How to configure App Engine for minimal cost? - google-app-engine

I'm doing a prototype backend and in the near future I expect little traffic but while testing I consumed all my 300$ free trail.
How can I configure my app to consume the least possible resources? I need things like limiting the number of instances to 1, using a cheap machine, sleep whenever possible, I've read something about Client vs Backend intances.
With time I'll learn the config that best suits me, but now I need the CHEAPEST config to get going.
BTW: I am using managed-vms with Dart.
EDIT
I've been recommended to configure my app.yaml file, what options would you recommend to confront this issue?

There are two train of thought for your issue.
1) Optimization of code: This is very difficult for us as we are not privy to your App's usage and client-base and architecture. In general, it depends on what Google App Engine product you use the most, for example: Datastore API call (fetch, write, delete... etc...), BigQuery and Cloud SQL. Even after optimization, you can still incur a lot of cost depending on traffic.
2) Enforcing cheap operation: This is easier and I think this is what you want. You can manually enforce a daily budget (in your billing setup page) so the App never cost more than a certain amount per day. You can also artificially lower the maximum amount of idling instances to 0 and use the smallest instance possible (F1 for frontend).
For pricing details see this article - https://cloud.google.com/appengine/pricing#Billable_Resource_Unit_Costs

If you use managed VM -- you'll be billed for Compute Engine Instance prices, not for App Engine Instances, and, as I know, the minimum possible instance to use as Managed VM is "g1-small" which costs you $0.023 per hour full sustained usage (if it will be turned on all month), so you minimum bill will be 0.023 * 24 * 30 = $16.56 only for instance hours. Excluding disk and traffic. With minimum amount of datastore operations you may stay on free quota.

Every application consumes resources differently. To minimize your cost, you need to know what resources used the majority of your expenses and go from there.
If it is spent on extra instances that were just sitting there - then trim the number of instances to the minimum required and use a lower class instance. If you are seeing a lot of expense on datastore calls - then look at optimizing your entities and take advantage of memcache.

Lowest Cost for a simple app:
Use App Engine Standard. It scales to zero instances, so will not cost anything if there is no traffic. With App Engine Flex you will pay for the instance hours and the Flex (GCE) instances are bigger.
Use autoscaling with max instances, F1 instance class:
With autoscaling you do not need to guess how many instances you need. F1 are the smallest instances. Set the max instances in case you get DoS'd or more traffic than you can afford.
Stop Instances:
You can stop the App Engine versions when you do not expect the app to be used. The will be no charge for instance hours for either Standard or Flex. For Flex there will be disk charges. The app will be ready to go when you need it again.
App Engine Version Cleanup:
Versions are easy to create and harder to remove. Here is a post on project cleanup. See this post on App Engine cleanup
https://medium.com/google-cloud/app-engine-project-cleanup-9647296e796a

Related

google appstore, how to split fees per datastore namespace

I'd like to make a GAE app multi-tenant to cater to different clients (companies), database namespaces seems like a GAE endorsed solution. Is there a meaningful way to split GAE fees among client/namespaces? GAE costs for app are mainly depends on user activities - backend instances up time, because new instances are created or (after 15 min delay) terminated proportionally to the server load, not total volume of data user has or created. Ideally the way the fees are split should be meaningful and could be explained to the clients.
I guess the most fair fee splitting solution is just create a new app for a new client, so all costs reported separately, yet total cost will grow up, I expect few apps running on same instances will use server resources more economically.
Every app engine request is logged with a rough estimated cost measurement. It is possible to log the namespace/client associated with every request and query the logs to add up the estimated instance costs for that namespace. Note that the estimated cost field is deprecated and may be inaccurate. It is mostly useful as a rough guide to the proportion of instance cost associated with each client.
As far as datastore pricing goes, the cloud console will tell you how much data has been stored in each namespace, and you can calculate costs from that. For reads/writes, we have set up a logging system to help us track reads and writes per namespace (i.e. every request tracks the number of datastore reads and writes it does in each namespace and logs these numbers at the end of the request).
The bottom line is that with some investments into infrastructure and logging, it is possible to roughly track costs per namespace. But no, App Engine does not make this easy, and it may be impossible to calculate very accurate cost estimates.

Understanding Cost Estimate for Google Cloud Platform MicroServices Architecture Design

I'm redesigning a monolith application into a MicroServices architecture and am hoping to use Google Cloud Platform (GCP) to host the entire solution. I'm having a very hard time understanding their costing breakdown, and am concerned that my costs will be uncontrollable after I build it. This is for a personal project but I'm hoping will have many users after I launch so I want to get the underlying architecture right and at the same time have reasonable costs initially when I launch.
Here is my architecture:
MicroServices 1 - 4 (Total 4 API Services):
Runs on App Engine
Exposes a REST API and saves data to DataStore
Initially each API should get hit around 200 times a day
MicroService 5 (Events triggered API Service):
Runs on App Engine
Listens for PubSub events and saves to DataStore (basically I have a sensor that pushes data to this Service for storage)
Initially the PubSub should receive events around 200 times a day
MicroService 6-7 (Total 2 UI Services):
Runs on App Engine
These are UIs so people can login and use the systems. The UIs are lightweight frond end apps that use the REST Services above to populate user data in a nice way.
Each UI Service should be used around 3 hours a day
So in Total I have 7 MicroServices with each running as AppEngine "Services" in a single GCP "Project". A DataStore is shared between these APIs within this Project.
As I have 7 App Engine instances running, and they only need to be operational for a short period of time per day, how does the pricing work?
I want to use App Engine because it's completely Managed, which is one of my design requirements. But I'm hoping AppEngine has some kind of Sleep Mode, so that when there is no usage it does not bill?
Any help in understanding what my monthly costs would be would be appreciated.
Thanks very much.
Update 8/2/2017
I've decided to stay out of GCP for now. As I hope to have 7 App Engines Services running in Flex (as they are node.js) I don't seem to get access to a free tier or the ability to scale idle services to 0 instances.
This means I'll be paying full price for these services. (i.e. 7 X Full App Engine VM Cost per Monthly :O )
This is an expense I cant have just for a POC of a proper MicroService design. Instead I'm going to continue with my MicroService design but use a 10$ DigitalOcean box and Dokku to containerise my Services. If this works well and I have a need I will migrate this design to GCP (or AWS)
The full outline of App Engine instance handling is available at https://cloud.google.com/appengine/docs/python/how-instances-are-managed .
In short, your best bet is to enable automatic scaling and set
max_idle_instances = 0
in your app.yaml.
That means that your app will autoscale to handle traffic as needed and shut down the instances afterwards. Also
When settling back to normal levels after a load spike, the number of idle instances can temporarily exceed your specified maximum. However, you will not be charged for more instances than the maximum number you've specified.
Later - when load time becomes more important you can set min_idle_instances to a more suitable number - this allows for responsive apps.
am concerned that my costs will be uncontrollable after I build it
You should be aware that automatically scalable GAE apps always have cost components dependent on the external user request patterns which are not controllable.
For example, in the standard GAE env, the way those 200 requests/day are distributed matters significantly:
if they are evenly distributed they will come in less than 15 min apart - the minimum billed time per instance lifetime, so the respective service will be billed for minimum 24 instance hours per day (very close to the daily 28 free instance-hours/day for billed apps, only a single-service app using the smallest instance class can fit in it).
if they are all received within a 15 minutes interval the service will be billed for 0.5 instance hours daily (which can easily fit in the free daily quota even with multiple services and/or with more powerfull instance classes).
The actual scalability configuration of each service can matter as well. See, for example,
The only way to keep costs under strict control is via the daily budget configuration (but hitting that limit means your app's functionality will be temporarily crippled).
All other usage-based costs being equal due to the functionality being performed you have some (potentially significant) control over costs via:
the GAE environment type selected for each service:
the standard env is billed by instance hours and includes a free daily quota
the flex env has no free daily quota.
the number of services: you could start with fewer services by combining their functionalities (you can still keep them modularized for later split). The expected initial load you describe can easily fit within the free daily budget with just a single standard env service.
Once the app usage picks up and the free daily quotas percentage in the total costs become neglijible you can gradually split the app into multiple services as needed. In general this can be a relatively simple task if the app is properly modularized.

How calculate the number of instances in Google App Engine

I aim to create an application that will be deployed thanks to Google App Engine.
Before that I would like to calculate the cost of Google App Engine.
For this I have to provide the Number of instances, per hour. How can caluculate this number of Instances ?
To reformulate, imagine I have 1 thousand users connected, how many users can 1 instance afford ?
Thank you for your answer and help
Regards
Benoit
It's really hard to answer without more info. App engine consumption will depend on the nature of your app, the average session span and usage hours, how well you optimize your implementation and so much more variables...
Don't think about how many instances, think about how many instance hours you'll need to serve your users if you can figure how much you'll be consuming you could get an estimate using the App engine pricing calculator .
Completely depends on the code that runs on each request. You need to make it more specific to get a better answer. Ive had carefully implemented apps that receives thousands of requests per minute with a single instance. How long each request takes and the memory it consumes is key as well as the frontend instance type you select to use.
Appengine also lets you calibrate some parameters like min/max latency to control when more instances are launched.

Is price of Managed VM and App Engine hosting environment the same?

I'm very new to using Google cloud services. As I can see Google App Engine has two way of deployment. The first one is using App Engine sandbox and the second is managed VM.
So I'm interested in pricing. Is there any difference in price? For example if I choose managed VM instead sandbox.
Pricing for the Sandbox can be found on the App Engine Pricing page.
Pricing for the Managed VM's can be found on the Compute Engine Pricing page:
While in beta, pricing is based on Compute Engine Pricing for each VM. Pricing will change in the future.
Based on the linked Price pages:
The Minimum cost for a Sandboxed instance: $0.05 / hour (F1 class, 128MB RAM, 600MHz CPU)
The Minimum cost for a Managed VM: $0.063 (n1-standard-1, 3.75GB RAM, 2.75GCEU CPU)
For other classes of sandbox instances see this page: Adjusting Application Performance
Before jumping to the conclusion that Managed VMs are cheaper: each app gets 28 free instance-hours per day for Sandbox, so chances are good you won't even have to pay for any. Also with further configuration you can achieve to only pay for further "used" instance hours (e.g. you can play with min_idle_instances and max_idle_instances in your module config so additional instances only count toward instance hour billing when they are active (serving requests)).
Notes:
Price shouldn't be the only (or most important) reason to chose one over the other. They are for different things with quite different characteristics.
Sandbox instances are primarily for your application front-end: they can automatically scale as your traffic changes/grows. Many restrictions are enforced.
Managed VMs are good for background operations which can be long or CPU consuming, most of the restrictions are not applied.
In a nutshell: MVMs are for the same price about 10x more powerful.
Default GAE instances are F1: 600Mhz, 128MB, $0.05/h
Comparable MVM: 2500Mhz, 3.75GB, $0.05/h (typical use)
It's not about price, it's about environment. You would not have SQL or root FS on GAE, you can't open ports. Your code base would be hard to migrate to another VPS. As a trade-off you get zero cost maintenance and effortless instant scaling.

How to Gain Visibility and Optimize Quota Usage in Google App Engine?

How do I go about optimizing my Google App Engine app to reduce instance hours I am currently using/paying for?
I have been using app engine for a while and the cost has been creeping upwards. I now spend enough on GAE to invest time into reducing the expense. More than half of my GAE bill is due to frontend instance hours, so it's the obvious place to start. But before I can start optimizing, I have to figure out what's using the instance hours.
However, I am having difficulty trying to determine what is currently using so many of my frontend instance hours. My app serves many ajax requests, dynamic HTML pages, cron jobs, and deferred tasks. For all I know there could be some runaway process that is causing my instance usage to be so high.
What methods or techniques are available to allow me to gain visibility into my app to see where I am using instance hours?
Besides code changes (all suggestions in the other answer are good) you need to look into the instances over time graph.
If you have spikes and constant use, the instances created during the spikes wont go to sleep because appengine will keep using them. In appspot application settings, change the "idle instances" max to a low number like 1 (or your actual daily average).
Also, change min latency to a higher number so less instances will be created on spikes.
All these suggestions can make an immediate effect on lowering your bill, but its just a complement to the code optimizations suggested in the other answer.
This is a very broad question, but I will offer a few pointers.
First, examine App Engine's console Dashboard and logs. See if there are any errors. Errors are expensive both in terms of lost business and in extra instance hours. For example, tasks are retried several times, and these reties may easily prolong the life of an instance beyond what is necessary.
Second, the Dashboard shows you the summary of your requests over 24 hours period. Look for requests with high latency. See if you can improve them. This will both improve the user experience and may reduce the number of instance hours as more requests can be handled by each instance.
Also look for data points that surprise you as a developer of your app. If you see a request that is called many more times that you think is normal, zero in on it and see what it is happening.
Third, look at queues execution rates. When you add multiple tasks to a queue, do you really need all of them to be executed within seconds? If not, reduce the execution rate so that the queue never needs more than one instance.
Fourth, examine your cron jobs. If you can reduce their frequency, you can save a bunch of instance hours. If your cron jobs must run frequently and do a lot of computing, consider moving them to a Compute Engine instance. Compute Engine instances are many times cheaper, so having such an instance run for 24 hours may be a better option than hitting an App Engine instance every 15 minutes (or even every hour).
Fifth, make sure your app is thread-safe, and your App Engine configuration states so.
Finally, do the things that all web developers do (or should do) to improve their apps/websites. Cache what can be cached. Minify what needs to be minified. Put images in sprites. Split you code if it can be split. Use Memcache. Etc. All of these steps reduce latency and/or client-server roundtrips, which helps to reduce the number of instances for the same number of users.
Ok, my other answer was about optimizing at the settings level.
To trace the performance at a granular level use the new cloud trace relased today at google i/o 2014.
http://googledevelopers.blogspot.com/2014/06/cloud-platform-at-google-io-enabling.html

Resources