Copy data from one column to another in oracle table - database

My current project for a client requires me to work with Oracle databases (11g). Most of my previous database experience is with MSSQL Server, Access, and MySQL. I've recently run into an issue that seems incredibly strange to me and I was hoping someone could provide some clarity.
I was looking to do a statement like the following:
update MYTABLE set COLUMN_A = COLUMN_B;
MYTABLE has about 13 million rows.
The source column is indexed (COLUMN_B), but the destination column is not (COLUMN_A)
The primary key field is a GUID.
This seems to run for 4 hours but never seems to complete.
I spoke with a former developer that was more familiar with Oracle than I, and they told me you would normally create a procedure that breaks this down into chunks of data to be commited (roughly 1000 records or so). This procedure would iterate over the 13 million records and commit 1000 records, then commit the next 1000...normally breaking the data up based on the primary key.
This sounds somewhat silly to me coming from my experience with other database systems. I'm not joining another table, or linking to another database. I'm simply copying data from one column to another. I don't consider 13 million records to be large considering there are systems out there in the orders of billions of records. I can't imagine it takes a computer hours and hours (only to fail) at copying a simple column of data in a table that as a whole takes up less than 1 GB of storage.
In experimenting with alternative ways of accomplishing what I want, I tried the following:
create table MYTABLE_2 as (SELECT COLUMN_B, COLUMN_B as COLUMN_A from MYTABLE);
This took less than 2 minutes to accomplish the exact same end result (minus dropping the first table and renaming the new table).
Why does the UPDATE run for 4 hours and fail (which simply copies one column into another column), but the create table which copies the entire table takes less than 2 minutes?
And are there any best practices or common approaches used to do this sort of change? Thanks for your help!

It does seem strange to me. However, this comes to mind:
When you are updating the table, transaction logs must be created in case a rollback is needed. Creating a table, that isn't necessary.

Related

MS SQL Trigger for ETL vs Performance

I would need information what might be the impact for production DB of creating triggers for ~30 Production tables that capture any Update,Delete and Insert statement and put following information "PK", "Table Name", "Time of modification" to separate table.
I have limited ability to test it as I have read only permissions to both Prod and Test environment (and I can get one work day for 10 end users to test it).
I have estimated that number of records inserted from those triggers will be around ~150-200k daily.
Background:
I have project to deploy Data Warehouse for database that is very customized + there are jobs running every day that manipulate the data. Updated on Date column is not being maintain (customization) + there are hard deletes occurring on tables. We decided to ask DEV team to add triggers like:
CREATE TRIGGER [dbo].[triggerName] ON [dbo].[ProductionTable]
FOR INSERT, UPDATE, DELETE
AS
INSERT INTO For_ETL_Warehouse (Table_Name, Regular_PK, Insert_Date)
SELECT 'ProductionTable', PK_ID, GETDATE() FROM inserted
INSERT INTO For_ETL_Warehouse (Table_Name, Regular_PK, Insert_Date)
SELECT 'ProductionTable', PK_ID, GETDATE() FROM deleted
on core ~30 production tables.
Based on this table we will pull delta from last 24 hours and push it to Data Warehouse staging tables.
If anyone had similar issue and can help me estimate how it can impact performance on production database I will really appreciate. (if it works - I am saved, if not I need to propose other solution. Currently mirroring or replication might be hard to get as local DEVs have no idea how to set it up...)
Other ideas how to handle this situation or perform tests are welcome (My deadline is Friday 26-01).
First of all I would suggest you code your table name into a smaller variable and not a character one (30 tables => tinyint).
Second of all you need to understand how big is the payload you are going to write and how:
if you chose a correct clustered index (date column) then the server will just need to out data row by row in a sequence. That is a silly easy job even if you put all 200k rows at once.
if you code the table name as a tinyint, then basically it has to write:
1byte (table name) + PK size (hopefully numeric so <= 8bytes) + 8bytes datetime - so aprox 17bytes on the datapage + indexes if any + log file . This is very lightweight and again will put no "real" pressure on sql sever.
The trigger itself will add a small overhead, but with the amount of rows you are talking about, it is negligible.
I saw systems that do similar stuff on a way larger scale with close to 0 effect on the work process, so I would say that it's a safe bet. The only problem with this approach is that it will not work in some cases (ex: outputs to temp tables from DML statements). But if you do not have these kind of blockers then go for it.
I hope it helps.

Best way to handle updates on a table

I am looking for much more better way to update tables using SSIS. Specifically, i wanted to optimize the updates on tables (around 10 tables uses same logic).
The logic is,
Select the source data from staging then inserts into physical temp table in the DW (i.e TMP_Tbl)
Update all data matching by customerId column from TMP_Tbl to MyTbl.
Inserts all non-existing customerId column from TMP_Tbl1 to MyTbl.
Using the above steps, this takes some time populating TMP_Tbl. Hence, i planned to change the logic to delete-insert but according to this:
In SQL, is UPDATE always faster than DELETE+INSERT? this would be a recipe for pain.
Given:
no index/keys used on the tables
some tables contains 5M rows, some contains 2k rows
each table update took up to 2-3 minutes, which took for about (15 to 20 minutes) all in all
these updates we're in separate sequence container simultaneously runs
Anyone knows what's the best way to use, seems like using physical temp table needs to be remove, is this normal?
With SSIS you usually BULK INSERT, not INSERT. So if you do not mind DELETE - reinserting the rows should in general outperform UPDATE.
Considering this the faster approach will be:
[Execute SQL Task] Delete all records which you need to update. (Depending on your DB design and queries, some index may help here).
[Data Flow Task] Fast load (using OLE DB Destination, Data access mode: Table of fiew - fast load) both updated and new records from source into MyTbl. No need for temp tables here.
If you cannot/don't want to DELETE records - your current approach is OK too.
You just need to fix the performance of that UPDATE query (adding an index should help). 2-3 minutes per every record updated is way too long.
If it is 2-3 minutes for updating millions of records though - then it's acceptable.
Adding the correct non-clustered index to a table should not result in "much more time on the updates".
There will be a slight overhead, but if it helps your UPDATE to seek instead of scanning a big table - it is usually well worth it.

Efficient DELETE TOP?

Is it more efficient and ultimately FASTER to delete rows from a DB in blocks of 1000 or 10000? I am having to remove approx 3 million rows from many tables. I first did the deletes in blocks of 100K rows but the performance wasn't looking good. I changed to 10000 and seem to be removing faster. Wondering if even smaller like 1K per DELETE statement is even better.
Thoughts?
I am deleting like this:
DELETE TOP(10000)
FROM TABLE
WHERE Date < '1/1/2012'
Yes, it is. It all depends on your server though. I mean, last time I did that i was using this approeach to delete things in 64 million increments (on a table that had at that point around 14 billion rows, 80% Of which got ultimately deleted). I got a delete through every 10 seconds or so.
It really depends on your hardware. Going moreg granular is more work but it means less waiting for tx logs for other things operating on the table. You have to try out and find where you are comfortable - there is no ultimate answer because it is totally dependend on usage of the table and hardware.
We used Table Partitioning to remove 5 million rows in less than a sec but this was from just one table. It took some work up-front but ultimately was the best way. This may not be the best way for you.
From our document about partitioning:
Let’s say you want to add 5 million rows to a table but don’t want to lock the table up while you do it. I ran into a case in an ordering system where I couldn’t insert the rows without stopping the system from taking orders. BAD! Partitioning is one way of doing it if you are adding rows that don’t overlap current data.
WHAT TO WATCH OUT FOR:
Data CANNOT overlap current data. You have to partition the data on a value. The new data cannot be intertwined within the currently partitioned data. If removing data, you have to remove an entire partition or partitions. You will not have a WHERE clause.
If you are doing this on a production database and want to limit the locking on the table, create your indexes with “ONLINE = ON”.
OVERVIEW OF STEPS:
FOR ADDING RECORDS
Partition the table you want to add records to (leave a blank partition for the new data). Do not forget to partition all of your indexes.
Create new table with the exact same structure (keys, data types, etc.).
Add a constraint to the new table to limit that data so that it would fit into the blank partition in the old table.
Insert new rows into new table.
Add indexes to match old table.
Swap the new table with the blank partition of the old table.
Un-partition the old table if you wish.
FOR DELETING RECORDS
Partition the table into sets so that the data you want to delete is all on partitions by itself (this could be many different partitions).
Create a new table with the same partitions.
Swap the partitions with the data you want to delete to the new table.
Un-partition the old table if you wish.
Yes, no, it depends on the usage of table due to locking. I would try to delete the records in a slower pace. So the opposite of the op's question.
set rowcount 10000
while ##rowcount > 0
begin
waitfor delay '0:0:1'
delete
from table
where date < convert(datetime, '20120101', 112)
end
set rowcount 0

Bulkcopy inserts with DBCC CheckIdent

Our team needs to insert a cruel amount of data into our SQL Server 2008 database. We're looking for a good solution. Now we came up with one, but I have doubts with it, simply because it doesn't feel right. So I'm asking here if this seems like a good solution. Extra challange is that it's a peer-to-peer replicated database over 4 servers! :)
Imagine we have 1 million rows to insert
Start transaction
Increase current ident value on a table with 1 million
Have a DataSet/DataTable ready with 1 million rows and the correct ids
BulkCopy the data into the database
Commit transaction
Is this a good solution, might we get into concurrency issues, have too large transactions, etc.
you'll only get problems (as far as I can see, so there might be things I overlook!) if the database is online and users can insert rows into that table. Increasing the identity value for new rows on the meta-level simply means that the next row inserted by the system will use that number, so if you bump it with 1 million, it means you reserved those numbers up front.
Identity columns are 'nice' but have the side effect that they're not transferable. So if you have to migrate the data to another DB, realize that you likely have to adjust the data inserted to match the database you insert it in (as that's the scope of the data which means identity fields could collide with rows already in the table).
If this is a one-time affair, it might work out. If you're planning to do this regularly, I'd look into a more higher-level migration system where you migrate the data to new identity values or use guid's with NEWSEQUENTIALID() so you get proper checked indexes and also unique, transferable id's.

sql server table fast load isn't

I've inherited an SSIS package which loads 500K rows (about 30 columns) into a staging table.
It's been cooking now for about 120 minutes and it's not done --- this suggests it's running at less than 70 rows per second. I know that everybody's environment is different but I think this is a couple orders of magnitude off from "typical".
Oddly enough the staging table has a PK constraint on an INT (identity) column -- and now I'm thinking that it may be hampering the load performance. There are no other constraints, indexes, or triggers on the staging table.
Any suggestions?
---- Additional information ------
The source is a tab delimited file which connects to two separate Data Flow Components that add some static data (the run date, and batch ID) to the stream, which then connects to an OLE DB Destination Adapter
Access mode is OpenRowset using FastLoad
FastLoadOptions are TABLOCK,CHECK_CONSTRAINTS
Maximum insert commit size: 0
I’m not sure about the etiquette of answering my own question -- so sorry in advance if this is better suited for a comment.
The issue was the datatype of the input columns from the text file: They were all declared as “text stream [DT_TEXT]” and when I changed that to “String [DT_STR]” 2 million rows loaded in 58 seconds which is now in the realm of “typical” -- I'm not sure what the Text file source is doing when columns are declared that way, but it's behind me now!
I'd say there is a problem of some sort, I bulk insert a staging table from a file with 20 million records and more columns and an identity field in far less time than that and SSIS is supposed to be faster than SQL Server 2000 bulk insert.
Have you checked for blocking issues?
If it is running in one big transaction, that may explain things. Make sure that a commit is done every now and then.
You may also want to check processor load, memory and IO to rule out resource issues.
This is hard to say.
I there was complex ETL, I would check the max number of threads allowed in the data flows, see if some things can run in parallel.
But it sounds like it's a simple transfer.
With 500,000 rows, batching is an option, but I wouldn't think it necessary for that few rows.
The PK identity should not be an issue. Do you have any complex constraints or persisted calculated columns on the destination?
Is this pulling or pushing over a slow network link? Is it pulling or pushing from a complex SP or view? What is the data source?

Resources