Distributed transactions - why do we save tranlogs to file system? - database

All transaction managers (Atomikos, Bitronix, IBM WebSphere TM etc) save some "transaction logs" into 'tranlogs' folder to file system.
When something terrible happens and server gets down sometimes tranlogs become broken.
They require some manual recovery procedure.
I've been told that by simply clearing broken tranlogs folder I risk to have an inconsistent state of resources that participated in transactions.
As a "dumb" developer I feel more comfortable with simple concepts. I want to think that distributed transaction management should be alike the regular transaction management:
If something went wrong at any party (network, app error, timeout) - I expect the whole multi-resource transaction not to be committed in any part of it. All leftovers should be cleaned up sooner or later automatically.
If transaction managers fails (file system fault, power supply fault) - I expect all the transactions under this TM to be rollbacked (apparently, at DB timeout level).
File storage for tranlogs is optional if I don't want to have any automatic TX recovery (whatever it would mean).
Questions
Why can't I think like this? What's so complicated about 2PC?
What are the exact risks when I clear broken tranlogs?
If I am wrong and I really need all the mess with 2PC file system state. Don't you feel sick about the fact that TX manager can actually break storage state in an easy and ugly manner?

When I was first confronted with 2 phase commit in real life in 1994 (initially on a larger Oracle7 environment), I had a similar initial reaction. What a bloody shame that it is not generally possible to make it simple. But looking back at algorithm books of university, it become clear that there is no general solution for 2PC.
See for instance how to come to consensus in a distributed environment
Of course, there are many specific cases where a 2PC commit of a transaction can be resolved more easy to either complete or roll back completely and with less impact. But the general problem stays and can not be solved.
In this case, a transaction manager has to decide at some time what to do; a transaction can not remain open forever. Therefor, as an ultimate solution they will always need to have go back to their own transaction logs, since one or more of the other parties may not be able to reliably communicate status now and in the near future. Some transaction managers might be more advanced and know how to resolve some cases more easily, but the need for an ultimate fallback stays.
I am sorry for you. Fixing it generally seems to be identical to "Falsity implies anything" in binary logic.
Summarizing
On Why can't I think like this? and What's so complicated about 2PC: See above. This algorithmetic problem can't be solved universally.
On What are the exact risks when I clear broken tranlogs?: the transaction manager has some database backing it. Deleting translogs is the same problem in general relational database software; you loose information on the transactions in process. Some db platforms can still have somewhat or largely integer files. For background and some database theory, see Wikipedia.
On Don't you feel sick about the fact that TX manager can actually break storage state in an easy and ugly manner?: yes, sometimes when I have to get a lot of work done by the team, I really hate it. But well, it keeps me having a job :-)
Addition: to 2PC or not
From your addition I understand that you are thinking whether or not to include 2PC in your projects.
In my opinion, your mileage may vary. Our company has as policy for 2PC: avoid it whenever possible. However, in some environments and especially with legacy systems and complex environments such a found in banking you can not work around it. The customer requires it and they may be not willing to allow you to perform a major change in other infrastructural components.
When you must do 2PC: do it well. I like a clean architecture of the software and infrastructure, and something that is so simple that even 5 years from now it is clear how it works.
For all other cases, we stay away from two phase commit. We have our own framework (Invantive Producer) from client, to application server to database backend. In this framework we have chosen to sacrifice elements of ACID when normally working in a distributed environment. The application developer must take care himself of for instance atomicity. Often that is possible with little effort or even doesn't require thinking about. For instance, all software must be safe for restart. Even with atomicity of transactions this requires some thinking to do it well in a massive multi user environment (for instance locking issues).
In general this stupid approach is very easy to understand and maintain. In cases where we have been required to do two phase commit, we have been able to just replace some plug-ins on the framework and make some changes to client-side code.
So my advice would be:
Try to avoid 2PC.
But encapsulate your transaction logic nicely.
Allowing to do 2PC without a complete rebuild, but only changing things where needed.
I hope this helps you. If you can tell me more about your typical environments (size in #tables, size in GB persistent data, size in #concurrent users, typical transaction mgmt software and platform) may be i can make some additions or improvements.
Addition: Email and avoiding message loss in 2PC
Regarding whether suggesting DB combining with JMS: No, combining DB with JMS is normally of little use; it will itself already have some db, therefor the original question on transaction logs.
Regarding your business case: I understand that per event an email is sent from a template and that the outgoing mail is registered as an event in the database.
This is a hard nut to crack; I've been enjoying doing security audits and one of the easiest security issues to score was checking use of email.
Email - besides not being confidential and tampersafe in most situations like a postcard - has no guarantees for delivery and/or reading without additional measures. For instance, even when email is delivered directly between your mail transfer agent and the recipient, data loss can occur without the transaction monitor being informed. That even gets worse when multiple hops are involved. For instance, each MTA has it's own queueing mechanism on which a "bomb can be dropped" leading to data loss. But you can also think of spam measures, bad configuration, mail loops, pressing delete file by accident, etc. Even when you can register the sending of the email without any loss of transaction information using 2PC, this gives absolutely no clue on whether the email will arrive at all or even make it across the first hop.
The company I work for sells a large software package for project-driven businesses. This package has an integrated queueing mechanism, which also handles email events. Typically combined in most implementation with Exchange nowadays. A few months we've had a nice problem: transaction started, opened mail channel, mail delivered to Exchange as MTA, register that mail was handled... transaction aborted, since Oracle tablespace full. On the next run, the mail was delivered again to Exchange, again abort, etc. The algorithm has been enhanced now, but from this simple example you can see that you need all endpoints to cooperate in your 2PC, even when some of the endpoints are far away in an organisation receiving and displaying your email.
If you need measures to ensure that an email is delivered or read, you will need to supplement it by additional measures. Please pick one of application controls, user controls and process controls from literature.

Related

Is RabbitMQ, ZeroMQ, Service Broker or something similar an appropriate solution for creating a high availability database webservice?

I have a CRUD webservice, and have been tasked with trying to figure out a way to ensure that we don't lose data when the database goes down. Everyone is aware that if the database goes down we won't be able to get "reads" but for a specific subset of the operations we want to make sure that we don't lose data.
I've been given the impression that this is something that is covered by services like 0MQ, RabbitMQ, or one of the Microsoft MQ services. Although after a few days of reading and research, I'm not even certain that the messages we're talking about in MQ services include database operations. I am however 100% certain that I can queue up as many hello worlds as I could ever hope for.
If I can use a message queue for adding a layer of protection to the database, I'd lean towards Rabbit (because it appears to persist through crashes) but since the target is a Microsoft SQL server databse, perhaps one of their solutions (such as SQL Service Broker, or MSMQ) is more appropriate.
The real fundamental question that I'm not yet sure of though is whether I'm even playing with the right deck of cards (so to speak).
With the desire for a high-availablity webservice, that continues to function if the database goes down, does it make sense to put a Rabbit MQ instance "between" the webservice and the database? Maybe the right link in the chain is to have RabbitMQ send messages to the webserver?
Or is there some other solution for achieving this? There are a number of lose ideas at the moment around finding a way to roll up weblogs in the event of database outage or something... but we're still in early enough stages that (at least I) have no idea what I'm going to do.
Is message queue the right solution?
Introducing message queuing in between a service and it's database operations is certainly one way of improving service availability. Writing to a local temporary queue in a store-and-forward scenario will always be more available than writing to a remote database server, simply by being a local operation.
Additionally by using queuing you gain greater control over the volume and nature of database traffic your database has to handle at peak. Database writes can be queued, routed, and even committed in a different order.
However, in order to do this you need to be aware that when a database write is performed it is processed off-line. Even under conditions where this happens almost instantaneously, you are losing a benefit that the synchronous nature of your current service gives you, which is that your service consumers can always know if the database write operation is successful or not.
I have written about this subject before here. The user posting the question had similar concerns to you. Whether you do this or not is a decision you have to make based on whether this is something your consumers care about or not.
As for the technology stacks you are thinking of this off-line model is implementable with any of them pretty much, with the possible exception of Service broker, which doesn't integrate well with code (see my answer here: https://stackoverflow.com/a/45690344/569662).
If you're using Windows and unlikely to need to migrate, I would go for MSMQ (which supports durable messaging via transactional queues) as it's lightweight and part of Windows.

Relying on db transaction rollback in sunshine scenario

In a financial system I am currently maintaining, we are relying on the rollback mechanism of our database to simulate the results of running some large batch jobs - rolling back the transaction or committing it at the end, depending on whether we were doing a test run.
I really cannot decide what my opinion is. In a way I think this is great, because then there is no difference between the simulation and a live run - on the other hand it just feels kind of icky, like e.g. depending on code throwing exceptions to carry out your business logic.
What is your opinion on relying on database transactions to carry out your business logic?
EXAMPLE
Consider an administration system having 1000 mortgage deeds in a database. Now the user wants to run a batch job that creates the next term invoice on each deed, using a couple of advanced search criteria that decides which deeds are to be invoiced.
Before she actually does this, she does a test run (implemented by doing the actualy run but ending in a transaction rollback), creating a report on which deeds will be invoiced. If it looks satisfactory, she can choose to do the actual run, which will end in a transaction commit.
Each invoice will be stamped with a batch number, allowing us to revert the changes later if it is needed, so it's not "dangereous" to do the batch run. The users just feel that it's better UX to be able to simulate the results first.
CLARIFICATION
It is NOT about testing. We do have test and staging environments for that. It's about a regular user using our system wanting to simulate the results of a large operation, that may seem "uncontrollable" or "irreversible" even though it isn't.
CONCLUSION
Doesn't seem like anyone has any real good arguments against our solution. As always, context means everything, so in the context of complex functional requirements exceeding performance requirements, using db rollback to implement batch job simulations seems a viable solution.
As there is no real answer to this question, I am not choosing an answer - instead I upvoted those who actually put forth an argument.
I think it's an acceptable approach, as long as it doesn't interfere with regular processing.
The alternative would be to build a query that displays the consequences for review, but we all have had the experience of taking such an approach and not quite getting it right; or finding that the context changed between query and execution.
At the scale of 1000 rows, it's unlikely the system load is burdensome.
Before she actually does this, she does a test run (implemented by doing the actualy run but ending in a transaction rollback), creating a report on which deeds will be invoiced. If it looks satisfactory, she can choose to do the actual run, which will end in a transaction commit.
That's wrong, prone to failure, and must be hell on your database logs. Unless you wrap your simulation and the actual run in a single transaction (which, judging by the timeline necessary to inspect 1000 deeds, would lead to a lot of blocked users) then there's no guaranteed consistency between test run and real run. If somebody changed data, added rows, etc. then you could end up with a different result - defeating the entire purpose of the test run.
A better pattern to do this would be for the test run to tag the records, and the real run to pick up the tagged records and process them. Or, if you have a thick client app, you can pull down the records to the client, show the report, and - if approved - push them back up.
We can see what the user needs to do, quite a reasonable thing. I mean how often do we get a regexp right first time? Refining a query till it does exactly what you want is not unusual.
The business consequences of not catching errors may be quite high, so doing a trial run makes sense.
Given a blank sheet of paper I'm sure we can devise an clean implementation expressed in formal behaviours of the system rather than this somewhat back-door appraoch.
How much effort would I put into fixing that now? Depends on whether the current approach is actually hurting. We can imagine that in a heaviliy used system it could lead to contention in the database.
What I wrote about the PRO FORMA environment in that bank I worked in was also entirely a user thing.
I'm not sure exactly what you're asking here. Taking you literally
What is your opinion on relying on
database transactions to carry out
your business logic?
Well, that's why we have transactions. We do rely on them. We hit an error and abort a transaction and rely on work done in that transaction scope to be rolled-back. So exploiting the transactional beahviours of our systems is a jolly good thing, and we'd need to hand-roll the same thing ourselves if we didn't.
But I think your question is about testing in a live system and relying on not commiting in order to do no damage. In an ideal world we have a live system and a test system and we don't mess with live systems. Such ideals are rarely seen. Far more common is "patch the live system. testing? what do you mean testing?" So in fact you're ahead of the game compared with some.
An alternative is to have dummy data in the live system, so that some actions can actually run all the way through. Again, error prone.
A surprisingly high proportion of systems outage are due to finger trouble, it's the humans who foul up.
It works - as you say. I'd worry about the concurrency of the system since the transaction will hold locks, possibly many locks. It means that your tests will hold up any live action on the system (and any live action operations will hold up your tests). It is generally better to use a test system for testing. I don't like it much, but if the risks from running a test but forgetting to roll it back are not a problem, and neither is the interference, then it is an effective way of attaining a 'what if' type calculation. But still not very clean.
When I was working in a company that was part of the "financial system", there was a project team that had decided to use the production environment to test their conversion procedure (and just rollback instead of commit at the end).
They almost got shot for it. With afterthought, it's a pity they weren't.
Your test environments that you claim you have are for the IT people's use. Get a similar "PRO-FORMA" environment of which you can guarantee your users that it is for THEIR use exclusively.
When I worked in that bank, creating such a PRO-FORMA environment was standard procedure at every year closure.
"But it's not about testing, it's about a user wanting to simulate the results of a large job."
Paraphrased : "it's not about testing, it's about simulation".
Sometimes I wish Fabian Pascal was still in business.
(Oh, and in case anyone doesn't understand : both are about "not perpetuating the results".)

Sharing transactional space between two connections

There's an app that starts a transaction on SQL Server 2008 and moves some data around. Then, while the transaction is still not committed, the app prints out some labels. It is very important that the transaction is not committed until printing succeeded; if a printing error occurs, everything is rolled back.
Now, the printing engine is a) grew quite huge and complex, and b) is eventually required from lots of places. It is therefore decided to separate the engine and make it a service.
Yes, it is possible to pass all data required for printing from the client app to that server so that the server only prints and is not concerned about databases. However, that would mean leaving piles of code and label templates in each application that requires printing; effectively, very little separation will then occur. On contrary, it would be extreemely efficient (and easier for me to write and maintain) to just pass the IDs of what is required to the service which then would go to the database and get the data. All formats and layouts will be centralized and apps will only ask for 5 delivery notes from print job 12345.
Now, this is not going to happen as the transaction is still not committed at the moment of printing. The service would not be able to read the data, and using READ UNCOMMITTED is not quite an option.
I was going to use the good old sp_bindsession to join the two sessions, app's and service's, but then it is suddenly deprecated and to be removed from future releases. The help suggests I use MARS or distributed transactions instead, but I can't see how they would help.
Any advice?
My gut feeling is that attempting to share a transaction between two processes in this way is not a good idea.
My approach would be to either to pass all data to service, or investigate alternatives to keeping the transaction open for the duration of the printing - would a simpler mechanism (such as an IsPrinted flag for each record) not suffice?
Failing that, the eaisest way I can see of doing this would be to have the printing service pass all of its SQL requests back through to the originating process so that they can be executed in the context of the original transaction.
Only sp_getbindtoken/sp_bindsession can do what you ask, and it is deprecated and will be removed.
In theory you should use short transactions, represent the 'printing' state as a committed state, and have compensating actions if the print fails. Also if the printing engine is exposed as a service, it should be autonomous and receive as a message all data it needs to print (like label templates). I understand this is easy for me to to say but may be a major undertaking on the product.
For the moment I think your best bet is to use the session binding tokens. Altough I have to call out that leaving transactions open for the duration of physical operations (printing) is a very bad practice.

Should you test an external system prior to using it?

Note: This is not for unit testing or integration testing. This is for when the application is running.
I am working on a system which communicates to multiple back end systems, which can be grouped into three types
Relational database
SOAP or WCF service
File system (network share)
Due to the environment this will run in, there are no guarantees that any of those will be available at run time. In fact some of them seem pretty brittle and go down multiple times a day :(
The thinking is to have a small bit of test code which runs before the actual code. If there is a problem then persist the request and poll until the target system until it is available. Tests could possibly be rerun within the code to check it is still available at logical points. The ultimate goal is to have a very stable system, regardless of the stability (or lack thereof) of the systems it communicates to.
My questions around this design are:
Are there major issues with it? (small things like the fact it may fail between the test completing and the code running are understandable)
Are there better ways to implement this sort of design?
Would using traditional exception handling and/or transactions be better?
Updates
The system needs to talk to the back end systems in a coordinated way.
The system is very async in nature so using things like queuing technologies is fine.
The system must run even if one or more backend systems are down as others may be up and processing of some information is possible.
You will be needing that traditional exception handling no matter what, since as you point out there's always the chance that things'll fail between your last check and the actual request. So I really think any solution you find should try to interact smoothly with this.
You are not stating if these flaky resources need to interact in some kind of coordinated manner, which would indicate that you should probably be using a transaction manager of some sort to do this. I do not believe you want to get into the footwork of transaction management in application code for most needs.
Sometimes I have also seen people use AOP to encapsulate retry logic to back-end systems that fail (for instance due to time-out issues). Used sparingly this may be a decent solution.
In some cases you can also use message queuing technology to alleviate unstable back-ends. You could for instance commit to a message queue as part of a transaction, and only pop off the queue when successful. But this design is normally only possible when you're able to live with an asynchronous process.
And as always, real stability can only be achieved by attacking the root cause of the problem. I had a 25-year old bug fixed in a mainframe TCP/IP stack fixed because we were overrunning it, so it is possible.
The Microsoft Smartclient framework provides a ConnectionMonitor class. Should be easy to use or duplicate.
Our approach to this kind of issue was to run a really basic 'sanity tester' prior to bringing up our main application. This was thick client so we could run the test every time the app started. This sanity test would go out and check things like database availability, and external network (extranet) access, and it could have been extended to do webservices as well.
If there was a failure, the user was informed, and crucially an email was also sent to the support/dev team. These emails soon became unweildy as so many were being created, but we then setup filters, so we knew when somethings really bad was happening. Overall the approach worked pretty well, our biggest win was being able to tell users that the system was down, before they had entered data, and got part way through a long winded process. They absolutely loved it.
At a technica level the sanity was written in C#, it used exception handling in a conventional way not to find the problems it was looking for. The sanity program became a mini app in its own right, and it was standalone from the main app. If I were doing it again I'd using a logging framework to capture issues, which is more flexible then our hard coded approach.

Queues against Tables in messaging systems [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
I've been experiencing the good and the bad sides of messaging systems in real production environments, and I must admit that a well organized table or schema of tables simply beats every time any other form of messaging queue, because:
Data are permanently stored on a table. I've seen so many java (jms) applications that lose or vanish messages on their way for uncaught exceptions or other bugs.
Queues tend to fill up. Db storage is virtually infinite, instead.
Tables are easily accessible, while you have to use esotic instruments to read from a queue.
What's your opinion on each approach?
The phrase beats every time totally depends on what your requirements were to begin with. Certainly its not going to beat every time for everyone.
If you are building a single system which is already using a database, you don't have very high performance throughput requirements and you don't have to communicate with any other teams or systems then you're probably right.
For simple, low thoughput, mostly single threaded stuff, database are a totally fine alternative to message queues.
Where a message queue shines is when
you want a high performance, highly concurrent and scalable load balancer so you can process tens of thousands of messages per second concurrently across many servers/processes (using a database table you'd be lucky to process a few hundred a second and processing with multiple threads is pretty hard as one process will tend to lock the message queue table)
you need to communicate between different systems using different databases (so don't have to hand out write access to your systems database to other folks in different teams etc)
For simple systems with a single database, team and fairly modest performance requirements - sure use a database. Use the right tool for the job etc.
However where message queues shine is in large organisations where there are lots of systems that need to communicate with each other (and so you don't want a business database to be a central point of failure or place of version hell) or when you have high performance requirements.
In terms of performance a message queue will always beat a database table - as message queues are specifically designed for the job and don't rely on pessimistic table locks (which are required for a database implementation of a queue - to do the load balancing) and good message queues will perform eager loading of messages to queues to avoid the network overhead of a database.
Similarly - you'd never use a database to do load balancing of HTTP requests across your web servers - as it'd be too slow - if you have high performance requirements for your load balancer you'd not use a database either.
I've used tables first, then refactor to a full-fledged msg queue when (and if) there's reason - which is trivial if your design is reasonable.
The biggest benefits are a.) it's easier, (b. it's a better audit trail because you have the other tables to join to, c.) if you know the database tools really well, they are easier to use than the Message Queue tools, d.) it's generally a bit easier to set up a test/dev environment in a context that already exists for your app (if same familiarity applies).
Oh, and e.) for perhaps you and others, it's not another product to learn, install, configure, administer, and support.
IMPE, it's just as reliable, disconnectable, and you can convert if it needs more scalable.
Data are permanently stored on a table. I've seen so many java (jms) applications that loose or vanish messages on their way for uncaught exceptions or other bugs.
Which JMS implementation? Sun sells reliable queue which can't lose messages. Perhaps you just purchased a cheesy JMS-compliant product. IBM's MQ is extremely reliable, and there are JMS libraries to access it.
Queues tend to fill up. Db storage is virtually infinite, instead.
Ummm... If your queue fills up, it sounds like something is broken. If your apps crash, that's not a good thing, and queues have little to do with that. If you've purchased a really poor JMS implementation, I can see where you might be unhappy with it. It's a competitive market-place. Find a better queue manager. Sun's JCAPS has a really good queue manager, formerly the SeeBeyond message queue.
Tables are easily accessible, while you have to use esotic instruments to read from a queue.
That doesn't fit with my experience. Tables are accessed through this peculiar "other language" (SQL), and requires that I be aware of structure mappings from tables to objects and data type mappings from VARCHAR2 to String. Further, I have to use some kind of access layer (JDBC or an ORM which uses JDBC). That seems very, very complex. A queue is accessed through MessageConsumers and MessageProducers using simple sends and receives.
It sounds as though the problems you've experienced are not inherent to messaging, but rather are artifacts of poorly-implemented messaging systems. Is building messaging systems harder than building database systems? Yes, if all you ever do is build database systems.
Losing messages to uncaught exceptions? That's hardly the fault of the message queue. The applications you're using are poorly engineered. They're removing messages from the queue before processing completes. They're not using transactions, or journalling.
Message queues fill up while DB storage is "virtually infinite"? You talk as though managing disk space were something that databases didn't require. Message queue servers require administration, just like database servers do.
Esoteric instruments to read from a queue? Maybe if you find asynchronous methods esoteric. Maybe if you find serialization and deserialization esoteric. (At least, those are the things I found esoteric when I was learning messaging. Like many seemingly-esoteric technologies, they're actually quite mundane once you understand them, and understanding them is an important part of the seasoned developer's education.)
Aspects of messaging that make it superior to databases:
Asynchronous processing. Message queues notify waiting processes when new messages arrive. To accomplish this functionality in a database, the waiting processes have to poll the database.
Separation of concerns. The communications channel is decoupled from the implementation details of the message content. Only the sender and the receiver need to know anything about the format of the data stream within a given message.
Fault-tolerance.. Messaging can function when connections between servers are intermittent. Message queues can store messages locally and only forward them to remote servers when the connection is live.
Systems integration. In the Windows world, at least, messaging is built into the operating system. It uses the OS's security model, it's managed through the OS's tools, etc.
If you don't need these things, you probably don't need messaging.
Here's a simple example of an application for messaging: I'm building a system right now where users, distributed across multiple networks, are entering fairly intricate sets of transactions that are used to produce printed output. Output generation is computationally expensive and not part of their workflow; i.e. the users don't care when the output gets generated, just that it does.
So we serialize the transactions into a message and drop it in a queue. A process running on a server grabs messages from the queue, produces the output, and stores the output in an imaging system.
If we used a database as our message store, we'd have to come up with a schema to store a transaction format that right now only the sender and receiver care about, we'd need to make sure every workstation on the network had permanent persistent connections to the database server, we'd have no capacity to distribute this transaction load across multiple servers, and our output server would have to query the database thousands of times a day waiting to see if there were new jobs to process.
Queues provide reliable messaging. The store-and-forward, disconnected nature of queueing make it much more scalable than databases, not to mention more robust.
And queues shouldn't really be used for permanent storage of information - it is best to think of them as temporary inboxes, unlike databases.

Resources