integers. Also the multiplication itself is cumulative so you can use previous sub-result.
[notes]
For the bit positions see wiki double precision floating point format

Related

accuracy of sqrt of integers

I have a loop like this:
for(uint64_t i=0; i*i<n; i++) {
This requires doing a multiplication every iteration. If I could calculate the sqrt before the loop then I could avoid this.
unsigned cut = sqrt(n)
for(uint64_t i=0; i<cut; i++) {
In my case it's okay if the sqrt function rounds up to the next integer but it's not okay if it rounds down.
My question is: is the sqrt function accurate enough to do this for all cases?
Edit: Let me list some cases. If n is a perfect square so that n = y^2 my question would be - is cut=sqrt(n)>=y for all n? If cut=y-1 then there is a problem. E.g. if n = 120 and cut = 10 it's okay but if n=121 (11^2) and cut is still 10 then it won't work.
My first concern was the fractional part of float only has 23 bits and double 52 so they can't store all the digits of some 32-bit or 64-bit integers. However, I don't think this is a problem. Let's assume we want the sqrt of some number y but we can't store all the digits of y. If we let the fraction of y we can store be x we can write y = x + dx then we want to make sure that whatever dx we choose does not move us to the next integer.
sqrt(x+dx) < sqrt(x) + 1 //solve
dx < 2*sqrt(x) + 1
// e.g for x = 100 dx < 21
// sqrt(100+20) < sqrt(100) + 1
Float can store 23 bits so we let y = 2^23 + 2^9. This is more than sufficient since 2^9 < 2*sqrt(2^23) + 1. It's easy to show this for double as well with 64-bit integers. So although they can't store all the digits as long as the sqrt of what they can store is accurate then the sqrt(fraction) should be sufficient. Now let's look at what happens for integers close to INT_MAX and the sqrt:
unsigned xi = -1-1;
printf("%u %u\n", xi, (unsigned)(float)xi); //4294967294 4294967295
printf("%u %u\n", (unsigned)sqrt(xi), (unsigned)sqrtf(xi)); //65535 65536
Since float can't store all the digits of 2^31-2 and double can they get different results for the sqrt. But the float version of the sqrt is one integer larger. This is what I want. For 64-bit integers as long as the sqrt of the double always rounds up it's okay.
First, integer multiplication is really quite cheap. So long as you have more than a few cycles of work per loop iteration and one spare execute slot, it should be entirely hidden by reorder on most non-tiny processors.
If you did have a processor with dramatically slow integer multiply, a truly clever compiler might transform your loop to:
for (uint64_t i = 0, j = 0; j < cut; j += 2*i+1, i++)
replacing the multiply with an lea or a shift and two adds.
Those notes aside, let’s look at your question as stated. No, you can’t just use i < sqrt(n). Counter-example: n = 0x20000000000000. Assuming adherence to IEEE-754, you will have cut = 0x5a82799, and cut*cut is 0x1ffffff8eff971.
However, a basic floating-point error analysis shows that the error in computing sqrt(n) (before conversion to integer) is bounded by 3/4 of an ULP. So you can safely use:
uint32_t cut = sqrt(n) + 1;
and you’ll perform at most one extra loop iteration, which is probably acceptable. If you want to be totally precise, instead use:
uint32_t cut = sqrt(n);
cut += (uint64_t)cut*cut < n;
Edit: z boson clarifies that for his purposes, this only matters when n is an exact square (otherwise, getting a value of cut that is “too small by one” is acceptable). In that case, there is no need for the adjustment and on can safely just use:
uint32_t cut = sqrt(n);
Why is this true? It’s pretty simple to see, actually. Converting n to double introduces a perturbation:
double_n = n*(1 + e)
which satisfies |e| < 2^-53. The mathematical square root of this value can be expanded as follows:
square_root(double_n) = square_root(n)*square_root(1+e)
Now, since n is assumed to be a perfect square with at most 64 bits, square_root(n) is an exact integer with at most 32 bits, and is the mathematically precise value that we hope to compute. To analyze the square_root(1+e) term, use a taylor series about 1:
square_root(1+e) = 1 + e/2 + O(e^2)
= 1 + d with |d| <~ 2^-54
Thus, the mathematically exact value square_root(double_n) is less than half an ULP away from[1] the desired exact answer, and necessarily rounds to that value.
[1] I’m being fast and loose here in my abuse of relative error estimates, where the relative size of an ULP actually varies across a binade — I’m trying to give a bit of the flavor of the proof without getting too bogged down in details. This can all be made perfectly rigorous, it just gets to be a bit wordy for Stack Overflow.
All my answer is useless if you have access to IEEE 754 double precision floating point, since Stephen Canon demonstrated both
a simple way to avoid imul in loop
a simple way to compute the ceiling sqrt
Otherwise, if for some reason you have a non IEEE 754 compliant platform, or only single precision, you could get the integer part of square root with a simple Newton-Raphson loop. For example in Squeak Smalltalk we have this method in Integer:
sqrtFloor
"Return the integer part of the square root of self"
| guess delta |
guess := 1 bitShift: (self highBit + 1) // 2.
[
delta := (guess squared - self) // (guess + guess).
delta = 0 ] whileFalse: [
guess := guess - delta ].
^guess - 1
Where // is operator for quotient of integer division.
Final guard guess*guess <= self ifTrue: [^guess]. can be avoided if initial guess is fed in excess of exact solution as is the case here.
Initializing with approximate float sqrt was not an option because integers are arbitrarily large and might overflow
But here, you could seed the initial guess with floating point sqrt approximation, and my bet is that the exact solution will be found in very few loops. In C that would be:
uint32_t sqrtFloor(uint64_t n)
{
int64_t diff;
int64_t delta;
uint64_t guess=sqrt(n); /* implicit conversions here... */
while( (delta = (diff=guess*guess-n) / (guess+guess)) != 0 )
guess -= delta;
return guess-(diff>0);
}
That's a few integer multiplications and divisions, but outside the main loop.
What you are looking for is a way to calculate a rational upper bound of the square root of a natural number. Continued fraction is what you need see wikipedia.
For x>0, there is
.
To make the notation more compact, rewriting the above formula as
Truncate the continued fraction by removing the tail term (x-1)/2's at each recursion depth, one gets a sequence of approximations of sqrt(x) as below:
Upper bounds appear at lines with odd line numbers, and gets tighter. When distance between an upper bound and its neighboring lower bound is less than 1, that approximation is what you need. Using that value as the value of cut, here cut must be a float number, solves the problem.
For very large number, rational number should be used, so no precision is lost during conversion between integer and floating point number.

Need Floating Point Precision Using Unsigned Int

I'm working with a microchip that doesn't have room for floating point precision, however. I need to account for fractional values during some equations. So far I've had good luck using the old *100 -> /100 method like so:
increment = (short int)(((value1 - value2)*100 / totalSteps));
// later in the code I loop through the number of totolSteps
// adding back the increment to arrive at the total I want at the precise time
// time I need it.
newValue = oldValue + (increment / 100);
This works great for values from 0-255 divided by a totalSteps of up to 300. After 300, the fractional values to the right of the decimal place, become important, because they add up over time of course.
I'm curious if anyone has a better way to save decimal accuracy within an integer paradigm? I tried using *1000 /1000, but that didn't work at all.
Thank you in advance.
Fractions with integers is called fixed point math.
Try Googling "fixed point".
Fixed point tips and tricks are out of the scope of SO answer...
Example: 5 tap FIR filter
// C is the filter coefficients using 2.8 fixed precision.
// 2 MSB (of 10) is for integer part and 8 LSB (of 10) is the fraction part.
// Actual fraction precision here is 1/256.
int FIR_5(int* in, // input samples
int inPrec, // sample fraction precision
int* c, // filter coefficients
int cPrec) // coefficients fraction precision
{
const int coefHalf = (cPrec > 0) ? 1 << (cPrec - 1) : 0; // value of 0.5 using cPrec
int sum = 0;
for ( int i = 0; i < 5; ++i )
{
sum += in[i] * c[i];
}
// sum's precision is X.N. where N = inPrec + cPrec;
// return to original precision (inPrec)
sum = (sum + coefHalf) >> cPrec; // adding coefHalf for rounding
return sum;
}
int main()
{
const int filterPrec = 8;
int C[5] = { 8, 16, 208, 16, 8 }; // 1.0 == 256 in 2.8 fixed point. Filter value are 8/256, 16/256, 208/256, etc.
int W[5] = { 10, 203, 40, 50, 72}; // A sampling window (example)
int res = FIR_5(W, 0, C, filterPrec);
return 0;
}
Notes:
In the above example:
the samples are integers (no fraction)
the coefs have fractions of 8 bit.
8 bit fractions mean that each change of 1 is treated as 1/256. 1 << 8 == 256.
Useful notation is Y.Xu or Y.Xs. where Y is how many bits are allocated for the integer part and X for he fraction. u/s denote signed/unsigned.
when multiplying 2 fixed point numbers, their precision (size of fraction bits) are added to each other.
Example A is 0.8u, B is 0.2U. C=A*B. C is 0.10u
when dividing, use a shift operation to lower the result precision. Amount of shifting is up to you. Before lowering precision it's better to add a half to lower the error.
Example: A=129 in 0.8u which is a little over 0.5 (129/256). We want the integer part so we right shift it by 8. Before that we want to add a half which is 128 (1<<7). So A = (A + 128) >> 8 --> 1.
Without adding a half you'll get a larger error in the final result.
Don't use this approach.
New paradigm: Do not accumulate using FP math or fixed point math. Do your accumulation and other equations with integer math. Anytime you need to get some scaled value, divide by your scale factor (100), but do the "add up" part with the raw, unscaled values.
Here's a quick attempt at a precise rational (Bresenham-esque) version of the interpolation if you truly cannot afford to directly interpolate at each step.
div_t frac_step = div(target - source, num_steps);
if(frac_step.rem < 0) {
// Annoying special case to deal with rounding towards zero.
// Alternatively check for the error term slipping to < -num_steps as well
frac_step.rem = -frac_step.rem;
--frac_step.quot;
}
unsigned int error = 0;
do {
// Add the integer term plus an accumulated fraction
error += frac_step.rem;
if(error >= num_steps) {
// Time to carry
error -= num_steps;
++source;
}
source += frac_step.quot;
} while(--num_steps);
A major drawback compared to the fixed-point solution is that the fractional term gets rounded off between iterations if you are using the function to continually walk towards a moving target at differing step lengths.
Oh, and for the record your original code does not seem to be properly accumulating the fractions when stepping, e.g. a 1/100 increment will always be truncated to 0 in the addition no matter how many times the step is taken. Instead you really want to add the increment to a higher-precision fixed-point accumulator and then divide it by 100 (or preferably right shift to divide by a power-of-two) each iteration in order to compute the integer "position".
Do take care with the different integer types and ranges required in your calculations. A multiplication by 1000 will overflow a 16-bit integer unless one term is a long. Go through you calculations and keep track of input ranges and the headroom at each step, then select your integer types to match.
Maybe you can simulate floating point behaviour by saving
it using the IEEE 754 specification
So you save mantisse, exponent, and sign as unsigned int values.
For calculation you use then bitwise addition of mantisse and exponent and so on.
Multiplication and Division you can replace by bitwise addition operations.
I think it is a lot of programming staff to emulate that but it should work.
Your choice of type is the problem: short int is likely to be 16 bits wide. That's why large multipliers don't work - you're limited to +/-32767. Use a 32 bit long int, assuming that your compiler supports it. What chip is it, by the way, and what compiler?

Is Multiplying a decimal number where all results are full integers, considered Floating Point Math?

Sorry for the wordy title. My code is targeting a microcontroller (msp430) with no floating point unit, but this should apply to any similar MCU.
If I am multiplying a large runtime variable with what would normally be considered a floating point decimal number (1.8), is this still treated like floating point math by the MCU or compiler?
My simplified code is:
int multip = 0xf; // Can be from 0-15, not available at compile time
int holder = multip * 625; // 0 - 9375
holder = holder * 1.8; // 0 - 16875`
Since the result will always be a positive full, real integer number, is it still floating point math as far as the MCU or compiler are concerned, or is it fixed point?
(I realize I could just multiply by 18, but that would require declaring a 32bit long instead of a 16 bit int then dividing and downcasting for the array it will be put in, trying to skimp on memory here)
The result is not an integer; it rounds to an integer.
9375 * 1.8000000000000000444089209850062616169452667236328125
yields
16875.0000000000004163336342344337026588618755340576171875
which rounds (in double precision floating point) to 16875.
If you write a floating-point multiply, I know of no compiler that will determine that there's a way to do that in fixed-point instead. (That does not mean they do not exist, but it ... seems unlikely.)
I assume you simplified away something important, because it seems like you could just do:
result = multip * 1125;
and get the final result directly.
I'd go for chux's formula if there's some reason you can't just multiply by 1125.
Confident FP code will be created for
holder = holder * 1.8
To avoid FP and 32-bit math, given the OP values of
int multip = 0xf; // Max 15
unsigned holder = multip * 625; // Max 9375
// holder = holder * 1.8;
// alpha depends on rounding desired, e.g. 2 for round to nearest.
holder += (holder*4u + alpha)/5;
If int x is non-negative, you can compute x *= 1.8 rounded to nearest using only int arithmetic, without overflow unless the final result overflows, with:
x - (x+2)/5 + x
For truncation instead of round-to-nearest, use:
x - (x+4)/5 + x
If x may be negative, some additional work is needed.

How to avoid branching in C for this operation

Is there a way to remove the following if-statement to check if the value is below 0?
int a = 100;
int b = 200;
int c = a - b;
if (c < 0)
{
c += 3600;
}
The value of c should lie between 0 and 3600. Both a and b are signed. The value of a also should lie between 0 and 3600. (yes, it is a counting value in 0.1 degrees). The value gets reset by an interrupt to 3600, but if that interrupt comes too late it underflows, which is not of a problem, but the software should still be able to handle it. Which it does.
We do this if (c < 0) check at quite some places where we are calculating positions. (Calculating a new position etc.)
I was used to pythons modulo operator to use the signedness of the divisor where our compiler (C89) is using the dividend signedness.
Is there some way to do this calculation differently?
example results:
a - b = c
100 - 200 = 3500
200 - 100 = 100
Good question! How about this?
c += 3600 * (c < 0);
This is one way we preserve branch predictor slots.
What about this (assuming 32-bit ints):
c += 3600 & (c >> 31);
c >> 31 sets all bits to the original MSB, which is 1 for negative numbers and and 0 for others in 2-complement.
Negative number shift right is formally implementation-defined according to C standard documents, however it's almost always implemented with MSB copying (common processors can do it in a single instruction).
This will surely result in no branches, unlike (c < 0) which might be implemented with branch in some cases.
Why are you worried about the branch? [Reason explained in comments to the question.]
The alternative is something like:
((a - b) + 3600) % 3600
This assumes a and b are in the range 0..3600 already; if they're not under control, the more general solution is the one Drew McGowen suggests:
((a - b) % 3600 + 3600) % 3600
The branch miss has to be very expensive to make that much calculation worthwhile.
#skjaidev showed how to do it without branching. Here's how to automatically avoid multiplication as well when ints are twos-complement:
#if ((3600 & -0) == 0) && ((3600 & -1) == 3600)
c += 3600 & -(c < 0);
#else
c += 3600 * (c < 0);
#endif
What you want to do is modular arithmetic. Your 2's complement machine already does this with integer math. So, by mapping your values into 2's complement arithmetic, you can get the modolo operation free.
The trick is represent your angle as a fraction of 360 degrees between 0 and 1-epsilon. Of course, then your constant angles would have to represented similarly, but that shouldn't be hard; its just a bit of math we can hide in a conversion function (er, macro).
The value in this idea is that if you add or subtract angles, you'll get a value whose fraction part you want, and whose integer part you want to throw away. If we represent the fraction as a 32 bit fixed point number with the binary point at 2^32 (e.g., to the left of what is normally considered to be a sign bit), any overflows of the fraction simply fall off the top of the 32 bit value for free. So, you do all integer math, and "overflow" removal happens for free.
So I'd rewrite your code (preserving the idea of degrees times 10):
typedef unsigned int32 angle; // angle*3600/(2^32) represents degrees
#define angle_scale_factor 1193046.47111111 // = 2^32/3600
#define make_angle(degrees) (unsigned int32)((degrees%3600)*angle_scale_factor )
#define make_degrees(angle) (angle/(angle_scale_factor*10)) // produces float number
...
angle a = make_angle(100); // compiler presumably does compile-time math to compute 119304647
angle b = make_angle(200); // = 238609294
angle c = a - b; // compiler should generate integer subtract, which computes 4175662649
#if 0 // no need for this at all; other solutions execute real code to do something here
if (c < 0) // this can't happen
{ c += 3600; } // this is the wrong representation for our variant
#endif
// speed doesn't matter here, we're doing output:
printf("final angle %f4.2 = \n", make_degrees(c)); // should print 350.00
I have not compiled and run this code.
Changes to make this degrees times 100 or times 1 are pretty easy; modify the angle_scale_factor. If you have a 16 bit machine, switching to 16 bits is similarly easy; if you have 32 bits, and you still want to only do 16 bit math, you will need to mask the value to be printed to 16 bits.
This solution has one other nice property: you've documented which variables are angles (and have funny representations). OP's original code just called them ints, but that's not what they represent; a future maintainer will get suprised by the original code, especially if he finds the subtraction isolated from the variables.

Faster way of finding multiple of double

If have the following C function, used to determine if one number is a multiple of another to an arbirary tolerance
#include <math.h>
#define TOLERANCE 0.0001
int IsMultipleOf(double x,double mod)
{
return(fabs(fmod(x, mod)) < TOLERANCE);
}
It works fine, but profiling shows it to be very slow, to the extent that it has become a candidate for optimization. About 75% of the time is spent in modulo and the remaining in fabs. I'm trying to figure a way of speeding things up, using something like a look-up table. The parameter x changes regularly, whereas mod changes infrequently. The number of possible values of x is small enough that the space for a look-up would not be an issue, typically it will be one of a few hundred possible values. I can get rid of the fabs easily enough, but can't figure out a reasonable alternative to the modulo. Any ideas on how to optimize the above?
Edit The code will be running on a wide range of Windows desktop and mobile devices, hence processors could include Intel, AMD on desktop, and ARM or SH4 on mobile devices. VisualStudio 2008 is the compiler.
Do you really have to use modulo for this?
Wouldn't it be possible to just result = x / mod and then check if the decimal part of result is close to 0. For instance:
11 / 5.4999 = 2.000003 ==> 0.000003 < TOLERANCE
Or something like that.
Division (floating point or not, fmod in your case) is often an operation where the execution time varies a lot depending on the cpu and compiler:
gcc has a builtin replacement for
that if you give it the right compile
flags or if you use __builtin_fmod
explicitly. This then might map the
operation on a small number of
assembler instructions.
there may be special units like SSE
on intel processors where this
operation is implemented more
efficiently
By such tricks, depending on your environment (you didn't tell which) the time may vary from some clock cycles to some hundred. I think best is to look into the documentation of your compiler and cpu for that particular operation.
The following is probably overkill, and sub-optimal. But for what it is worth here is one way on how to do it.
We know the format of the double ...
1 bit for the sign
11 bits for the biased exponent
52 fraction bits
Let ...
value = x / mod;
exp = exponent bits of value - BIAS;
lsb = least sig bit of value's fraction bits;
Once you have that ...
/*
* If applying the exponent would eliminate the fraction bits
* then for double precision resolution it is a multiple.
* Note: lsb may require some massaging.
*/
if (exp > lsb)
return (true);
if (exp < 0)
return (false);
The only case remaining is the tolerance case. Build your double so that you are getting rid of all the digits to the left of the decimal.
sign bit is zero (positive)
exponent is the BIAS (1023 I think ... look it up to be sure)
shift the fraction bits as appropriate
Now compare it against your tolerance.
I think you need to inspect the bowels of your C RTL fmod() function: X86 FPU's have 'FPREM/FPREM1' instructions which computes remainders by repeated subtraction.
While floating point division is a single instruction, it seems you may need to call FPREM repeatedly to get the right answer for modulus, so your RTL may not use it.
I have not tested this at all, but from the way I understand fmod this should be equivalent inlined, which might let the compiler optimize it better, though I would have thought that the compiler's math library (or builtins) would work just as well. (also, I don't even know for sure if this is correct).
#include <math.h>
int IsMultipleOf(double x, double mod) {
long n = x / mod; // You should probably test for /0 or NAN result here
double new_x = mod * n;
double delta = x - new_x;
return fabs(delta) < TOLERANCE; // and for NAN result from fabs
}
Maybe you can get away with long long instead of double if you have comparable scale of data. For example long long would be enough for over 60 astronomical units in micrometer resolution.
Does it need to be double precision ? Depending on how good your math library is, this ought to be faster:
#include <math.h>
#define TOLERANCE 0.0001f
bool IsMultipleOf(float x, float mod)
{
return(fabsf(fmodf(x, mod)) < TOLERANCE);
}
I presume modulo looks a little like this on the inside:
mod(x,m) {
while (x > m) {
x = x - m
}
return x
}
I think that through some sort of search i could be optimised: eg:
fastmod(x,m) {
q = 1
while (m * q < x) {
q = q * 2
}
return mod((x - (q / 2) * m), m)
}
You might even choose to replace the finall call to mod with annother call to fastmod, adding the condition that if x < m then to return x.

Resources