Bulkcopy inserts with DBCC CheckIdent - sql-server

Our team needs to insert a cruel amount of data into our SQL Server 2008 database. We're looking for a good solution. Now we came up with one, but I have doubts with it, simply because it doesn't feel right. So I'm asking here if this seems like a good solution. Extra challange is that it's a peer-to-peer replicated database over 4 servers! :)
Imagine we have 1 million rows to insert
Start transaction
Increase current ident value on a table with 1 million
Have a DataSet/DataTable ready with 1 million rows and the correct ids
BulkCopy the data into the database
Commit transaction
Is this a good solution, might we get into concurrency issues, have too large transactions, etc.

you'll only get problems (as far as I can see, so there might be things I overlook!) if the database is online and users can insert rows into that table. Increasing the identity value for new rows on the meta-level simply means that the next row inserted by the system will use that number, so if you bump it with 1 million, it means you reserved those numbers up front.
Identity columns are 'nice' but have the side effect that they're not transferable. So if you have to migrate the data to another DB, realize that you likely have to adjust the data inserted to match the database you insert it in (as that's the scope of the data which means identity fields could collide with rows already in the table).
If this is a one-time affair, it might work out. If you're planning to do this regularly, I'd look into a more higher-level migration system where you migrate the data to new identity values or use guid's with NEWSEQUENTIALID() so you get proper checked indexes and also unique, transferable id's.

Related

Synchronize data from Oracle to PostgreSQL

We would like to synchronize data (insert, update) from Oracle (11g) to PostgreSQL (10). Our approach was the following:
A trigger on the table in Oracle updates a column with nextval from a sequence before insert and update.
PostgreSQL knows the last sequence number processed and fetches the rows from Oracle > lastSequenceNumberFetched.
We now have the following problem:
Session 1 in Oracle inserts a row, sequence number (let's say 45) is written but no COMMIT is done in Oracle.
Session 2 in Oracle inserts a row, sequence number is written (let's say 49 (because sequences in Oracle can have gaps)) and a COMMIT is done in Oracle.
Session in PostgreSQL fetches rows from Oracle with sequenceNumber > 44 (because the lastSequenceNumberFetched is 44) and gets the row with sequenceNumber 49. So this is the new lastSequenceNumberFetched.
Session 1 in Oracle makes a commit.
Session in PostgreSQL fetches rows from Oracle with sequenceNumber > 49. Problem is that the row with sequenceNumber 45 is never fetched.
Are there any better approaches for our use case avoiding our problem with missing data?
In case you don't have delete operations in your tables and the tables are not very big then I suggest to use Oracle System Change Number (SCN) on the row level which is returned by the pseudo column ORA_ROWSCN (link). This is the commit time presented by number. By default the SCN is tracked for the data block, but you can enable tracking on the row level (keyword rowdependencies). So you have to recreate your table with this keyword. At the sync procedure launch you get the current scn by the function call dbms_flashback.get_system_change_number, then scan all tables where ora_rowscn between _last_scn_value_ and _current_scn_value_. The disadvantage is that this pseudo columns is not indexed, so you will have full table scans, which is slow for big tables.
If you use delete statements then you have to track the records which were deleted. For this purpose you can use one log table having the following columns: table_name, table_id_value, operation (insert/update/delete). Table is filled by the trigger on base tables. So for your case when session 1 commits data in base table - then you have the record in log table to process. And you don't see it until the session commits. So no issues with sequence numbers that you described.
Hope that helps.
Is this purely a data project or do you have some client here. If you do have a middle tier you could use an ORM to abstract some of this and do writes to both. Do you care whether the sequences are the same? It would be possible to do something like collect all the data to synchronize since a particular timestamp (every table would have to have a UTC timestamp) and then take a hash of all the data and compare with what is in Postgres.
It might be useful to have some more of your requirements for the synchronization of data and the reasoning behind this e.g.
Do the keys need to be the same against both environments? Why?
Who views the data, is the same consumer looking at both sources.
Why wouldn't you just use an ORM to target only one db why do you need oracle and postgres?
I have seen a similar setup. An application on Postgres mostly for reporting and other secondary tasks while main app was on Oracle.
Some of the main app tables are cached in Postgres for convenience. But this setup brings in the sync problem.
The compromise solution was a mix of incremental sequence-based sync during daytime and full table copy overnight
Regarding other solutions proposed here:
Postgres fdw is slow for complex queries and it puts extra load on foreign db especially when where clause refer to both local and foreign tables.
The same query will run much faster if foreign table is cached in postgres.
Incremental/differential sync using sequence numbers -tried this and works acceptable for small tables, but the nightmare starts with child relations maybe an orm can help here
The ideal solution in my opinion would probably be to stream Oracle changes to Postgres or intermediary process that replicates changes to Postgres
I have no clue about how to do this as I understood it requires Oracle golden gate app (+ licence)

MS SQL Trigger for ETL vs Performance

I would need information what might be the impact for production DB of creating triggers for ~30 Production tables that capture any Update,Delete and Insert statement and put following information "PK", "Table Name", "Time of modification" to separate table.
I have limited ability to test it as I have read only permissions to both Prod and Test environment (and I can get one work day for 10 end users to test it).
I have estimated that number of records inserted from those triggers will be around ~150-200k daily.
Background:
I have project to deploy Data Warehouse for database that is very customized + there are jobs running every day that manipulate the data. Updated on Date column is not being maintain (customization) + there are hard deletes occurring on tables. We decided to ask DEV team to add triggers like:
CREATE TRIGGER [dbo].[triggerName] ON [dbo].[ProductionTable]
FOR INSERT, UPDATE, DELETE
AS
INSERT INTO For_ETL_Warehouse (Table_Name, Regular_PK, Insert_Date)
SELECT 'ProductionTable', PK_ID, GETDATE() FROM inserted
INSERT INTO For_ETL_Warehouse (Table_Name, Regular_PK, Insert_Date)
SELECT 'ProductionTable', PK_ID, GETDATE() FROM deleted
on core ~30 production tables.
Based on this table we will pull delta from last 24 hours and push it to Data Warehouse staging tables.
If anyone had similar issue and can help me estimate how it can impact performance on production database I will really appreciate. (if it works - I am saved, if not I need to propose other solution. Currently mirroring or replication might be hard to get as local DEVs have no idea how to set it up...)
Other ideas how to handle this situation or perform tests are welcome (My deadline is Friday 26-01).
First of all I would suggest you code your table name into a smaller variable and not a character one (30 tables => tinyint).
Second of all you need to understand how big is the payload you are going to write and how:
if you chose a correct clustered index (date column) then the server will just need to out data row by row in a sequence. That is a silly easy job even if you put all 200k rows at once.
if you code the table name as a tinyint, then basically it has to write:
1byte (table name) + PK size (hopefully numeric so <= 8bytes) + 8bytes datetime - so aprox 17bytes on the datapage + indexes if any + log file . This is very lightweight and again will put no "real" pressure on sql sever.
The trigger itself will add a small overhead, but with the amount of rows you are talking about, it is negligible.
I saw systems that do similar stuff on a way larger scale with close to 0 effect on the work process, so I would say that it's a safe bet. The only problem with this approach is that it will not work in some cases (ex: outputs to temp tables from DML statements). But if you do not have these kind of blockers then go for it.
I hope it helps.

Copy data from one column to another in oracle table

My current project for a client requires me to work with Oracle databases (11g). Most of my previous database experience is with MSSQL Server, Access, and MySQL. I've recently run into an issue that seems incredibly strange to me and I was hoping someone could provide some clarity.
I was looking to do a statement like the following:
update MYTABLE set COLUMN_A = COLUMN_B;
MYTABLE has about 13 million rows.
The source column is indexed (COLUMN_B), but the destination column is not (COLUMN_A)
The primary key field is a GUID.
This seems to run for 4 hours but never seems to complete.
I spoke with a former developer that was more familiar with Oracle than I, and they told me you would normally create a procedure that breaks this down into chunks of data to be commited (roughly 1000 records or so). This procedure would iterate over the 13 million records and commit 1000 records, then commit the next 1000...normally breaking the data up based on the primary key.
This sounds somewhat silly to me coming from my experience with other database systems. I'm not joining another table, or linking to another database. I'm simply copying data from one column to another. I don't consider 13 million records to be large considering there are systems out there in the orders of billions of records. I can't imagine it takes a computer hours and hours (only to fail) at copying a simple column of data in a table that as a whole takes up less than 1 GB of storage.
In experimenting with alternative ways of accomplishing what I want, I tried the following:
create table MYTABLE_2 as (SELECT COLUMN_B, COLUMN_B as COLUMN_A from MYTABLE);
This took less than 2 minutes to accomplish the exact same end result (minus dropping the first table and renaming the new table).
Why does the UPDATE run for 4 hours and fail (which simply copies one column into another column), but the create table which copies the entire table takes less than 2 minutes?
And are there any best practices or common approaches used to do this sort of change? Thanks for your help!
It does seem strange to me. However, this comes to mind:
When you are updating the table, transaction logs must be created in case a rollback is needed. Creating a table, that isn't necessary.

Handling a Huge Data of Record in 1 table

I would like to ask couple question how to handle a huge 100 million of data in 1 single table.
The table will perform INSERT, SELECT & UPDATE.
I have got some advise that to Index the table and Archive the table into couple table.
Any other suggestion that can help to tweak the SQL Performance.
Case:
SQL Server 2008.
Most of the time the update regarding decimal value, and status of tiny int.
The INSERT statement will not using BULK INSERT since I'm assuming that per min that there'r a lot of users let said 10000-500000 performing INSERT statement and Update the table.
You should consider what kind of columns you have.
The more nvarchar/text/etc columns you have included in the different indexes, the slower the index will be.
Also what RDBMS are you going to use? You have different options based on SQL Server, Oracle and MySQL...
But the crucial thing is differently to build the right index's that you would use...
One other thing, you could use BULK INSERT on SQL Server to speed up the inserts.
But ask away, i have dealt with databases being populated with 70 mill data rows pr day ;)
EDIT ----- After more information has come
I'll try to take a little other approach to the case and compare it to data scraping.
There are no doubt that INSERTs are faster than UPDATEs. And you might want to make a table that acts as a "collect" table. What I mean is that it only get inserts all the time. No updates, all is handle with inserts.
Then you use a trigger/event/scheduler to handle what has come into that table and populate what you need to another(s) table(s).
This way you will be able to apply a little business logic to the "cleanup" (update) and keep the performance on the DB Server and not hold up a connection while these things are done.
This of course also have something to do with what the "final" data are to be used for...
\T
Clearly SQL 2008 is capable of 100 million records but a lot of details to look at that just do not come into play at 100 thousand. Pick a good primary key. Fill factor. Other indexes (will slow down insert but speed select). Concurrency (locking). If you can accept dirty reads then that will help performance. This question needs a lot more detail. You need to post the table design and your select, update, and insert TSQL statements. I did not vote your question down but if you don't provide more detail it will get voted down.
For insert be aware you can insert multiple rows at once and is much faster than multiple insert statements if BULK INSERT is not an option.
INSERT INTO Production.UnitMeasure
VALUES (N'FT2', N'Square Feet ', '20080923'), (N'Y', N'Yards', '20080923'), (N'Y3', N'Cubic Yards', '20080923');

What is the best database for my needs?

I am currently using MS SQL Server 2008 but I'm not sure it it is the best system for this particular task.
I have a single table like so:
PK_ptA PK_ptB DateInserted LookupColA LookupColB ... LookupColF DataCol (ntext)
A common query is
SELECT TOP(1000000) DataCol FROM table
WHERE LookupColA=x AND LookupColD=y AND LookupColE=z
ORDER BY DateInserted DESC
The table has about a billion rows with 5 million inserted per day.
My main problem with SQL Server is that it isn't too easy to shard or spread out the datafiles. Also, exporting seems to max out at 1000rows per second (about 1MB/s) which seems very slow.
Another problem I have is, with SQL Server, if I want to add a new LookupCol the log file grows enormously requiring a large amount of rarely used free space on tap.
Are there any obvious better solutions for this problem?
You have a problem, and it is not SQL Server. let me also ignore that you seem to ahve a bad table design.
Spreading data files is actually pretty easy. REORGANIZING later is not that easy, but also doable. How is your table, filegroup and file layout?
export 1mb per second is a joke. Seriously. I have been handling 150 million row files in minutes - that runs down to a LOT more than 60.000 rows per minute. Something is freaking out. Temp space? Did you do a performance analysis? How does the hardware look?
Nothing will work for the log usage. Basically like most pro databases the log contains all changed database pages during a transaction. Adding a field changes - ALL pages.
You should:
Redesign the database (use a view to keep the same old table in place if you ahve to) so that it does not ahve "LookupColA" etc., but is normalized (LookupValue, and a LookuPTable that is coded by "column"). This way you get instant additional fields. This turns into a data warehouse like star schema.
Do a performance analysis. Looks like you ahve some problems.
Definitely tell us abou your hardware ;)
This problem here is definitely NOT SQL Server, it is related to bad table design AND - possibly - insufficient - badly utilized hardware.
Ok, the table design (separate answer). Lokup are bassically lookup tables.
So....
LookupTable
pk (int)
TableType
Value
as vields
ValueTable
pk
ValueLookupMap table
pk of ValueTable entry
pk of LookupTable entry
So, basically, if you add a lookup "field" then you just create a set of entries in the LookupTable then add entries in the ValueLookupMap.

Resources