How do I calculate the overall accuracy - ml

I have the accuracy of each class of a specific data set.
for 8 classes are: 94.97- 98.55- 61.54- 55.73- 53.98- 97.05- 1.14- 98.54
how can I calculate the overall accuracy for this data?

Related

Whats the Name of this Signal-Filter

to get a moving average like filter on ADC data in microcontrollers, i like to use the following code:
average = average + ((new_value - average)>>2);
it works nicely and super fast and I can adjust the filterstrength just by changing the amount of right-shift.
My question is now: has this filter a name?
cheers :)
Somewhere between Cumulative Moving Average and Weighted Moving Average
In general terms, it can be a specific case of Savitzky-Golay method as well. It is a low pass filter with the following explantion:
A Savitzky–Golay filter is a digital filter that can be applied to a set of digital data points for the purpose of smoothing the data, that is, to increase the precision of the data without distorting the signal tendency. This is achieved, in a process known as convolution, by fitting successive sub-sets of adjacent data points with a low-degree polynomial by the method of linear least squares. When the data points are equally spaced, an analytical solution to the least-squares equations can be found, in the form of a single set of "convolution coefficients" that can be applied to all data sub-sets, to give estimates of the smoothed signal, (or derivatives of the smoothed signal) at the central point of each sub-set.

How can I estimate an overall intercept in a cumulative link mixed model?

I am testing a cumulative link mixed model, and I want to estimate an overall intercept for the model.
The outcome of interest has 4 categories, so the model has 3 logits each with a unique intercept (threshold coefficient).
The model is tested in R with the ordinal package using the clmm function. I included a random intercept, a random slope, and a cross-level interaction.
The model looks like this:
comp.model.fit<-clmm(competence_ordinal~competence.state.lag1+ tantrum_dur.state.lag1+NEUROw1.c+tantrum_dur.state.lag1:NEUROw1.c+ (1+tantrum_dur.state.lag1|ID_nummer), data, Hess = TRUE, na.action = na.exclude)
Results of the fitted model showed that the cross-level interaction is significant. So, I would like to find out the region of significance of the simple slope, that defines the specific values of the moderator (NEUROw1.c) at which the slope of the regression of the outcome (competence_ordinal) on the focal predictor (tantrum_dur.state.lag1) transitions from non-significance to significance.
To compute a test for simple slopes I need an estimate for the intercept, however, in this type of model an overall intercept is not identified alongside the threshold coefficients.
Therefore, my question is how can I estimate an overall intercept?
Is there a way to constrain the first threshold to zero to be able to estimate the intercept?

Logistic Regression with Gradient Descent on large data

I have a training set with about 300000 examples and about 50-60 features and also it's a multiclass with about 7 classes. I have my logistic regression function that finds out the convergence of the parameters using gradient descent. My gradient descent algorithm, finds the parameters in matrix form as it's faster in matrix form than doing separately and linearly in loops.
Ex :
Matrix(P) <- Matrix(P) - LearningRate( T(Matrix(X)) * ( Matrix(h(X)) -Matrix(Y) ) )
For small training data, it's quite fast and gives correct values with maximum iterations to be around 1000000, but with that much training data, it's extremely slow, that with around 500 iterations it takes 18 minutes, but with that much iterations in gradient descent, the cost is still high and it does not predict the class correctly.
I know, I should implement maybe feature selection, or feature scaling and I can't use the packages provided. Language used is R. How do I go about implementing feature selection or scaling without using any library packages.
According to link, you can use either Z-score normalization or min-max scaling method. Both methods scale the data to [0,1] range. Z-score normalization is calculated as
Min-max scaling method is calculated as:

How to convert the output of an artificial neural network into probabilities?

I've read about neural network a little while ago and I understand how an ANN (especially a multilayer perceptron that learns via backpropagation) can learn to classify an event as true or false.
I think there are two ways :
1) You get one output neuron. It it's value is > 0.5 the events is likely true, if it's value is <=0.5 the event is likely to be false.
2) You get two output neurons, if the value of the first is > than the value of the second the event is likely true and vice versa.
In these case, the ANN tells you if an event is likely true or likely false. It does not tell how likely it is.
Is there a way to convert this value to some odds or to directly get odds out of the ANN. I'd like to get an output like "The event has a 84% probability to be true"
Once a NN has been trained, for eg. using backprogation as mentioned in the question (whereby the backprogation logic has "nudged" the weights in ways that minimize the error function) the weights associated with all individual inputs ("outside" inputs or intra-NN inputs) are fixed. The NN can then be used for classifying purposes.
Whereby the math (and the "options") during the learning phase can get a bit thick, it is relatively simple and straightfoward when operating as a classifier. The main algorithm is to compute an activation value for each neuron, as the sum of the input x weight for that neuron. This value is then fed to an activation function which purpose's is to normalize it and convert it to a boolean (in typical cases, as some networks do not have an all-or-nothing rule for some of their layers). The activation function can be more complex than you indicated, in particular it needn't be linear, but whatever its shape, typically sigmoid, it operate in the same fashion: figuring out where the activation fits on the curve, and if applicable, above or below a threshold. The basic algorithm then processes all neurons at a given layer before proceeding to the next.
With this in mind, the question of using the perceptron's ability to qualify its guess (or indeed guesses - plural) with a percentage value, finds an easy answer: you bet it can, its output(s) is real-valued (if anything in need of normalizing) before we convert it to a discrete value (a boolean or a category ID in the case of several categories), using the activation functions and the threshold/comparison methods described in the question.
So... How and Where do I get "my percentages"?... All depends on the NN implementation, and more importantly, the implementation dictates the type of normalization functions that can be used to bring activation values in the 0-1 range and in a fashion that the sum of all percentages "add up" to 1. In its simplest form, the activation function can be used to normalize the value and the weights of the input to the output layer can be used as factors to ensure the "add up" to 1 question (provided that these weights are indeed so normalized themselves).
Et voilà!
Claritication: (following Mathieu's note)
One doesn't need to change anything in the way the Neural Network itself works; the only thing needed is to somehow "hook into" the logic of output neurons to access the [real-valued] activation value they computed, or, possibly better, to access the real-valued output of the activation function, prior its boolean conversion (which is typically based on a threshold value or on some stochastic function).
In other words, the NN works as previously, neither its training nor recognition logic are altered, the inputs to the NN stay the same, as do the connections between various layers etc. We only get a copy of the real-valued activation of the neurons in the output layer, and we use this to compute a percentage. The actual formula for the percentage calculation depends on the nature of the activation value and its associated function (its scale, its range relative to other neurons' output etc.).
Here are a few simple cases (taken from the question's suggested output rules)
1) If there is a single output neuron: the ratio of the value provided by the activation function relative to the range of that function should do.
2) If there are two (or more output neurons), as with classifiers for example: If all output neurons have the same activation function, the percentage for a given neuron is that of its activation function value divided by the sum of all activation function values. If the activation functions vary, it becomes a case by case situation because the distinct activation functions may be indicative of a purposeful desire to give more weight to some of the neurons, and the percentage should respect this.
What you can do is to use a sigmoid transfer function on the output layer nodes (that accepts data ranges (-inf,inf) and outputs a value in [-1,1]).
Then by using the 1-of-n output encoding (one node for each class), you can map the range [-1,1] to [0,1] and use it as probability for each class value (note that this works naturally for more than just two classes).
The activation value of a single output neuron is a linearly weighted sum, and may be directly interpreted as an approximate probability if the network is trained to give outputs a range from 0 to 1. This would tend to be the case if the transfer function (or output function) in both the preceding stage and providing the final output is in the 0 to 1 range too (typically the sigmoidal logistic function). However, there is no guarantee that it will but repairs are possible. Moreover unless the sigmoids are logistic and the weights are constrained to be positive and sum to 1, it is unlikely. Generally a neural network will train in a more balanced way using the tanh sigmoid and weights and activations that range positive and negative (due to the symmetry of this model). Another factor is the prevalence of the class - if it is 50% then a 0.5 threshold is likely to be effective for logistic and a 0.0 threshold for tanh. The sigmoid is designed to push things towards the centre of the range (on backpropogation) and constrain it from going out of the range (in feedforward). The significance of the performance (with respect to the Bernoulli distribution) can also be interpreted as a probability that the neuron is making real predictions rather than guessing. Ideally the bias of the predictor to positives should match the prevalence of positives in the real world (which may vary at different times and places, e.g. bull vs bear markets, e.g. credit worthiness of people applying for loans vs people who fail to make loan payments) - calibrating to probabilities has the advantage that any desired bias can be set easily.
If you have two neurons for two classes, each can be interpreted independently as above, and the halved difference between them can also be. It is like flipping the negative class neuron and averaging. The differences can also give rise to a probability of significance estimate (using the T-test).
The Brier score and its Murphy decomposition give a more direct estimate of the probability that an average answer is correct, while Informedness gives the probability the classifier is making an informed decision rather than a guess, ROC AUC gives the probability a positive class will be ranked higher than a negative class (by a positive predictor), and Kappa will give a similar number that matches Informedness when prevalence = bias.
What you normally want is both a significance probability for the overall classifier (to ensure that you are playing on a real field, and not in an imaginary framework of guestimates) and a probability estimate for a specific example. There are various ways to calibrate, including doing a regression (linear or nonlinear) versus probability and using its inverse function to remap to a more accurate probability estimate. This can be seen by the Brier score improving, with the calibration component reducing towards 0, but the discrimination component remaining the same, as should ROC AUC and Informedness (Kappa is subject to bias and may worsen).
A simple non-linear way to calibrate to probabilities is to use the ROC curve - as the threshold changes for the output of a single neuron or the difference between two competing neurons, we plot the results true and false positive rates on a ROC curve (the false and true negative rates are naturally the complements, as what isn't really a positive is a negative). Then you scan the ROC curve (polyline) point by point (each time the gradient changes) sample by sample and the proportion of positive samples gives you a probability estimate for positives corresponding to the neural threshold that produced that point. Values between points on the curve can be linearly interpolated between those that are represented in the calibration set - and in fact any bad points in the ROC curve, represented by deconvexities (dents) can be smoothed over by the convex hull - probabilistically interpolating between the endpoints of the hull segment. Flach and Wu propose a technique that actually flips the segment, but this depends on information being used the wrong way round and although it could be used repeatedly for arbitrary improvement on the calibration set, it will be increasingly unlikely to generalize to a test situation.
(I came here looking for papers I'd seen ages ago on these ROC-based approaches - so this is from memory and without these lost references.)
I will be very prudent in interpreting the outputs of a neural networks (in fact any machine learning classifier) as a probability. The machine is trained to discriminate between classes, not to estimate the probability density. In fact, we don't have this information in the data, we have to infer it. For my experience I din't advice anyone to interpret directly the outputs as probabilities.
did you try prof. Hinton's suggestion of training the network with softmax activation function and cross entropy error?
as an example create a three layer network with the following:
linear neurons [ number of features ]
sigmoid neurons [ 3 x number of features ]
linear neurons [ number of classes ]
then train them with cross entropy error softmax transfer with your favourite optimizer stochastic descent/iprop plus/ grad descent. After training the output neurons should be normalized to sum of 1.
Please see http://en.wikipedia.org/wiki/Softmax_activation_function for details. Shark Machine Learning framework does provide Softmax feature through combining two models. And prof. Hinton an excellent online course # http://coursera.com regarding the details.
I can remember I saw an example of Neural network trained with back propagation to approximate the probability of an outcome in the book Introduction to the theory of neural computation (hertz krogh palmer). I think the key to the example was a special learning rule so that you didn't have to convert the output of a unit to probability, but instead you got automatically the probability as output.
If you have the opportunity, try to check that book.
(by the way, "boltzman machines", although less famous, are neural networks designed specifically to learn probability distributions, you may want to check them as well)
When using ANN for 2-class classification and logistic sigmoid activation function is used in the output layer, the output values could be interpreted as probabilities.
So if you choosing between 2 classes, you train using 1-of-C encoding, where 2 ANN outputs will have training values (1,0) and (0,1) for each of classes respectively.
To get probability of first class in percent, just multiply first ANN output to 100. To get probability of other class use the second output.
This could be generalized for multi-class classification using softmax activation function.
You can read more, including proofs of probabilistic interpretation here:
[1] Bishop, Christopher M. Neural networks for pattern recognition. Oxford university press, 1995.

How many is a "large" data set?

Assumed infinite storage where size/volume/physics (metrics,gigabytes/terrabytes) won't matter only the number of elements and their labels, statistically pattern should emerge already at 30 subsets, but can you agree that less than 1000 subsets is too little to test, and at least 10000 distinct subsets / "elements", "entries" / entities is "a large data set". Or larger?
Thanks
I'm not sure I understand your question, but it sounds like you are attempting to ask about how many elements of data set you need to sample in order to ensure a certain degree of accuracy (30 is a magic number from the Central Limit Theorem that comes in to play frequently).
If that is the case, the sample size you need depends on the confidence level and confidence interval. If you want a 95% confidence level and a 5% confidence interval (i.e. you want to be 95% confident that the proportion you determine from your sample is within 5% of the proportion in the full data set), you end up needing a sample size of no more than 385 elements. The greater the confidence level and the smaller the confidence interval that you want to generate, the larger the sample size you need.
Here is a nice discussion on the mathematics of determining sample size
and a handy sample size calculator if you just want to run the numbers.

Resources