I'm working in a company which has multiple international websites and I wanted to asked you if it's more interesting to have just on Google Analytics 4 account for all the websites or should I keep an account for every website ?
We have currently 12 websites and it will grow this year so I want to setup the best things before all of this.
Thank you,
I tried to do an unique account for two websites but i can't split the metrics and the events were not working.
You may create one analytics google profile using this link https://analytics.google.com/analytics/web/provision/#/provision
BUT, I would create a separate account for every website. Otherwise it will probably create problems in the future reading data from API ( I mean in the back-end coding system), analysing the retrieved data since every time you need to filter based on the domain etc.
Plus, there are limitations for creating the customised dimensions and metrics. Of course, I suppose you are talking about separate businesses or better say, different clients.
Thank you for your answer.
I already have an account for every website and so a property = a website.
But what I wanted to know if it's better to have an unique property for all my website to have all datas in one property.
Thank you,
Apologies in advance if this is a dumb question. Is there fairly straightforward way to write an app that will use the Camera (for example iOS) to take a photo of a pre-formatted screen and recognize / retrieve that data?
This isn't a top secret project or anything, so I'll be happy to share as many details as necessary. Basically my electric car displays a pop-up with stats when it turns off. Since there aren't any OEM apps that track things like charging, I guess I have to do it manually. I figured, since the screen is always the same, perhaps it would be possible to aim the camera "just right" using an app that could look for certain data in certain places. The way a shopping app looks for barcodes or Apple Wallet reads credit card numbers.
Is this a dumb idea? If it's easy and you'll make a million bucks selling the app, then feel free to steal it. I'll be your first customer. In the meantime, is this doable by a random jackass who's way over his head when it comes to programming? :-)
For example, if I could just grab Energy Used and Miles driven, then I'm sure I could programmatically get other data like date/time from the device taking the picture. Here is one example.
'energy used' popup Sample screen 001.
I am trying to make a chatbot. all the chatbots are made of structure data. I looked Rasa, IBM watson and other famous bots. Is there any ways that we can convert the un-structured data into some sort of structure, which can be used for bot training? Let's consider bellow paragraph-
Packaging unit
A packaging unit is used to combine a certain quantity of identical items to form a group. The quantity specified here is then used when printing the item labels so that you do not have to label items individually when the items are not managed by serial number or by batch. You can also specify the dimensions of the packaging unit here and enable and disable them separately for each item.
It is possible to store several EAN numbers per packaging unit since these numbers may differ for each packaging unit even when the packaging units are identical. These settings can be found on the Miscellaneous tab:
There are also two more settings in the system settings that are relevant to mobile data entry:
When creating a new item, the item label should be printed automatically. For this reason, we have added the option ‘Print item label when creating new storage locations’ to the settings. When using mobile data entry devices, every item should be assigned to a storage location, where an item label is subsequently printed that should be applied to the shelf in the warehouse to help identify the item faster.
how to make the bot from such a data any lead would be highly appreciated. Thanks!
is this idea in picture will work?just_a_thought
The data you are showing seems to be a good candidate for a passage search. Basically, you would like to answer user question by the most relevant paragraph found in your training data. This uses-case is handled by Watson Discovery service that can analyze unstructured data as you are providing and then you can query the service with input text and the service answers with the closest passage found in the data.
From my experience you also get a good results by implementing your own custom TF/IDF algorithm tailored for your use-case (TF/IDF is a nice similarity search tackling e.g. the stopwords for you).
Now if your goal would be to bootstrap a rule based chatbot using these kind of data then these data are not that ideal. For rule-based chatbot the best data would be some actual conversations between users asking questions about the target domain and the answers by some subject matter expert. Using these data you might be able to at least do some analysis helping you to pinpoint the relevant topics and domains the chatbot should handle however - I think - you will have hard time using these data to bootstrap a set of intents (questions the users will ask) for the rule based chatbot.
TLDR
If I would like to use Watson service, I would start with Watson Discovery. Alternatively, I would implement my own search algorithm starting with TF/IDF (which maps rather nicely to your proposed solution).
I'm with a company that is building a venue / artist database for live music and recently came across Freebase. It looks very compelling, even if the data isn't there for new, up-and-coming bands. For those of you who have worked with Freebase, I have a couple questions:
Are there downsides to integrating all of the data entry with Freebase? We are not looking to sell or privatize this information.
What are the weaknesses of Freebase, with regards to usability?
Disclosure: I work on Freebase at Google.
The music data in Freebase is one of our strongest areas and is going to continue to get broader and richer as we continue to load more datasets. For example, we import data from MusicBrainz, clean it up and match the topics against existing topics in Freebase to avoid duplicates.
In terms of downsides, you should be prepared to work with a lot of data. For example, Freebase currently has 4 musical artists named "John Smith" which may or may not be useful for your application but you'll still need to figure out which one(s) map to the John Smith that your users are interested in. We call this "reconciliation" and its necessary so that your app knows precisely which topics to query the API for.
Since you mentioned music venues I should also point out that while Freebase has a lot of data about places, we don't yet have a geosearch API so you'd need to roll your own if that's something you need.
Since anyone can edit Freebase, you should also consider using as_of_time to protect your site against vandalism.
Freebase is great for developers because you can easily jump in and clean up bad data or add missing topics. However, one area that has always been a challenge is loading large amounts of data from outside of Google. We've built the OpenRefine which allows folks to upload datasets, but these datasets must pass a QA process that takes some time to complete. Its necessary to have these QA processes to maintain the level of quality in Freebase, but it does slow down the process of loading large datasets.
I really hope that you choose to make use of Freebase music data to build your company. I know that there are already a number of music startups happily using our data.
Screen scraping seems like a useful tool - you can go onto someone else's site and steal their data - how wonderful!
But I'm having a hard time with how useful this could be.
Most application data is pretty specific to that application even on the web. For example, let's say I scrape all of the questions and answers off of StackOverflow or all of the results off of Google (assuming this were possible) - I'm left with data that is not very useful unless I either have a competing question and answer site (in which case the stolen data will be immediately obvious) or a competing search engine (in which case, unless I have an algorithm of my own, my data is going to be stale pretty quickly).
So my question is, under what circumstances could the data from one app be useful to some external app? I'm looking for a practical example to illustrate the point.
It's useful when a site publicly provides data that is (still) not available as an XML service. I had a client who used scraping to pull flight tracking data into one of his company's intranet applications.
The technique is also used for research. I had a client who wanted to compare the contents of several online dictionaries by part of speech, and all of these sites had to be scraped.
It is not a technique for "stealing" data. All ordinary usage restrictions apply. Many sites implement CAPTCHA mechanisms to prevent scraping, and it is inappropriate to work around these.
A good example is StackOverflow - no need to scrape data as they've released it under a CC license. Already the community is crunching statistics and creating interesting graphs.
There's a whole bunch of popular mashup examples on ProgrammableWeb. You can even meet up with fellow mashupers (O_o) at events like BarCamps and Hack Days (take a sleeping bag). Have a look at the wealth of information available from Yahoo APIs (particularly Pipes) and see what developers are doing with it.
Don't steal and republish, build something even better with the data - new ways of understanding, searching or exploring it. Always cite your data sources and thank those who helped you. Use it to learn a new language or understand data or help promote the semantic web. Remember it's for fun not profit!
Hope that helps :)
If the site has data that would benefit from being accessible through an API (and it would be free and legal to do so), but they just haven't implemented one yet, screen scraping is a way of essentially creating that functionality for yourself.
Practical example -- screen scraping would allow you to create some sort of mashup that combines information from the entire SO family of sites, since there's currently no API.
Well, to collect data from a mainframe. That's one reason why some people use screen scraping. Mainframes are still in use in the financial world and often it's running software that has been written in the previous century. The people who wrote it might already be retired and since this software is very critical for these organizations, they really hate it when some new code needs to be added. So, screenscraping offers an easy interface to communicate with the mainframe to collect information from the mainframe and then send it onwards to any process that needs this information.
Rewrite the mainframe application, you say? Well, software on mainframes can be very old. I've seen software on mainframes that was over 30 years old, written in COBOL. Often, those applications work just fine and companies don't want to risk rewriting parts because it might break some code that had been working for over 30 years! Don't fix things if they're not broken, please. Of course, additional code could be written but it takes a long time for mainframe code to be used in a production environment. And experienced mainframe developers are hard to find.
I myself had to use screen scraping too in a software project. This was a scheduling application which had to capture the output to the console of every child process it started. It's the simplest form of screen scraping, actually, and many people don't even realize that if you redirect the output of one application to the input of another, that it's still a kind of screen scraping. :)
Basically, screen scraping allows you to connect one (web) application with another one. It's often a quick solution, used when other solutions would cost too much time. Everyone hates it, but the amount of time it saves still makes it very efficient.
Let's say you wanted to get scores from a popular sports site that did not offer the information available with an XML feed or API.
For one project we found a (cheap) commercial vendor that offered translation services for a specific file format. The vendor didn't offer an API (it was, after all, a cheap vendor) and instead had a web form to upload and download from.
With hundreds of files a day the only way to do this was to use WWW::Mechanize in Perl, screen scrape the way through the login and upload boxes, submit the file, and save the returned file. It's ugly and definitely fragile (if the vendor changes the site in the least it could break the app) but it works. It's been working now for over a year.
One example from my experience.
I needed a list of major cities throughout the world with their latitude and longitude for an iPhone app I was building. The app would use that data along with the geolocation feature on the iPhone to show which major city each user of the app was closest to (so as not to show exact location), and plot them on a 3D globe of the earth.
I couldn't find an appropriate list in XML/Excel/CSV type format anywhere easily, but I did find this wikipedia page with (roughly) the info I needed. So I wrote up a quick script to scrape that page and load the data into a database.
Any time you need a computer to read the data on a website. Screen scraping is useful in exactly the same instances that any website API is useful. Some websites, however, don't have the resources to create an API themselves; screen scraping is the developer's way around that.
For instance, in the earlier days of Stack Overflow, someone built a tool to track changes to your reputation over time, before Stack Overflow itself provided that feature. The only way to do that, since Stack Overflow has no API, was to screen scrape.
The obvious case is when a webservice doesn't offer reverse search. You can implement that reverse search over the same data set, but it requires scraping the entire dataset.
This may be fair use if the reverse search also requires significant pre-processing, e.g. because you need to support partial matching. The data source may not have the technical skills or computing resources to provide the reverse search option.
I use screen scraping daily, I run some eCommerce sites and have screen-scraping scripts running daily to gather product lists automatically from my suppliers wholesale sites. This allows me to have upto date information on all the products available to me from several suppliers and allows me to flag non-economical margins due to price changes.