How to do load test with real user nearly 10.000 user? - selenium-webdriver

I'm planning to do a load test for e-commerce site for valentine's day. I want to do this test with real user. I prepared it Jmeter WebDriver Sampler. I just found blazemeter.com but when i upload my scripts on blazemeter i got errors. I'm waiting a response from them. Do you know any platform, cloud servers provider or anything else to do this?

There's tons of tools, some of them are;
https://www.blitz.io/
http://loadstorm.com/
https://loader.io/
https://flood.io/
http://www.neotys.com/introduction/neoload-cloud-testing.html
http://www.soasta.com/products/cloudtest/
We work with BlazeMeter, which is easy to use, stable, and its staff are helpful if we stuck at dead-end. It creates nice reports, too.

Just to add one more to the mix:
http://loadimpact.com
Also in my 15 years experience of performance and load testing I have very rarely found a need for doing tests with full clients.
The virtual users are much more efficient and scale well in tests even if they possibly need some scripting and data management and reverse engineering of how the service you are testing works on the client.
And running full clients will consume huge amounts of server resources. One client per core in your load generators. Testing an e-commerce site I would estimate requires at least volumes in the thousands.
1.000 test users would require 250 4-core load generators. It quickly becomes large and expensive. For 500 virtual users you can get by with as little as a single 2-core load generator.

Related

Fastest Open Source Content Management System for Cloud/Cluster deployment

Currently clouds are mushrooming like crazy and people start to deploy everything to the cloud including CMS systems, but so far I have not seen people that have succeeded in deploying popular CMS systems to a load balanced cluster in the cloud. Some performance hurdles seem to prevent standard open-source CMS systems to be deployed to the cloud like this.
CLOUD: A cloud, better load-balanced cluster, has at least one frontend-server, one network-connected(!) database-server and one cloud-storage server. This fits well to Amazon Beanstalk and Google Appengine. (This specifically excludes CMS on a single computer or Linux server with MySQL on the same "CPU".)
To deploy a standard CMS in such a load balanced cluster needs a cloud-ready CMS with the following characteristics:
The CMS must deal with the latency of queries to still be responsive and render pages in less than a second to be cached (or use a precaching strategy)
The filesystem probably must be connected to a remote storage (Amazon S3, Google cloudstorage, etc.)
Currently I know of python/django and Wordpress having middleware modules or plugins that can connect to cloud storages instead of a filesystem, but there might be other cloud-ready CMS implementations (Java, PHP, ?) and systems.
I myself have failed to deploy django-CMS to the cloud, finally due to query latency of the remote DB. So here is my question:
Did you deploy an open-source CMS that still performs well in rendering pages and backend admin? Please post your average page rendering access stats in microseconds for uncached pages.
IMPORTANT: Please describe your configuration, the problems you have encountered, which modules had to be optimized in the CMS to make it work, don't post simple "this works", contribute your experience and knowledge.
Such a CMS probably has to make fewer than 10 queries per page, if more, the queries must be made in parallel, and deal with filesystem access times of 100ms for a stat and query delays of 40ms.
Related:
Slow MySQL Remote Connection
Have you tried Umbraco?
It relies on database, but it keeps layers of cache so you arent doing selects on every request.
http://umbraco.com/azure
It works great on azure too!
I have found an excellent performance test of Wordpress on Appengine. It appears that Google has spent some time to optimize this system for load-balanced cluster and remote DB deployment:
http://www.syseleven.de/blog/4118/google-app-engine-php/
Scaling test from the report.
parallel
hits GAE 1&1 Sys11
1 1,5 2,6 8,5
10 9,8 8,5 69,4
100 14,9 - 146,1
Conclusion from the report the system is slower than on traditional hosting but scales much better.
http://developers.google.com/appengine/articles/wordpress
We have managed to deploy python django-CMS (www.django-cms.org) on GoogleAppEngine with CloudSQL as DB and CloudStore as Filesystem. Cloud store was attached by forking and fixing a django.storage module by Christos Kopanos http://github.com/locandy/django-google-cloud-storage
After that, the second set of problems came up as we discovered we had access times of up to 17s for a single page access. We have investigated this and found that easy-thumbnails 1.4 accessed the normal file system for mod_time requests while writing results to the store (rendering all thumb images on every request). We switched to the development version where that was already fixed.
Then we worked with SmileyChris to fix unnecessary access of mod_times (stat the file) on every request for every image by tracing and posting issues to http://github.com/SmileyChris/easy-thumbnails
This reduced access times from 12-17s to 4-6s per public page on the CMS basically eliminating all storage/"file"-system access. Once that was fixed, easy-thumbnails replaced (per design) file-system accesses with queries to the DB to check on every request if a thumbnail's source image has changed.
One thing for the web-designer: if she uses a image.width statement in the template this forces a ugly slow read on the "filesystem", because image widths are not cached.
Further investigation led to the conclusion that DB accesses are very costly, too and take about 40ms per roundtrip.
Up to now the deployment is unsuccessful mostly due to DB access times in the cloud leading to 4-5s delays on rendering a page before caching it.

Load testing using Jmeter 5k users, website crashed

I was running 5K users on a website while load testing with Jmeter. It was taking too long time and my colleagues were not able to access the site. Then i stop the test. now the website is totally dead and is not accessible. What should I do now?
You should either restart your browser and/or your entire system.
The best would be use ramp up technique. This does not over load the server all at once but adds the load slowly till its reaches peak. This way it is easier to find the crash point.
Restarting the server will be a good way to bring up the application. Also check the server Logs.
First of all I would recommend you to try to understand how many users are going to use your system to set clear test objectives.
These articles I find useful:
stress testing web applications with JMeter (Part 1)
stress testing web applications with JMeter (part 2)
After you've set up your testing goals clearly follow JMeter Performance Testing best practices steps.
Also I would recommend you to get acquainted with Load Testing Cloud - altentive cloud solution for running your .jmx tests instead of local run, which often associated with resource demand on your PC machine.

Profiling and output caching in ASP.NET MVC

So I was recently hired by a big department of a Fortune 50 company, straight out of college. I'll be supporting a brand new ASP.NET MVC app - over a million lines of code written by contractors over 4 years. The system works great with up to 3 or 4 simultaneous requests, but becomes very slow with more. It's supposed to go live in 2 weeks ... I'm looking for practical advice on how to drastically improve the scalability.
The advice I was given in Uni is to always run a profiler first. I've already secured a sizeable tools budget with my manager, so price wouldn't be a problem. What is a good or even the best profiler for ASP.NET MVC?
I'm also looking at adding caching. There is currently no second level and query cache configured for nHibernate. My current thinking is to use Redis for that purpose. Also looking at output caching, but unfortunately the majority of the users will login to the site. Is there a way to still cache parts of the pages served by MVC?
Do you have any monitoring or instrumentation setup for the application? If not, I would highly recommend starting there. I've been using New Relic for a few years with ASP.NET apps and been very happy with it.
Right off the bat you get a nice graph of request response times broken down into 3 kind of tasks that contribute to the response time
.NET CLR - Time spent running .NET code
Database - Time spent waiting on SQL requests
Request Queue - Time spent waiting for application workers to become available
It also breaks down performance by MVC action so you can see which ones are the slowest. You also get a breakdown of performance per database query. I've used this many times to detect procedures that were way too slow for heavy production loads.
If you want to, you can have New Relic add some unobtrusive Javascript to your page that allows you to instrument browser load times. This helps you figure things out like "my users outside North America spend on average 500ms loading images. I need to move my images to a CDN!"
I would highly recommend you use some instrumentation software like this. It will definitely get you pointed in the right direction and help you keep your app available and healthy.
Profiler is a handy tool to watch how apps communicate with your database and debug odd behaviour. It's not a long-term solution for performance instrumentation given that it puts a load on your server and the results require quite a bit of laborious processing and digestion to paint a clear picture for you.
Random thought: check out your application pool configuration and keep and eye out in the event log for too many recycling events. When an application pool recycles, it takes a long time to become responsive again. It's just one of those things can kill performance and you can rip your hair out trying to track it down. Improper recycling settings bit me recently so that's why I mention it.
For nHibernate analysis (session queries, caching, execution time) you could use HibernatingRhinos Profiler. It's developed by the guys that developed nhibernate, so you know it will work really good with it.
Here is the URL for it:
http://hibernatingrhinos.com/products/nhprof
You could give it a try and decide if it helps you or not.

Identify why Google app engine is slow

I developed an application for client that uses Play framework 1.x and runs on GAE. The app works great, but sometimes is crazy slow. It takes around 30 seconds to load simple page but sometimes it runs faster - no code change whatsoever.
Are there any way to identify why it's running slow? I tried to contact support but I couldnt find any telephone number or email. Also there is no response on official google group.
How would you approach this problem? Currently my customer is very angry because of slow loading time, but switching to other provider is last option at the moment.
Use GAE Appstats to profile your remote procedure calls. All of the RPCs are slow (Google Cloud Storage, Google Cloud SQL, ...), so if you can reduce the amount of RPCs or can use some caching datastructures, use them -> your application will be much faster. But you can see with appstats which parts are slow and if they need attention :) .
For example, I've created a Google Cloud Storage cache for my application and decreased execution time from 2 minutes to under 30 seconds. The RPCs are a bottleneck in the GAE.
Google does not usually provide a contact support for a lot of services. The issue described about google app engine slowness is probably caused by a cold start. Google app engine front-end instances sleep after about 15 minutes. You could write a cron job to ping instances every 14 minutes to keep the nodes up.
Combining some answers and adding a few things to check:
Debug using app stats. Look for "staircase" situations and RPC calls. Maybe something in your app is triggering RPC calls at certain points that don't happen in your logic all the time.
Tweak your instance settings. Add some permanent/resident instances and see if that makes a difference. If you are spinning up new instances, things will be slow, for probably around the time frame (30 seconds or more) you describe. It will seem random. It's not just how many instances, but what combinations of the sliders you are using (you can actually hurt yourself with too little/many).
Look at your app itself. Are you doing lots of memory allocations in the JVM? Allocating/freeing memory is inherently a slow operation and can cause freezes. Are you sure your freezing is not a JVM issue? Try replicating the problem locally and tweak the JVM xmx and xms settings and see if you find similar behavior. Also profile your application locally for memory/performance issues. You can cut down on allocations using pooling, DI containers, etc.
Are you running any sort of cron jobs/processing on your front-end servers? Try to move as much as you can to background tasks such as sending emails. The intervals may seem random, but it can be a result of things happening depending on your job settings. 9 am every day may not mean what you think depending on the cron/task options. A corollary - move things to back-end servers and pull queues.
It's tough to give you a good answer without more information. The best someone here can do is give you a starting point, which pretty much every answer here already has.
By making at least one instance permanent, you get a great improvement in the first use. It takes about 15 sec. to load the application in the instance, which is why you experience long request times, when nobody has been using the application for a while

Is GAE a viable platform for my application? (if not, what would be a better option?)

Here's the requirement at a very high level.
We are going to distribute desktop agents (or browser plugins) to collect certain information from tons of users (in thousands or possibly millions down the road).
These agents collect data and periodically upload it to a server app.
The server app will allow for analyzing collected data (filter, sort etc based on 4-5 attributes) and summarize in form of charts etc.
We should also be able to export some of the collected data (csv or pdf)
We are looking for an platform to host the server app. GAE seems attractive because of low administrative cost and scalability (as users base increases, the platform will handle the scale... hopefully!).
Is GAE a viable option for us?
One important consideration is that sometimes the volume of uploads from the agents can exceed 50MB per upload cycle. We will have users in places where Internet connections could be very slow too. Apparently GAE has a limit on the duration a request can last. The upload volume may cause the request (transferring data from an agent to the server) to last longer than 30 seconds. How would one handle such situation?
Thanks!
The time of the upload is not considered part of the script execution time, so no worries there.
Google App Engine is very good to perform a vast number of smaller jobs but not so much to do complex long running background jobs (because of the 30 sec limit + even smaller database connection time limit). So probably GAE would be a very good platform to GATHER the data but not for actually ANALYZING it. You probably would like to separate these two.
We went ahead an implemented the first version on GAE anyway. The experience has been very much what is described here http://www.carlosble.com/?p=719
For a proof-of-concept prototype, what we have built so far is acceptable. However, we have decided not to go with GAE (at least in its current shape) for the production version. The pains somewhat outweigh the benefits in our case.
The problems we faced were numerous. Unlike my experience dealing with J2EE stacks, when you run into an issue, many a times it is a dead end. Workarounds are very complicated and ugly, if you can find one.
By writing good prototypes one could figure out whether GAE is right for the solution being built, however, the hype is a problem. Many newcomers are going get overly excited about GAE due to its hype and end up failing badly. Because they will choose GAE for all kinds of purpose that it is not suitable for.

Resources