How is the hold out set chosen in vowpal wabbit - logistic-regression

I am using vowpal wabbit for logistic regression. I came to know that vowpal wabbit selects a hold out set for validation from the given training data. Is this set chosen randomly. I have a very unbalanced dataset with 100 +ve examples and 1000 -ve examples. I want to know given this training data, how vowpal wabbit selects the hold out examples?
How do I assign more weights to the +ve examples

By default each 10th example is used for holdout (you can change it with --holdout_period,
see https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments#holdout-options).
This means the model trained with holdout evaluation on is trained only on 90% of the training data.
This may result in slightly worse accuracy.
On the other hand, it allows you to use --early_terminate (which is set to 3 passes by default),
which makes it easier to reduce the risk of overtraining caused by too many training passes.
Note that by default holdout evaluation is on, only if multiple passes are used (VW uses progressive validation loss otherwise).
As for the second question, you can add importance weight to the positive examples. The default importance weight is 1. See https://github.com/JohnLangford/vowpal_wabbit/wiki/Input-format

Related

How to split the data into training and test sets?

One approach to split the data into two disjoint sets, one for training and one for tests is taking the first 80% as the training set and the rest as the test set. Is there another approach to split the data into training and test sets?
** For example, I have a data contains 20 attributes and 5000 objects. Therefore, I will take 12 attributes and 1000 objects as my training data and 3 attributes from the 12 attributes as test set. Is this method correct?
No, that's invalid. You would always use all features in all data sets. You split by "objects" (examples).
It's not clear why you are taking just 1000 objects and trying to extract a training set from that. What happened to the other 4000 you threw away?
Train on 4000 objects / 20 features. Cross-validate on 500 objects / 20 features. Evaluate performance on the remaining 500 objects/ 20 features.
If your training produces a classifier based on 12 features, it could be (very) hard to evaluate its performances on a test set based only on a subset of these features (your classifier is expecting 12 inputs and you'll give only 3).
Feature/attribute selection/extraction is important if your data contains many redundant or irrelevant features. So you could identify and use only the most informative features (maybe 12 features) but your training/validation/test sets should be based on the same number of features (e.g. since you're mentioning weka Why do I get the error message 'training and test set are not compatible'?).
Remaining on a training/validation/test split (holdout method), a problem you can face is that the samples might not be representative.
For example, some classes might be represented with very few instance or even with no instances at all.
A possible improvement is stratification: sampling for training and testing within classes. This ensures that each class is represented with approximately equal proportions in both subsets.
However, by partitioning the available data into fixed training/test set, you drastically reduce the number of samples which can be used for learning the model. An alternative is cross validation.

Data Mining KNN Classifier

Suppose a data analyst working for an insurance company was asked to build a predictive model for predicting whether a customer will buy a mobile home insurance policy. S/he tried kNN classifier with different number of neighbours (k=1,2,3,4,5). S/he got the following F-scores measured on the training data: (1.0; 0.92; 0.90; 0.85; 0.82). Based on that the analyst decided to deploy kNN with k=1. Was it a good choice? How would you select an optimal number of neighbours in this case?
It is not a good idea to select a parameter of a prediction algorithm using the whole training set as the result will be biased towards this particular training set and has no information about generalization performance (i.e. performance towards unseen cases). You should apply a cross-validation technique e.g. 10-fold cross-validation to select the best K (i.e. K with largest F-value) within a range.
This involves splitting your training data in 10 equal parts retain 9 parts for training and 1 for validation. Iterate such that each part has been left out for validation. If you take enough folds this will allow you as well to obtain statistics of the F-value and then you can test whether these values for different K values are statistically significant.
See e.g. also:
http://pic.dhe.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Falg_knn_training_crossvalidation.htm
The subtlety here however is that there is likely a dependency between the number of data points for prediction and the K-value. So If you apply cross-validation you use 9/10 of the training set for training...Not sure whether any research has been performed on this and how to correct for that in the final training set. Anyway most software packages just use the abovementioned techniques e.g. see SPSS in the link.
A solution is to use leave-one-out cross-validation (each data samples is left out once for testing) in that case you have N-1 training samples(the original training set has N).

nominal-value inputs for Neural Network

I have a set of training data, each item in this set consists of 4 numerical values and 1 nominal-value which is the name of the method that these values have been calculated with. (There are 8 methods)
I'm training a Neural Network with these. To get rid of the nominal-value I simply assigned a value from 1 to 8 to each method and used one input to pass it to Neural Network and 4 other inputs for numerical-values. It is sort of working, but the result is not as amazing as I want.
So my question is could it be because of this simple assignment of numbers to nominal-values? or maybe it is because of mixing two different categories of inputs which are not really at the same level (numbers and method types)
As a general note, a better way for coding nominal values would be a binary vector. In your case, in addition to the 4 continuous-valued inputs, you'd have 8 binary input neurons, where only one is activated (1) and the other 7 are inactive.
The way you did it implies an artificial relationship between the computation methods, which is almost certainly an artifact. For example, 1 and 2 are numerically (and from your network's point of view!) nearer than 1 and 8. But are the methods nr. 1 and 2 really more similar, or related, than the methods 1 and 8?
Since you don't provide much detail, my answer can't be very specific.
Generally speaking neural networks tend to perform worse when coding nominal values as numeric values since the transformation will impose a (probably) false ordering on the variables. Mixing inputs with very varied levels also tend to worsen the performance.
However, given the little information provided here there is no way of telling if this is the reason that the networks performance is "not as amazing" as you want. It could just as well be the case that you don't have enough training data, or that your training data contains a lot of noise. Perhaps you need to pre-scale your data, perhaps there is an error in your network code, perhaps you have chosen ill-suited values of constants for your learning algorithm...
The reasons a neural network doesn't perform as expected are many and diverse (on of them beeing unreasonably high expectations). Without much more information there is no way of knowing what the problem is in your case.
Mapping categories to numerical values is not a good practice in statistics. Especially in the case of neural networks. Bear in mind that neural networks tend to map similar inputs to similar outputs. If you map category A to 1 and category B to 2 (both as inputs), the NN will try to output similar values for both categories, even if they have nothing to do with each other.
A sparser representation is preferred. If you have 4 categories, map them like this:
A -> 0001
B -> 0010
etc
Take a look at the "Subject: How should categories be encoded?" in this link:
ftp://ftp.sas.com/pub/neural/FAQ2.html#A_cat
The previous answers are right - do not map nominal values into arbitrary numeric ones. However, if the attribute has an ordinal nature ("Low", "Medium", High" for example), you can replace the nominal values by ascending numeric values. Note that this may not be the optimal solution - since there is no guarantee for example that "High"=3 by the nature of your data. Instead, use one-hot bit encoding as suggested.
The reason for this is that a neural network is very similar to regression in the sense that multiple numeric values go through some kind of an aggregating function - but this happens multiple times. Each input is also multiplied by a weight.
So when you enter a numeric value, it undergoes a series of mathematical manipulations that adjusts its weights in the network. So if you use numeric values for non-nomial data - nominal values that were mapped to closer numeric values will be treated about the same in the best case, in the worst case - it can harm your model.

Help--100% accuracy with LibSVM?

Nominally a good problem to have, but I'm pretty sure it is because something funny is going on...
As context, I'm working on a problem in the facial expression/recognition space, so getting 100% accuracy seems incredibly implausible (not that it would be plausible in most applications...). I'm guessing there is either some consistent bias in the data set that it making it overly easy for an SVM to pull out the answer, =or=, more likely, I've done something wrong on the SVM side.
I'm looking for suggestions to help understand what is going on--is it me (=my usage of LibSVM)? Or is it the data?
The details:
About ~2500 labeled data vectors/instances (transformed video frames of individuals--<20 individual persons total), binary classification problem. ~900 features/instance. Unbalanced data set at about a 1:4 ratio.
Ran subset.py to separate the data into test (500 instances) and train (remaining).
Ran "svm-train -t 0 ". (Note: apparently no need for '-w1 1 -w-1 4'...)
Ran svm-predict on the test file. Accuracy=100%!
Things tried:
Checked about 10 times over that I'm not training & testing on the same data files, through some inadvertent command-line argument error
re-ran subset.py (even with -s 1) multiple times and did train/test only multiple different data sets (in case I randomly upon the most magical train/test pa
ran a simple diff-like check to confirm that the test file is not a subset of the training data
svm-scale on the data has no effect on accuracy (accuracy=100%). (Although the number of support vectors does drop from nSV=127, bSV=64 to nBSV=72, bSV=0.)
((weird)) using the default RBF kernel (vice linear -- i.e., removing '-t 0') results in accuracy going to garbage(?!)
(sanity check) running svm-predict using a model trained on a scaled data set against an unscaled data set results in accuracy = 80% (i.e., it always guesses the dominant class). This is strictly a sanity check to make sure that somehow svm-predict is nominally acting right on my machine.
Tentative conclusion?:
Something with the data is wacked--somehow, within the data set, there is a subtle, experimenter-driven effect that the SVM is picking up on.
(This doesn't, on first pass, explain why the RBF kernel gives garbage results, however.)
Would greatly appreciate any suggestions on a) how to fix my usage of LibSVM (if that is actually the problem) or b) determine what subtle experimenter-bias in the data LibSVM is picking up on.
Two other ideas:
Make sure you're not training and testing on the same data. This sounds kind of dumb, but in computer vision applications you should take care that: make sure you're not repeating data (say two frames of the same video fall on different folds), you're not training and testing on the same individual, etc. It is more subtle than it sounds.
Make sure you search for gamma and C parameters for the RBF kernel. There are good theoretical (asymptotic) results that justify that a linear classifier is just a degenerate RBF classifier. So you should just look for a good (C, gamma) pair.
Notwithstanding that the devil is in the details, here are three simple tests you could try:
Quickie (~2 minutes): Run the data through a decision tree algorithm. This is available in Matlab via classregtree, or you can load into R and use rpart. This could tell you if one or just a few features happen to give a perfect separation.
Not-so-quickie (~10-60 minutes, depending on your infrastructure): Iteratively split the features (i.e. from 900 to 2 sets of 450), train, and test. If one of the subsets gives you perfect classification, split it again. It would take fewer than 10 such splits to find out where the problem variables are. If it happens to "break" with many variables remaining (or even in the first split), select a different random subset of features, shave off fewer variables at a time, etc. It can't possibly need all 900 to split the data.
Deeper analysis (minutes to several hours): try permutations of labels. If you can permute all of them and still get perfect separation, you have some problem in your train/test setup. If you select increasingly larger subsets to permute (or, if going in the other direction, to leave static), you can see where you begin to lose separability. Alternatively, consider decreasing your training set size and if you get separability even with a very small training set, then something is weird.
Method #1 is fast & should be insightful. There are some other methods I could recommend, but #1 and #2 are easy and it would be odd if they don't give any insights.

How to convert the output of an artificial neural network into probabilities?

I've read about neural network a little while ago and I understand how an ANN (especially a multilayer perceptron that learns via backpropagation) can learn to classify an event as true or false.
I think there are two ways :
1) You get one output neuron. It it's value is > 0.5 the events is likely true, if it's value is <=0.5 the event is likely to be false.
2) You get two output neurons, if the value of the first is > than the value of the second the event is likely true and vice versa.
In these case, the ANN tells you if an event is likely true or likely false. It does not tell how likely it is.
Is there a way to convert this value to some odds or to directly get odds out of the ANN. I'd like to get an output like "The event has a 84% probability to be true"
Once a NN has been trained, for eg. using backprogation as mentioned in the question (whereby the backprogation logic has "nudged" the weights in ways that minimize the error function) the weights associated with all individual inputs ("outside" inputs or intra-NN inputs) are fixed. The NN can then be used for classifying purposes.
Whereby the math (and the "options") during the learning phase can get a bit thick, it is relatively simple and straightfoward when operating as a classifier. The main algorithm is to compute an activation value for each neuron, as the sum of the input x weight for that neuron. This value is then fed to an activation function which purpose's is to normalize it and convert it to a boolean (in typical cases, as some networks do not have an all-or-nothing rule for some of their layers). The activation function can be more complex than you indicated, in particular it needn't be linear, but whatever its shape, typically sigmoid, it operate in the same fashion: figuring out where the activation fits on the curve, and if applicable, above or below a threshold. The basic algorithm then processes all neurons at a given layer before proceeding to the next.
With this in mind, the question of using the perceptron's ability to qualify its guess (or indeed guesses - plural) with a percentage value, finds an easy answer: you bet it can, its output(s) is real-valued (if anything in need of normalizing) before we convert it to a discrete value (a boolean or a category ID in the case of several categories), using the activation functions and the threshold/comparison methods described in the question.
So... How and Where do I get "my percentages"?... All depends on the NN implementation, and more importantly, the implementation dictates the type of normalization functions that can be used to bring activation values in the 0-1 range and in a fashion that the sum of all percentages "add up" to 1. In its simplest form, the activation function can be used to normalize the value and the weights of the input to the output layer can be used as factors to ensure the "add up" to 1 question (provided that these weights are indeed so normalized themselves).
Et voilĂ !
Claritication: (following Mathieu's note)
One doesn't need to change anything in the way the Neural Network itself works; the only thing needed is to somehow "hook into" the logic of output neurons to access the [real-valued] activation value they computed, or, possibly better, to access the real-valued output of the activation function, prior its boolean conversion (which is typically based on a threshold value or on some stochastic function).
In other words, the NN works as previously, neither its training nor recognition logic are altered, the inputs to the NN stay the same, as do the connections between various layers etc. We only get a copy of the real-valued activation of the neurons in the output layer, and we use this to compute a percentage. The actual formula for the percentage calculation depends on the nature of the activation value and its associated function (its scale, its range relative to other neurons' output etc.).
Here are a few simple cases (taken from the question's suggested output rules)
1) If there is a single output neuron: the ratio of the value provided by the activation function relative to the range of that function should do.
2) If there are two (or more output neurons), as with classifiers for example: If all output neurons have the same activation function, the percentage for a given neuron is that of its activation function value divided by the sum of all activation function values. If the activation functions vary, it becomes a case by case situation because the distinct activation functions may be indicative of a purposeful desire to give more weight to some of the neurons, and the percentage should respect this.
What you can do is to use a sigmoid transfer function on the output layer nodes (that accepts data ranges (-inf,inf) and outputs a value in [-1,1]).
Then by using the 1-of-n output encoding (one node for each class), you can map the range [-1,1] to [0,1] and use it as probability for each class value (note that this works naturally for more than just two classes).
The activation value of a single output neuron is a linearly weighted sum, and may be directly interpreted as an approximate probability if the network is trained to give outputs a range from 0 to 1. This would tend to be the case if the transfer function (or output function) in both the preceding stage and providing the final output is in the 0 to 1 range too (typically the sigmoidal logistic function). However, there is no guarantee that it will but repairs are possible. Moreover unless the sigmoids are logistic and the weights are constrained to be positive and sum to 1, it is unlikely. Generally a neural network will train in a more balanced way using the tanh sigmoid and weights and activations that range positive and negative (due to the symmetry of this model). Another factor is the prevalence of the class - if it is 50% then a 0.5 threshold is likely to be effective for logistic and a 0.0 threshold for tanh. The sigmoid is designed to push things towards the centre of the range (on backpropogation) and constrain it from going out of the range (in feedforward). The significance of the performance (with respect to the Bernoulli distribution) can also be interpreted as a probability that the neuron is making real predictions rather than guessing. Ideally the bias of the predictor to positives should match the prevalence of positives in the real world (which may vary at different times and places, e.g. bull vs bear markets, e.g. credit worthiness of people applying for loans vs people who fail to make loan payments) - calibrating to probabilities has the advantage that any desired bias can be set easily.
If you have two neurons for two classes, each can be interpreted independently as above, and the halved difference between them can also be. It is like flipping the negative class neuron and averaging. The differences can also give rise to a probability of significance estimate (using the T-test).
The Brier score and its Murphy decomposition give a more direct estimate of the probability that an average answer is correct, while Informedness gives the probability the classifier is making an informed decision rather than a guess, ROC AUC gives the probability a positive class will be ranked higher than a negative class (by a positive predictor), and Kappa will give a similar number that matches Informedness when prevalence = bias.
What you normally want is both a significance probability for the overall classifier (to ensure that you are playing on a real field, and not in an imaginary framework of guestimates) and a probability estimate for a specific example. There are various ways to calibrate, including doing a regression (linear or nonlinear) versus probability and using its inverse function to remap to a more accurate probability estimate. This can be seen by the Brier score improving, with the calibration component reducing towards 0, but the discrimination component remaining the same, as should ROC AUC and Informedness (Kappa is subject to bias and may worsen).
A simple non-linear way to calibrate to probabilities is to use the ROC curve - as the threshold changes for the output of a single neuron or the difference between two competing neurons, we plot the results true and false positive rates on a ROC curve (the false and true negative rates are naturally the complements, as what isn't really a positive is a negative). Then you scan the ROC curve (polyline) point by point (each time the gradient changes) sample by sample and the proportion of positive samples gives you a probability estimate for positives corresponding to the neural threshold that produced that point. Values between points on the curve can be linearly interpolated between those that are represented in the calibration set - and in fact any bad points in the ROC curve, represented by deconvexities (dents) can be smoothed over by the convex hull - probabilistically interpolating between the endpoints of the hull segment. Flach and Wu propose a technique that actually flips the segment, but this depends on information being used the wrong way round and although it could be used repeatedly for arbitrary improvement on the calibration set, it will be increasingly unlikely to generalize to a test situation.
(I came here looking for papers I'd seen ages ago on these ROC-based approaches - so this is from memory and without these lost references.)
I will be very prudent in interpreting the outputs of a neural networks (in fact any machine learning classifier) as a probability. The machine is trained to discriminate between classes, not to estimate the probability density. In fact, we don't have this information in the data, we have to infer it. For my experience I din't advice anyone to interpret directly the outputs as probabilities.
did you try prof. Hinton's suggestion of training the network with softmax activation function and cross entropy error?
as an example create a three layer network with the following:
linear neurons [ number of features ]
sigmoid neurons [ 3 x number of features ]
linear neurons [ number of classes ]
then train them with cross entropy error softmax transfer with your favourite optimizer stochastic descent/iprop plus/ grad descent. After training the output neurons should be normalized to sum of 1.
Please see http://en.wikipedia.org/wiki/Softmax_activation_function for details. Shark Machine Learning framework does provide Softmax feature through combining two models. And prof. Hinton an excellent online course # http://coursera.com regarding the details.
I can remember I saw an example of Neural network trained with back propagation to approximate the probability of an outcome in the book Introduction to the theory of neural computation (hertz krogh palmer). I think the key to the example was a special learning rule so that you didn't have to convert the output of a unit to probability, but instead you got automatically the probability as output.
If you have the opportunity, try to check that book.
(by the way, "boltzman machines", although less famous, are neural networks designed specifically to learn probability distributions, you may want to check them as well)
When using ANN for 2-class classification and logistic sigmoid activation function is used in the output layer, the output values could be interpreted as probabilities.
So if you choosing between 2 classes, you train using 1-of-C encoding, where 2 ANN outputs will have training values (1,0) and (0,1) for each of classes respectively.
To get probability of first class in percent, just multiply first ANN output to 100. To get probability of other class use the second output.
This could be generalized for multi-class classification using softmax activation function.
You can read more, including proofs of probabilistic interpretation here:
[1] Bishop, Christopher M. Neural networks for pattern recognition. Oxford university press, 1995.

Resources