Print integer as character digits (no arrays/printf/etc...) - c

I am attempting to print integers to the console in C with a few constraints, the most significant of which being that I may only write individual characters to the console as follows:
void my_char(char ch)
}
write(1, &ch, 1);
}
Other constraints include NO predefined methods (printf, log, etc). No recursion. Lastly, I may NOT create an array.
So far I have come up with a method that prints the numbers out perfectly well... backwards.
int main()
{
int i = -345320;
my_int(i);
return 0;
}
void my_int(int x)
{
char *a;
int n;
if(x < 0)
{
x = x * -1;
my_char('-');
}
while(x)
{
n = x % 10;
a = (char*)&n;
my_char(*a + 48);
x /= 10;
}
}
Are there other good ways to approach this or am I at least going in the right direction? I would ideally like to expand this to print an integer in any base I provide, but I need to start here.
I was playing with iterating a pointer over each Byte of the integer but I can't grasp how I would use those character values to re-create the integer.
Any advice is appreciated. I'd much rather receive some insight than just a code solution. I'd also love input on making it more lean.

Here's a general (ugly!) solution following your constraints. It uses the idea I gave in the comment above. It assumes 32-bit ints.
void my_int(int x) {
int n = 1000000000;
if (x == 0) {
my_char('0');
return;
}
if (x == INT_MIN) { // INT_MIN is in limits.h
my_char('-'); my_char('2'); my_char('1');
my_char('4'); my_char('7'); my_char('4');
my_char('8'); my_char('3'); my_char('6');
my_char('4'); my_char('8');
return;
}
if (x < 0) {
x *= -1;
my_char('-');
}
while (n > x) n /= 10;
while (n != 0) {
my_char(x / n % 10 + '0');
n /= 10;
}
}

This should do the trick. It prints the integer forwards.:
void my_int(int x)
{
int temp = 0;
int divFactor = 10;
if(x==0)
{
my_char('0');
return;
}
if(x < 0)
{
x = x * -1;
my_char('-');
}
temp = x;
while((temp /= 10) > 10) {divFactor *= 10;}
for(;divFactor > 0;divFactor /= 10)
{
temp = x;
temp /= divFactor;
my_char(temp + '0');
x -= divFactor * temp;
}
printf("\n done!");
}
int main()
{
int i = -1234001;
my_int(i);
return 0;
}

void my_int(int x)
{
int n;
int copy;
char digit;
// handle 0
if (!x)
{
my_char('0');
return;
}
// emit sign
if(x < 0)
{
x = x * -1;
my_char('-');
}
// count base-10 digits in x, store 10^n in n
n = 1;
copy = x/10; // shorten loop by 1 iteration
while (copy)
{
n *= 10;
copy /= 10;
}
// 'n' is now a digit selector
while (n)
{
digit = x/n;
my_char(digit + '0'); // print the most significant digit
x -= digit*n; // remove the most significant digit from x
n /= 10;
}
}

Related

What is the best algorithm to determine if N is a prime number (if N is [2 <= N <= 2^63-1])?

I tried using the Miller-Rabin algorithm, but it can't detect very large numbers.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
long long mulmod(long long a, long long b, long long mod)
{
long long x = 0,y = a % mod;
while (b > 0)
{
if (b % 2 == 1)
{
x = (x + y) % mod;
}
y = (y * 2) % mod;
b /= 2;
}
return x % mod;
}
long long modulo(long long base, long long exponent, long long mod)
{
long long x = 1;
long long y = base;
while (exponent > 0)
{
if (exponent % 2 == 1)
{
x = (x * y) % mod;
}
y = (y * y) % mod;
exponent = exponent / 2;
}
return x % mod;
}
int Miller(unsigned long long int p, int iteration)
{
int i;
long long s;
if (p < 2)
{
return 0;
}
if (p != 2 && p % 2==0)
{
return 0;
}
s = p - 1;
while (s % 2 == 0)
{
s /= 2;
}
for (i = 0; i < iteration; i++)
{
long long a = rand() % (p - 1) + 1, temp = s;
long long mod = modulo(a, temp, p);
while (temp != p - 1 && mod != 1 && mod != p - 1)
{
mod = mulmod(mod, mod, p);
temp *= 2;
}
if (mod != p - 1 && temp % 2 == 0)
{
return 0;
}
}
return 1;
}
int main()
{
int iteration = 5, cases;
unsigned long long int num;
scanf("%d", &cases);
for(int i = 0; i < cases; i++)
{
scanf("%llu", &num);
if(Miller(num, iteration))
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return 0;
}
Output examples:
10 //cases
1
NO
2
YES
3
YES
4
NO
5
YES
1299827
YES
1951
YES
379
YES
3380
NO
12102
NO
I am trying to do my homework by creating a program that tells if a number is prime or not, print out YES if prime, NO if not. However, every time I submit the code to the online judge it just says "Wrong answer", when even my last attempt to do the assignment was without any efficient algorithm it says "Time limit exceeded".
Is there any way to determine if N is a prime number or not when N is [2 <= N <= 2^63-1]?
OP's code has many possibilities of overflowing 63-bit math. e.g. x * y in x = (x * y) % mod;
At a minimum, recommend to go to unsigned math. e.g.: long long --> unsigned long long or simply uintmax_t.
For a mulmod() that does not overflow: Modular exponentiation without range restriction.
I'll look more into this later. GTG.

Why this reverse function can not work in the for loop?

#include <stdio.h>
#include <math.h>
int prime (long n);
long reverse(long n);
int main(void)
{
long n;
long i, j;
puts("Enter n dight number, and we will help you find symmetrical prime number");
scanf("%ld", &n);
for (i = 11; i < (pow(10, n) - 1); i+= 2)
{
if (prime(i))
{
j = reverse(i);
if (i == j)
{
printf("%ld\n", i);
}
}
}
}
int prime (long n) //estimate whether the number n is primer number
{
int status = 0;
int j;
//1 is prime, 0 is not
if (n % 2 == 0 || n == 3)
{
if (n == 2)
status = 1;
if (n == 3)
status = 1;
else
{
n++;
status = 0;
}
}
else
{
j = 3;
while (j <= sqrt(n))
{
if (n % j == 0)
{
status = 0;
break;
}
else
status = 1;
j+= 2;
}
}
return status;
}
long reverse(long n) //reverse a number
{
int i, j, x;
long k, sum;
int digit = 0;
int ar[1000];
while (n > 0)
{
k = n;
n = n / 10;
x = (k - n*10);
digit++;
ar[digit] = x;
}
for (i = 1,j = digit - 1; i <= digit; i++, j--)
{
sum += ar[i] * pow(10, j)
}
return sum;
}
I build a reverse function in order to reverse numbers, for example, 214, to 412.
This function works fine in individual number, for instance, I type reverse(214), it return 412, which is good. But when I combine reverse() function with for loop, this function can not work... it produces some strange number...
so How can I fix this problem?
The reverse function is extremely complicated. The better way to go about it would be:
long reverse (long n)
{
long result = 0;
while (n != 0)
{
result *= 10;
result += n % 10;
n /= 10;
}
return result;
}
I think the problem in your code is that in the following segment
digit++;
ar[digit] = x;
you first increment the position then assign to it, thus leaving ar[0] unintialized.
How can I fix this problem?
You need to initialize sum
long k, sum = 0;
^
See the code from #Armen Tsirunyan for a simpler approach.

How can I specifically take out numbers in an integer, in C?

Lets say I have an integer called SIN and the scanf input receives 193456787.
so SIN = 193456787;
What I want to do is add up all the other numbers after the first digit.
So 9 + 4 + 6 + 8 = 27
Can somebody please explain to a beginner how to do this?
Print the number and then sum every other digit
int sum_every_other_digit_after_first(unsigned long long x) {
char buf[sizeof x * CHAR_BIT];
sprintf(buf, "%llu", x);
char *p = buf;
int sum = 0;
while (*p) {
p++; // Skip digit
if (*p) {
sum += *p++ - '0';
}
}
return sum;
}
or as inspired by #PageNotFound
int sum_every_other_digit_after_first(unsigned long long x) {
int esum = 0;
int osum = 0;
while (x > 0) {
esum += x%10;
x /= 10;
if (x == 0) {
return osum;
}
osum += x%10;
x /= 10;
}
return esum;
}
or for fun, a recursive solution
int sum_every_other_digit_after_first_r(unsigned long long x, int esum, int osum) {
if (x >= 100) {
int digit2 = x % 100;
esum += digit2 % 10;
osum += digit2 / 10
return sum_every_other_digit_after_first_r(x / 100, esum, osum);
}
if (x >= 10) {
return esum + x % 10;
}
return osum;
}
sum_every_other_digit_after_first_r(1234567,0,0) --> 12
My solution
#include <stdio.h>
int main()
{
int SIN = 193456787;
int a = 0, b = 0, cnt = 0;
while (SIN > 0) {
if (cnt % 2) b += SIN % 10;
else a += SIN % 10;
cnt++;
SIN /= 10;
}
printf("%d\n", cnt%2 ? b : a);
return 0;
}
Note: Please comment if this is not what you intended, as your question is a little ambigous.
#include <stdio.h>
int main() {
unsigned number;
scanf("%u\n", &number);
unsigned result = 0;
unsigned tmp = number;
unsigned numberOfDigits = 0;
do
numberOfDigits++;
while((tmp /= 10) != 0);
if(numberOfDigits % 2 != 0)
number /= 10;
while(number >= 10) {
result += number % 10;
number /= 100; // Skip two digits
}
printf("%u\n", result);
}

How to divide digits and compare them, in C

Write a program that will find the largest number smaller than N that is totally different from a given number X. One number is totally different from other only if it doesn't contain any of the digits from the other number. N and X are read from standard input. The problem should be solved without the use of arrays.
Example Input 1: 400 897
Example Output 1: 366
Example Input 2: 1000 1236498
Example Output 2:777
No it's not homework, it was on one of the midterms and it's been killing me. I though about taking the first numbers last digit with %10 then taking the second numbers digit with %10 comparing them but...I just can't get it to work...I ended up with an endless loop...I just don't understand how to get every digit of the numbers and compare them to the other number.
#include <stdio.h>
int main () {
int N, X, num_N, num_X, i, lastDigit_N, lastDigit_X, flag, smaller_than_N;
scanf("%d%d", &N, &X);
smaller_than_N = N - 1;
for (i = smaller_than_N; i > 0; i--) {
num_N = i;
num_X = X;
flag = 0;
while (num_N > 0) {
lastDigit_N = num_N % 10;
while (num_X > 0) {
lastDigit_X = num_X % 10;
if (lastDigit_N == lastDigit_X) {
break;
}
else {
flag = 1;
}
num_X /= 10;
}
num_N /= 10;
}
if(flag) {
printf("%d", i);
break;
}
}
return 0;
}
You could build a bitmask for your numbers showing the digits which are contained.
uint16_t num2bitmask(int number)
{
uint16_t result = 0;
while (number) {
int digit = number % 10;
number /= 10;
result |= (1 << digit);
}
return result;
}
With this function, you can create your bitmask for X and then iterate from N-1 down to 1 until you find a value which doesn't have any bits in common with the other value.
If you have a number with digits d_1, d_2, ..., d_n, and you're allowed to use digits in the set D, then possible solutions look like:
d_1, ..., d_{i-1}, max(d in D | d < d_i), max(d in D), ..., max(d in D).
That is, the digits are the same up to some point, then the next digit is as large as possible while being below the input digit, then the rest are just as large as possible.
Not all these "solutions" will be valid, but if you iterate through them in reverse order (there's exactly n for an input number of size n), the first valid one you find is the answer.
Some code, including tests:
#include <stdio.h>
int digit_length(int a) {
int r = 0;
while (a) {
a /= 10;
r += 1;
}
return r;
}
int get_digit(int a, int k) {
while (k--) a /= 10;
return a % 10;
}
int largest_different(int a, int b) {
int lena = digit_length(a);
int invalid = b ? 0 : 1;
for (; b; b /= 10) invalid |= 1 << (b % 10);
int max_valid = 9;
while (max_valid >= 0 && (invalid & (1 << max_valid)))
max_valid--;
if (max_valid == -1) return -1;
for (int i = 0; i < lena; i++) {
int d = get_digit(a, i) - 1;
while (d >= 0 && (invalid & (1 << d)))d--;
if (d < 0) continue;
int solution = 0;
for (int k = lena - 1; k >= 0; k--) {
solution *= 10;
solution += (k < i ? max_valid : k > i ? get_digit(a, k) : d);
}
return solution;
}
return -1;
}
int main(int argc, char *argv[]) {
struct {int n; int x; int want;} examples[] = {
{400, 897, 366},
{1000, 1236498, 777},
{998, 123, 997},
};
int error = 0;
for (int i = 0; i < sizeof(examples) / sizeof(*examples); i++) {
int got = largest_different(examples[i].n, examples[i].x);
if (got != examples[i].want) {
error = 1;
printf("largest_different(%d, %d) = %d, want %d\n",
examples[i].n, examples[i].x, got, examples[i].want);
}
}
return error;
}
There's not always a solution. In that case, the function returns -1.

Finding the length of an integer in C

I would like to know how I can find the length of an integer in C.
For instance:
1 => 1
25 => 2
12512 => 5
0 => 1
and so on.
How can I do this in C?
C:
You could take the base-10 log of the absolute value of the number, round it down, and add one. This works for positive and negative numbers that aren't 0, and avoids having to use any string conversion functions.
The log10, abs, and floor functions are provided by math.h. For example:
int nDigits = floor(log10(abs(the_integer))) + 1;
You should wrap this in a clause ensuring that the_integer != 0, since log10(0) returns -HUGE_VAL according to man 3 log.
Additionally, you may want to add one to the final result if the input is negative, if you're interested in the length of the number including its negative sign.
Java:
int nDigits = Math.floor(Math.log10(Math.abs(the_integer))) + 1;
N.B. The floating-point nature of the calculations involved in this method may cause it to be slower than a more direct approach. See the comments for Kangkan's answer for some discussion of efficiency.
If you're interested in a fast and very simple solution, the following might be quickest (this depends on the probability distribution of the numbers in question):
int lenHelper(unsigned x) {
if (x >= 1000000000) return 10;
if (x >= 100000000) return 9;
if (x >= 10000000) return 8;
if (x >= 1000000) return 7;
if (x >= 100000) return 6;
if (x >= 10000) return 5;
if (x >= 1000) return 4;
if (x >= 100) return 3;
if (x >= 10) return 2;
return 1;
}
int printLen(int x) {
return x < 0 ? lenHelper(-x) + 1 : lenHelper(x);
}
While it might not win prizes for the most ingenious solution, it's trivial to understand and also trivial to execute - so it's fast.
On a Q6600 using MSC I benchmarked this with the following loop:
int res = 0;
for(int i = -2000000000; i < 2000000000; i += 200) res += printLen(i);
This solution takes 0.062s, the second-fastest solution by Pete Kirkham using a smart-logarithm approach takes 0.115s - almost twice as long. However, for numbers around 10000 and below, the smart-log is faster.
At the expense of some clarity, you can more reliably beat smart-log (at least, on a Q6600):
int lenHelper(unsigned x) {
// this is either a fun exercise in optimization
// or it's extremely premature optimization.
if(x >= 100000) {
if(x >= 10000000) {
if(x >= 1000000000) return 10;
if(x >= 100000000) return 9;
return 8;
}
if(x >= 1000000) return 7;
return 6;
} else {
if(x >= 1000) {
if(x >= 10000) return 5;
return 4;
} else {
if(x >= 100) return 3;
if(x >= 10) return 2;
return 1;
}
}
}
This solution is still 0.062s on large numbers, and degrades to around 0.09s for smaller numbers - faster in both cases than the smart-log approach. (gcc makes faster code; 0.052 for this solution and 0.09s for the smart-log approach).
int get_int_len (int value){
int l=1;
while(value>9){ l++; value/=10; }
return l;
}
and second one will work for negative numbers too:
int get_int_len_with_negative_too (int value){
int l=!value;
while(value){ l++; value/=10; }
return l;
}
You can write a function like this:
unsigned numDigits(const unsigned n) {
if (n < 10) return 1;
return 1 + numDigits(n / 10);
}
length of n:
length = ( i==0 ) ? 1 : (int)log10(n)+1;
The number of digits of an integer x is equal to 1 + log10(x). So you can do this:
#include <math.h>
#include <stdio.h>
int main()
{
int x;
scanf("%d", &x);
printf("x has %d digits\n", 1 + (int)log10(x));
}
Or you can run a loop to count the digits yourself: do integer division by 10 until the number is 0:
int numDigits = 0;
do
{
++numDigits;
x = x / 10;
} while ( x );
You have to be a bit careful to return 1 if the integer is 0 in the first solution and you might also want to treat negative integers (work with -x if x < 0).
A correct snprintf implementation:
int count = snprintf(NULL, 0, "%i", x);
The most efficient way could possibly be to use a fast logarithm based approach, similar to those used to determine the highest bit set in an integer.
size_t printed_length ( int32_t x )
{
size_t count = x < 0 ? 2 : 1;
if ( x < 0 ) x = -x;
if ( x >= 100000000 ) {
count += 8;
x /= 100000000;
}
if ( x >= 10000 ) {
count += 4;
x /= 10000;
}
if ( x >= 100 ) {
count += 2;
x /= 100;
}
if ( x >= 10 )
++count;
return count;
}
This (possibly premature) optimisation takes 0.65s for 20 million calls on my netbook; iterative division like zed_0xff has takes 1.6s, recursive division like Kangkan takes 1.8s, and using floating point functions (Jordan Lewis' code) takes a whopping 6.6s. Using snprintf takes 11.5s, but will give you the size that snprintf requires for any format, not just integers. Jordan reports that the ordering of the timings are not maintained on his processor, which does floating point faster than mine.
The easiest is probably to ask snprintf for the printed length:
#include <stdio.h>
size_t printed_length ( int x )
{
return snprintf ( NULL, 0, "%d", x );
}
int main ()
{
int x[] = { 1, 25, 12512, 0, -15 };
for ( int i = 0; i < sizeof ( x ) / sizeof ( x[0] ); ++i )
printf ( "%d -> %d\n", x[i], printed_length ( x[i] ) );
return 0;
}
Yes, using sprintf.
int num;
scanf("%d",&num);
char testing[100];
sprintf(testing,"%d",num);
int length = strlen(testing);
Alternatively, you can do this mathematically using the log10 function.
int num;
scanf("%d",&num);
int length;
if (num == 0) {
length = 1;
} else {
length = log10(fabs(num)) + 1;
if (num < 0) length++;
}
int digits=1;
while (x>=10){
x/=10;
digits++;
}
return digits;
sprintf(s, "%d", n);
length_of_int = strlen(s);
You may use this -
(data_type)log10(variable_name)+1
ex:
len = (int)log10(number)+1;
In this problem , i've used some arithmetic solution . Thanks :)
int main(void)
{
int n, x = 10, i = 1;
scanf("%d", &n);
while(n / x > 0)
{
x*=10;
i++;
}
printf("the number contains %d digits\n", i);
return 0;
}
Quite simple
int main() {
int num = 123;
char buf[50];
// convert 123 to string [buf]
itoa(num, buf, 10);
// print our string
printf("%s\n", strlen (buf));
return 0;
}
keep dividing by ten until you get zero, then just output the number of divisions.
int intLen(int x)
{
if(!x) return 1;
int i;
for(i=0; x!=0; ++i)
{
x /= 10;
}
return i;
}
This goes for both negative and positive intigers
int get_len(int n)
{
if(n == 0)
return 1;
if(n < 0)
{
n = n * (-1); // if negative
}
return log10(n) + 1;
}
Same logic goes for loop
int get_len(int n)
{
if(n == 0)
return 1;
int len = 0;
if(n < 0)
n = n * (-1);
while(n > 1)
{
n /= 10;
len++;
}
return len;
}
Why don't you cast your integer to String and get length like this :
int data = 123;
int data_len = String(data).length();
For simple programs...
int num = 456, length=0 // or read value from the user to num
while(num>0){
num=num/10;
length++;
}
Use another variable to retain the initial num value.
In my opinion the shortest and easiest solution would be:
int length , n;
printf("Enter a number: ");
scanf("%d", &n);
length = 0;
while (n > 0) {
n = n / 10;
length++;
}
printf("Length of the number: %d", length);
My way:
Divide as long as number is no more divisible by 10:
u8 NumberOfDigits(u32 number)
{
u8 i = 1;
while (number /= 10) i++;
return i;
}
I don't know how fast is it in compared with other propositions..
int intlen(int integer){
int a;
for(a = 1; integer /= 10; a++);
return a;
}
A more verbose way would be to use this function.
int length(int n)
{
bool stop;
int nDigits = 0;
int dividend = 1;
do
{
stop = false;
if (n > dividend)
{
nDigits = nDigits + 1;
dividend = dividend * 10;
}
else {
stop = true;
}
}
while (stop == false);
return nDigits;
}
int returnIntLength(int value){
int counter = 0;
if(value < 0)
{
counter++;
value = -value;
}
else if(value == 0)
return 1;
while(value > 0){
value /= 10;
counter++;
}
return counter;
}
I think this method is well suited for this task:
value and answers:
-50 -> 3 //it will count - as one character as well if you dont want to count
minus then remove counter++ from 5th line.
566666 -> 6
0 -> 1
505 -> 3
Solution
Use the limit where the integer length changes, in the case of the decimal it is a power of 10, and thus use a counter for each verification that the specified integer has not exceeded the limit.
With the math.h dependency:
#include <math.h>
int count_digits_of_integer(unsigned int integer) {
int count = 1;
while(1) {
int limit = pow(10, count);
if(integer < limit) break;
count++;
}
return count;
}
Without dependency:
int int_pow(int base, int exponent) {
int potency = base;
for(int i = 1; i < exponent; i++) potency *= base;
return potency;
}
int count_digits_of_integer(unsigned int integer) {
int count = 1;
while(1) {
int limit = int_pow(10, count);
if(integer < limit) break;
count++;
}
return count;
}
Implementation
#include <stdio.h>
// Copy and paste the solution code here
int main() {
printf("%i -> (%i digits)\n", 0, count_digits_of_integer(0));
printf("%i -> (%i digits)\n", 12, count_digits_of_integer(12));
printf("%i -> (%i digits)\n", 34569, count_digits_of_integer(34569));
printf("%i -> (%i digits)\n", 1234, count_digits_of_integer(1234));
printf("%i -> (%i digits)\n", 3980000, count_digits_of_integer(3980000));
printf("%i -> (%i digits)\n", 100, count_digits_of_integer(100));
printf("%i -> (%i digits)\n", 9, count_digits_of_integer(9));
printf("%i -> (%i digits)\n", 385784, count_digits_of_integer(385784));
return 0;
}
Output:
0 -> (1 digits)
12 -> (2 digits)
34569 -> (5 digits)
1234 -> (4 digits)
3980000 -> (7 digits)
100 -> (3 digits)
9 -> (1 digits)
385784 -> (6 digits)
Hmm, maybe like this...?
#define _LEN(x) (sizeof(#x)/sizeof(char)-1)
You can also use this function to find the length of an integer:
int countlength(int number)
{
static int count = 0;
if (number > 0)
{
count++;
number /= 10;
countlength(number);
}
return count;
}
I think I got the most efficient way to find the length of an integer
its a very simple and elegant way
here it is:
int PEMath::LengthOfNum(int Num)
{
int count = 1; //count starts at one because its the minumum amount of digits posible
if (Num < 0)
{
Num *= (-1);
}
for(int i = 10; i <= Num; i*=10)
{
count++;
}
return count;
// this loop will loop until the number "i" is bigger then "Num"
// if "i" is less then "Num" multiply "i" by 10 and increase count
// when the loop ends the number of count is the length of "Num".
}
int main(void){
unsigned int n, size=0;
printf("get the int:");
scanf("%u",&n);
/*the magic*/
for(int i = 1; n >= i; i*=10){
size++;
}
printf("the value is: %u \n", n);
printf("the size is: %u \n", size);
return 0;
}
#include <stdio.h>
int main(void){
int c = 12388884;
printf("length of integer is: %d",printf("%d",c));
return 0;
}

Resources