Optimal Riak storage strategy - database

I'm planning to use Riak for storing some sensor data, but sensors are connected to different users. My plan is to make a structure like this:
Bucket = user id
key = time, new key each minute (or two minutes maybe)
When I say a new key each minute, the readings are not always continuous and are not real time, but they are being uploaded later. They are recorded at certain periods of the day. The frequency of metering is quite high, 250 samples a second. If I make a new key for each measurement, I will get an explosion of keys very fast and I don't think it will do good for performance. Besides that, I do not really need to know the precise number at each given moment, I will use them more sequentially in a period (values from minute N to minute M).
So I'm thinking of "grouping" the results for each minute, and storing them like that as some JSON.
Does this strategy look feasible?
Also, I'm thinking about using LevelDB as the storage engine, just to be on the safe side as far as RAM usage goes.

Lower keys count seems better for me then key for each event. How would you use this data later?
If data is intended for further analyze, leveldb and secondary indexes allow you to pick a data for certain period (if your keys somehow ordered, datetime for instance) in a mapreduce job (with additional efforts it could be done in a background).
Also leveldb do not store all keys in memory, it is good for continuously growing dataset, if you plan to store all the data forever.
If your application depends on predictable latency and need fixed amount of data per query It better to group data like application wants (for sample all keys for a 10 min in one object).
One more concern is total object size, as riak docs says it better not exceed 10mb size for single object.

Related

Best approach for Cassandra Partitioning

I am very new to Cassandra, I have worked with Oracle SQL and Mongo DB and I am trying to learn Apache Cassandra to use it in a project I am working on.
I have a certain number of sensors (let's say 20), that might increase in the future. They send the data to store every 10 seconds. I am aware of bucketing to deal with this type of situations but wondering which one is better.
PRIMARY KEY ((sensor_id, day_month_year), reported_at);
PRIMARY KEY ((sensor_id, month_year), reported_at);
I don't know if using month_year is too much data for a single partition and on the other hand I think that if I use day_month_year it creates too many partitions and it slows reading too much when trying to get data since it has to access multiple partitions.
Which one should I use? If you have other good suggestions or just some explanations for me I'd like to hear them.
Posting my answer here you also asked on https://community.datastax.com/questions/10596/.
Sensor data collected every 10 seconds is equivalent to:
6 entries per minute
360 entries per hour
8,640 entries per day
260K entries per month
Depending on what other data you store for each row, it will be difficult to keep the size of each partition to the recommended 100MB. This isn't a hard limit so your partitions can go beyond 100MB but you are trading off performance the larger your partition gets.
On its own, Cassandra isn't ideal for performing analytics queries because it is optimised for OLTP workloads where you are reading one partition for each app request. If you need to do OLAP, you will need to do in Spark for efficiency. Cheers!

Cache locality in Flink

I have a stream of data, containing a key, that I need to mix and match with data associated with that key. Each key belongs to a partition, and each partition can be loaded from a database.
Data is quite big and only a few hundred out of hundreds of thousands partitions can fit in a single task manager.
My current approach is to use partitionCustom based on the key.partition and cache the partition data inside a RichMapFunction to mix and match without reloading the data of the partitions multiple times.
When the number of message rate on a same partition gets too high, I hit a hot-spot/performance bottleneck.
What tools do I have in Flink to improve the throughput in this case?
Are there ways to customize the scheduling and to optimize the job placements based on setup time on the machines, and maximum processing time history?
It sounds like (a) your DB-based data is also partitioned, and (b) you have skew in your keys, where one partition gets a lot more keys than other partitions.
Assuming the above is correct, and you've done code profiling on your "mix and match" code to make that reasonably efficient, then you're left with manual optimizations. For example, if you know that keys in partition X are much more common, you can put all of those keys in one partition, and then distribute the remaining keys amongst the other partitions.
Another approach is to add a "batcher" operator, which puts up to N keys for the same partition into a group (typically this also needs a timeout to flush, so data doesn't get stuck). If you can batch enough keys, then it might not be so bad to load the DB data on demand for the partition associated with each batch of keys.

Avoiding hotspotting in BigTable or HBase by using SHA1 keys

I'm using Google BigTable to store event log data according to the following constraints:
Each key should contain a username and timestamp, allowing contiguous reads for time-series data on a per-user basis, like this: USERNAME_TIMESTAMP.
I will be storing up to 10,000,000 event logs or more per day, and so naturally, I need to avoid hotspotting and ensure that I am evenly distributing records across each node.
There is a massive security component to this database, and as such, I'd like to encrypt the username before using it as a key in BigTable.
Obviously, I'd like to avoid doing extra steps whenever I read or write, so I was thinking of encrypting usernames using SHA1 before adding them as a key in BigTable. As a result, all keys in BigTable will now be formatted like this:
cf23df2207d99a74fbe169e3eba035e633b65d94_2018_01_30_15090001
We know that SHA1 is normally distributed, so given that, is it safe to assume that all of my records will be evenly distributed across nodes, while ensuring that all usernames will reside together? Will this in effect prevent hotspotting? Are there any edge cases in this approach that I've missed?
Assuming that User Id is well distributed (i.e. there isn't a user that will have more than 10K operations per second), this approach should be fine.
FYI, Cloud Bigtable measures operations in rows per second, and you want to consider your peak throughput in determining the number of nodes. Each node can support 10,000 simple reads or writes per second. Our smallest production configuration is 3 nodes, which can support up to 30,000 rows per second (2.6 Billion rows per day if used continuously at the maximum).

How to store and retrieve large numbers of data points for graphical visualization?

I'm thinking about building a web-based data logging and visualization service. The basic idea is that at some timed interval something (e.g. a sensor) reports a value (e.g. temperature) to the server. The server records this value into a database. There would be a web-based UI that allows me to view this data on a time-based graph. Ideally this graph would have various resolutions (last 30 seconds, last week, last year, etc). In a super ideal world, I would be able to zoom into the data for any point in time.
The problem is that the sensors are going to generate enormous amounts of data. For example, a sensor that reports a value every 5 seconds will generate about 18k values a day. I'm imagining a system that has thousands of sensors. Over time, this becomes lots of data.
The naive solution is to throw this data into a relational database and retrieve it in the various ways I want, but that won't scale.
The simple solution is to reduce the amount of data by performing periodic roll-ups of the data. New data might go into a table that has data points every 5 seconds. Every hour, some system pumps this data into another table that has data points every minute and the original data is deleted. This repeats for a few levels. The downside to this is that the further back in time you go, the less detailed the data is. That's probably fine. I would imagine that I would need enormous amounts of hardware to support full resolution of data over all time as compared to a system with this sort of rollup.
Is there a better way to do this? Is there an existing solution? I have to imagine this is a fairly common problem.
You probably want a fixed sized database like RRDTool: http://oss.oetiker.ch/rrdtool/
Also Graphite is built on top of a similar datastore implementation: http://graphite.wikidot.com/

How to store 7.3 billion rows of market data (optimized to be read)?

I have a dataset of 1 minute data of 1000 stocks since 1998, that total around (2012-1998)*(365*24*60)*1000 = 7.3 Billion rows.
Most (99.9%) of the time I will perform only read requests.
What is the best way to store this data in a db?
1 big table with 7.3B rows?
1000 tables (one for each stock symbol) with 7.3M rows each?
any recommendation of database engine? (I'm planning to use Amazon RDS' MySQL)
I'm not used to deal with datasets this big, so this is an excellent opportunity for me to learn. I will appreciate a lot your help and advice.
Edit:
This is a sample row:
'XX', 20041208, 938, 43.7444, 43.7541, 43.735, 43.7444, 35116.7, 1, 0, 0
Column 1 is the stock symbol, column 2 is the date, column 3 is the minute, the rest are open-high-low-close prices, volume, and 3 integer columns.
Most of the queries will be like "Give me the prices of AAPL between April 12 2012 12:15 and April 13 2012 12:52"
About the hardware: I plan to use Amazon RDS so I'm flexible on that
So databases are for situations where you have a large complicated schema that is constantly changing. You only have one "table" with a hand-full of simple numeric fields. I would do it this way:
Prepare a C/C++ struct to hold the record format:
struct StockPrice
{
char ticker_code[2];
double stock_price;
timespec when;
etc
};
Then calculate sizeof(StockPrice[N]) where N is the number of records. (On a 64-bit system) It should only be a few hundred gig, and fit on a $50 HDD.
Then truncate a file to that size and mmap (on linux, or use CreateFileMapping on windows) it into memory:
//pseduo-code
file = open("my.data", WRITE_ONLY);
truncate(file, sizeof(StockPrice[N]));
void* p = mmap(file, WRITE_ONLY);
Cast the mmaped pointer to StockPrice*, and make a pass of your data filling out the array. Close the mmap, and now you will have your data in one big binary array in a file that can be mmaped again later.
StockPrice* stocks = (StockPrice*) p;
for (size_t i = 0; i < N; i++)
{
stocks[i] = ParseNextStock(stock_indata_file);
}
close(file);
You can now mmap it again read-only from any program and your data will be readily available:
file = open("my.data", READ_ONLY);
StockPrice* stocks = (StockPrice*) mmap(file, READ_ONLY);
// do stuff with stocks;
So now you can treat it just like an in-memory array of structs. You can create various kinds of index data structures depending on what your "queries" are. The kernel will deal with swapping the data to/from disk transparently so it will be insanely fast.
If you expect to have a certain access pattern (for example contiguous date) it is best to sort the array in that order so it will hit the disk sequentially.
I have a dataset of 1 minute data of 1000 stocks [...] most (99.9%) of the time I will perform only read requests.
Storing once and reading many times time-based numerical data is a use case termed "time series". Other common time series are sensor data in the Internet of Things, server monitoring statistics, application events etc.
This question was asked in 2012, and since then, several database engines have been developing features specifically for managing time series. I've had great results with the InfluxDB, which is open sourced, written in Go, and MIT-licensed.
InfluxDB has been specifically optimized to store and query time series data. Much more so than Cassandra, which is often touted as great for storing time series:
Optimizing for time series involved certain tradeoffs. For example:
Updates to existing data are a rare occurrence and contentious updates never happen. Time series data is predominantly new data that is never updated.
Pro: Restricting access to updates allows for increased query and write performance
Con: Update functionality is significantly restricted
In open sourced benchmarks,
InfluxDB outperformed MongoDB in all three tests with 27x greater write throughput, while using 84x less disk space, and delivering relatively equal performance when it came to query speed.
Queries are also very simple. If your rows look like <symbol, timestamp, open, high, low, close, volume>, with InfluxDB you can store just that, then query easily. Say, for the last 10 minutes of data:
SELECT open, close FROM market_data WHERE symbol = 'AAPL' AND time > '2012-04-12 12:15' AND time < '2012-04-13 12:52'
There are no IDs, no keys, and no joins to make. You can do a lot of interesting aggregations. You don't have to vertically partition the table as with PostgreSQL, or contort your schema into arrays of seconds as with MongoDB. Also, InfluxDB compresses really well, while PostgreSQL won't be able to perform any compression on the type of data you have.
Tell us about the queries, and your hardware environment.
I would be very very tempted to go NoSQL, using Hadoop or something similar, as long as you can take advantage of parallelism.
Update
Okay, why?
First of all, notice that I asked about the queries. You can't -- and we certainly can't -- answer these questions without knowing what the workload is like. (I'll co-incidentally have an article about this appearing soon, but I can't link it today.) But the scale of the problem makes me think about moving away from a Big Old Database because
My experience with similar systems suggests the access will either be big sequential (computing some kind of time series analysis) or very very flexible data mining (OLAP). Sequential data can be handled better and faster sequentially; OLAP means computing lots and lots of indices, which either will take lots of time or lots of space.
If You're doing what are effectively big runs against many data in an OLAP world, however, a column-oriented approach might be best.
If you want to do random queries, especially making cross-comparisons, a Hadoop system might be effective. Why? Because
you can better exploit parallelism on relatively small commodity hardware.
you can also better implement high reliability and redundancy
many of those problems lend themselves naturally to the MapReduce paradigm.
But the fact is, until we know about your workload, it's impossible to say anything definitive.
Okay, so this is somewhat away from the other answers, but... it feels to me like if you have the data in a file system (one stock per file, perhaps) with a fixed record size, you can get at the data really easily: given a query for a particular stock and time range, you can seek to the right place, fetch all the data you need (you'll know exactly how many bytes), transform the data into the format you need (which could be very quick depending on your storage format) and you're away.
I don't know anything about Amazon storage, but if you don't have anything like direct file access, you could basically have blobs - you'd need to balance large blobs (fewer records, but probably reading more data than you need each time) with small blobs (more records giving more overhead and probably more requests to get at them, but less useless data returned each time).
Next you add caching - I'd suggest giving different servers different stocks to handle for example - and you can pretty much just serve from memory. If you can afford enough memory on enough servers, bypass the "load on demand" part and just load all the files on start-up. That would simplify things, at the cost of slower start-up (which obviously impacts failover, unless you can afford to always have two servers for any particular stock, which would be helpful).
Note that you don't need to store the stock symbol, date or minute for each record - because they're implicit in the file you're loading and the position within the file. You should also consider what accuracy you need for each value, and how to store that efficiently - you've given 6SF in your question, which you could store in 20 bits. Potentially store three 20-bit integers in 64 bits of storage: read it as a long (or whatever your 64-bit integer value will be) and use masking/shifting to get it back to three integers. You'll need to know what scale to use, of course - which you could probably encode in the spare 4 bits, if you can't make it constant.
You haven't said what the other three integer columns are like, but if you could get away with 64 bits for those three as well, you could store a whole record in 16 bytes. That's only ~110GB for the whole database, which isn't really very much...
EDIT: The other thing to consider is that presumably the stock doesn't change over the weekend - or indeed overnight. If the stock market is only open 8 hours per day, 5 days per week, then you only need 40 values per week instead of 168. At that point you could end up with only about 28GB of data in your files... which sounds a lot smaller than you were probably originally thinking. Having that much data in memory is very reasonable.
EDIT: I think I've missed out the explanation of why this approach is a good fit here: you've got a very predictable aspect for a large part of your data - the stock ticker, date and time. By expressing the ticker once (as the filename) and leaving the date/time entirely implicit in the position of the data, you're removing a whole bunch of work. It's a bit like the difference between a String[] and a Map<Integer, String> - knowing that your array index always starts at 0 and goes up in increments of 1 up to the length of the array allows for quick access and more efficient storage.
It is my understanding that HDF5 was designed specifically with the time-series storage of stock data as one potential application. Fellow stackers have demonstrated that HDF5 is good for large amounts of data: chromosomes, physics.
I think any major RDBMS would handle this. At the atomic level, a one table with correct partitioning seems reasonable (partition based on your data usage if fixed - this is ikely to be either symbol or date).
You can also look into building aggregated tables for faster access above the atomic level. For example if your data is at day, but you often get data back at the wekk or even month level, then this can be pre-calculated in an aggregate table. In some databases this can be done though a cached view (various names for different DB solutions - but basically its a view on the atomic data, but once run the view is cached/hardened intoa fixed temp table - that is queried for subsequant matching queries. This can be dropped at interval to free up memory/disk space).
I guess we could help you more with some idea as to the data usage.
Here is an attempt to create a Market Data Server on top of the Microsoft SQL Server 2012 database which should be good for OLAP analysis, a free open source project:
http://github.com/kriasoft/market-data
First, there isn't 365 trading days in the year, with holidays 52 weekends (104) = say 250 x the actual hours of day market is opened like someone said, and to use the symbol as the primary key is not a good idea since symbols change, use a k_equity_id (numeric) with a symbol (char) since symbols can be like this A , or GAC-DB-B.TO , then in your data tables of price info, you have, so your estimate of 7.3 billion is vastly over calculated since it's only about 1.7 million rows per symbol for 14 years.
k_equity_id
k_date
k_minute
and for the EOD table (that will be viewed 1000x over the other data)
k_equity_id
k_date
Second, don't store your OHLC by minute data in the same DB table as and EOD table (end of day) , since anyone wanting to look at a pnf, or line chart, over a year period , has zero interest in the by the minute information.
Let me recommend that you take a look at apache solr, which I think would be ideal for your particular problem. Basically, you would first index your data (each row being a "document"). Solr is optimized for searching and natively supports range queries on dates. Your nominal query,
"Give me the prices of AAPL between April 12 2012 12:15 and April 13 2012 12:52"
would translate to something like:
?q=stock:AAPL AND date:[2012-04-12T12:15:00Z TO 2012-04-13T12:52:00Z]
Assuming "stock" is the stock name and "date" is a "DateField" created from the "date" and "minute" columns of your input data on indexing. Solr is incredibly flexible and I really can't say enough good things about it. So, for example, if you needed to maintain the fields in the original data, you can probably find a way to dynamically create the "DateField" as part of the query (or filter).
You should compare the slow solutions with a simple optimized in memory model. Uncompressed it fits in a 256 GB ram server. A snapshot fits in 32 K and you just index it positionally on datetime and stock. Then you can make specialized snapshots, as open of one often equals closing of the previous.
[edit] Why do you think it makes sense to use a database at all (rdbms or nosql)? This data doesn't change, and it fits in memory. That is not a use case where a dbms can add value.
If you have the hardware, I recommend MySQL Cluster. You get the MySQL/RDBMS interface you are so familiar with, and you get fast and parallel writes. Reads will be slower than regular MySQL due to network latency, but you have the advantage of being able to parallelize queries and reads due to the way MySQL Cluster and the NDB storage engine works.
Make sure that you have enough MySQL Cluster machines and enough memory/RAM for each of those though - MySQL Cluster is a heavily memory-oriented database architecture.
Or Redis, if you don't mind a key-value / NoSQL interface to your reads/writes. Make sure that Redis has enough memory - its super-fast for reads and writes, you can do basic queries with it (non-RDBMS though) but is also an in-memory database.
Like others have said, knowing more about the queries you will be running will help.
You will want the data stored in a columnar table / database. Database systems like Vertica and Greenplum are columnar databases, and I believe SQL Server now allows for columnar tables. These are extremely efficient for SELECTing from very large datasets. They are also efficient at importing large datasets.
A free columnar database is MonetDB.
If your use case is to simple read rows without aggregation, you can use Aerospike cluster. It's in memory database with support of file system for persistence. It's also SSD optimized.
If your use case needs aggregated data, go for Mongo DB cluster with date range sharding. You can club year vise data in shards.

Resources