Are there problems that can't be solved efficiently without arrays? [duplicate] - arrays

Does anyone know what is the worst possible asymptotic slowdown that can happen when programming purely functionally as opposed to imperatively (i.e. allowing side-effects)?
Clarification from comment by itowlson: is there any problem for which the best known non-destructive algorithm is asymptotically worse than the best known destructive algorithm, and if so by how much?

According to Pippenger [1996], when comparing a Lisp system that is purely functional (and has strict evaluation semantics, not lazy) to one that can mutate data, an algorithm written for the impure Lisp that runs in O(n) can be translated to an algorithm in the pure Lisp that runs in O(n log n) time (based on work by Ben-Amram and Galil [1992] about simulating random access memory using only pointers). Pippenger also establishes that there are algorithms for which that is the best you can do; there are problems which are O(n) in the impure system which are Ω(n log n) in the pure system.
There are a few caveats to be made about this paper. The most significant is that it does not address lazy functional languages, such as Haskell. Bird, Jones and De Moor [1997] demonstrate that the problem constructed by Pippenger can be solved in a lazy functional language in O(n) time, but they do not establish (and as far as I know, no one has) whether or not a lazy functional language can solve all problems in the same asymptotic running time as a language with mutation.
The problem constructed by Pippenger requires Ω(n log n) is specifically constructed to achieve this result, and is not necessarily representative of practical, real-world problems. There are a few restrictions on the problem that are a bit unexpected, but necessary for the proof to work; in particular, the problem requires that results are computed on-line, without being able to access future input, and that the input consists of a sequence of atoms from an unbounded set of possible atoms, rather than a fixed size set. And the paper only establishes (lower bound) results for an impure algorithm of linear running time; for problems that require a greater running time, it is possible that the extra O(log n) factor seen in the linear problem may be able to be "absorbed" in the process of extra operations necessary for algorithms with greater running times. These clarifications and open questions are explored briefly by Ben-Amram [1996].
In practice, many algorithms can be implemented in a pure functional language at the same efficiency as in a language with mutable data structures. For a good reference on techniques to use for implementing purely functional data structures efficiently, see Chris Okasaki's "Purely Functional Data Structures" [Okasaki 1998] (which is an expanded version of his thesis [Okasaki 1996]).
Anyone who needs to implement algorithms on purely-functional data structures should read Okasaki. You can always get at worst an O(log n) slowdown per operation by simulating mutable memory with a balanced binary tree, but in many cases you can do considerably better than that, and Okasaki describes many useful techniques, from amortized techniques to real-time ones that do the amortized work incrementally. Purely functional data structures can be a bit difficult to work with and analyze, but they provide many benefits like referential transparency that are helpful in compiler optimization, in parallel and distributed computing, and in implementation of features like versioning, undo, and rollback.
Note also that all of this discusses only asymptotic running times. Many techniques for implementing purely functional data structures give you a certain amount of constant factor slowdown, due to extra bookkeeping necessary for them to work, and implementation details of the language in question. The benefits of purely functional data structures may outweigh these constant factor slowdowns, so you will generally need to make trade-offs based on the problem in question.
References
Ben-Amram, Amir and Galil, Zvi 1992. "On Pointers versus Addresses" Journal of the ACM, 39(3), pp. 617-648, July 1992
Ben-Amram, Amir 1996. "Notes on Pippenger's Comparison of Pure and Impure Lisp" Unpublished manuscript, DIKU, University of Copenhagen, Denmark
Bird, Richard, Jones, Geraint, and De Moor, Oege 1997. "More haste, less speed: lazy versus eager evaluation" Journal of Functional Programming 7, 5 pp. 541–547, September 1997
Okasaki, Chris 1996. "Purely Functional Data Structures" PhD Thesis, Carnegie Mellon University
Okasaki, Chris 1998. "Purely Functional Data Structures" Cambridge University Press, Cambridge, UK
Pippenger, Nicholas 1996. "Pure Versus Impure Lisp" ACM Symposium on Principles of Programming Languages, pages 104–109, January 1996

There are indeed several algorithms and data structures for which no asymptotically efficient purely functional solution (t.i. one implementable in pure lambda calculus) is known, even with laziness.
The aforementioned union-find
Hash tables
Arrays
Some graph algorithms
...
However, we assume that in "imperative" languages access to memory is O(1) whereas in theory that can't be so asymptotically (i.e. for unbounded problem sizes) and access to memory within a huge dataset is always O(log n), which can be emulated in a functional language.
Also, we must remember that actually all modern functional languages provide mutable data, and Haskell even provides it without sacrificing purity (the ST monad).

This article claims that the known purely functional implementations of the union-find algorithm all have worse asymptotic complexity than the one they publish, which has a purely functional interface but uses mutable data internally.
The fact that other answers claim that there can never be any difference and that for instance, the only "drawback" of purely functional code is that it can be parallelized gives you an idea of the informedness/objectivity of the functional programming community on these matters.
EDIT:
Comments below point out that a biased discussion of the pros and cons of pure functional programming may not come from the “functional programming community”. Good point. Perhaps the advocates I see are just, to cite a comment, “illiterate”.
For instance, I think that this blog post is written by someone who could be said to be representative of the functional programming community, and since it's a list of “points for lazy evaluation”, it would be a good place to mention any drawback that lazy and purely functional programming might have. A good place would have been in place of the following (technically true, but biased to the point of not being funny) dismissal:
If strict a function has O(f(n)) complexity in a strict language then it has complexity O(f(n)) in a lazy language as well. Why worry? :)

With a fixed upper bound on memory usage, there should be no difference.
Proof sketch:
Given a fixed upper bound on memory usage, one should be able to write a virtual machine which executes an imperative instruction set with the same asymptotic complexity as if you were actually executing on that machine. This is so because you can manage the mutable memory as a persistent data structure, giving O(log(n)) read and writes, but with a fixed upper bound on memory usage, you can have a fixed amount of memory, causing these to decay to O(1). Thus the functional implementation can be the imperative version running in the functional implementation of the VM, and so they should both have the same asymptotic complexity.

Related

Genetic algorithm - iterative optimization

Hi I am absolute beginner and I've got rather theoretical question about iterative optimization in genetic algorithms.
Where in the genetic cycle (see below) does the iterative optimization logically belong? I am not really sure, but I think it could be in population initialization or mutation, depending on given problem.
To be more specific about about the iterative optimization algorithm - I would like to use "hill climbing" or "simulated annealing".
I use this model as reference:
Well, there are several possibilities and basically all of them make sense.
If you put the optimisation phase after population initialization (being run once before the genetic algorithm itself) then what you get is an already optimized initial population. This might be useful because the genetic algorithm does not have to search so much, but it may be harmful in a way that you optimize to some local optima, possibly losing useful information in the process.
If you put the optimisation phase before selection, you get a so-called memetic algorithm. MA is based on the fact that an organism learns throughout its lifetime (the optimization). You have two possibilites of how to do that:
Take an individual, optimize it and replace the original individual with its optimized version. This is called "Lamarckian evolution" and is based on the idea (originally by Jean-Baptiste Lamarck at the beginning of 19th century) that the learned features can be passed on to the offsprings.
Take an individual, optimize it, but then throw the optimized individual away but assign its fitness to the original, unoptimized individual. In this variant the optimization effectively becomes the part of the fitness evaluation process. This is called "Baldwin effect" and is based on the idea (originally by James Mark Baldwin at the end of 19th century) that the learned features cannot be passed on to the offsprings and the genetic information rather describes the ability to learn. By the way, this is the way the natural evolution actually works.
The optimization can, of course, be placed in all the other places, but it is not used (at least I don't know of any such case). However, your problem and mutation/crossover operators might be such that the optimization in those places might be somehow beneficial. Or you can just try and see what you get.

which encoding to use for genetic algorithm?

I want to code a genetic algorithm in C for optimizing a function of 10 variables (x1 to x10). However I am not able to figure out which encoding I should use. I have mostly seen binary encoding being used in example but the variables in my case can take real values. Also, is value encoding a good option for these types of problems?
For real valued problems I would suggest to try CMA-ES or another ES variant. CMA-ES certainly is the current state of the art for real-valued problems. It is designed to find good solutions in multidimensional problems quickly. There are implementations available on Hansen's page. There's also a C# implementation in the work for HeuristicLab. Evolution strategies are algorithms that were specifically designed for real-valued optimization problems. They are very similar to genetic algorithms (both were invented around the same time, but in different places). The main distinction is that for ES the main driver is mutation and it features a clever adaption of the mutation strength. Without this adaption the (local) optimum cannot be located in time. CMA-ES is easy to configure, all it needs is the initial standard deviation and optionally the population size (otherwise there's a formula that estimates this given the problem size).
Genetic algorithms can of course also be applied, but you have to use some specific operators which are able to mutate variables only with very small degree. For example there's the Breeder Genetic Algorithm from Mühlenbein. In general however genetic algorithms are more suited for problems that need a right combination of things. E.g. which items to include in a knapsack problem or which functions and terminals to combine to a formula (genetic programming). Less for problems, where you need to find the right value for something. Although of course there are variants of the genetic algorithm to solve these, look for Real coded Genetic Algorithm (RCGA or RGA).
Another algorithm suited for real-valued problems is Particle Swarm Optimization, but in my opinion it is harder to configure. I'd start with SPSO-2011 the 2011 standard PSO.
If your problem contains integer variables choices become more difficult. Evolution strategies do not perform so well when variables are discrete, because the adaptation schemes for integer variables are different. A genetic algorithm becomes an interesting first-choice algorithm again.
A genetic algorithm is best used when two answers that are pretty close to optimal will make something else pretty close to optimal when combined. The problem with a pure binary encoding is that if you don't check your crossover you end up getting two answers which may not have all that much to do with the original answers.
That said, this is only really an issue if your number of variables is very small and the amount of data in your variables is large. As far as picking an encoding, it's more of an art than a science and it depends on your problem. I would suggest going with an encoding that fits the amount of precision you want. With 10 variables you won't got that far wrong however you encode it, an 8-bit ASCII encoder would probably work fine.
Hope that helps.

What's differential evolution and how does it compare to a genetic algorithm?

From what I've read so far they seem very similar.
Differential evolution uses floating point numbers instead, and the solutions are called vectors? I'm not quite sure what that means.
If someone could provide an overview with a little bit about the advantages and disadvantages of both.
Well, both genetic algorithms and differential evolution are examples of evolutionary computation.
Genetic algorithms keep pretty closely to the metaphor of genetic reproduction. Even the language is mostly the same-- both talk of chromosomes, both talk of genes, the genes are distinct alphabets, both talk of crossover, and the crossover is fairly close to a low-level understanding of genetic reproduction, etc.
Differential evolution is in the same style, but the correspondences are not as exact. The first big change is that DE is using actual real numbers (in the strict mathematical sense-- they're implemented as floats, or doubles, or whatever, but in theory they're ranging over the field of reals.) As a result, the ideas of mutation and crossover are substantially different. The mutation operator is modified so far that it's hard for me to even see why it's called mutation, as such, except that it serves the same purpose of breaking things out of local minima.
On the plus side, there are a handful of results showing DEs are often more effective and/or more efficient than genetic algorithms. And when working in numerical optimization, it's nice to be able to represent things as actual real numbers instead of having to work your way around to a chromosomal kind of representation, first. (Note: I've read about them, but I've not messed extensively with them so I can't really comment from first hand knowledge.)
On the negative side, I don't think there's been any proof of convergence for DEs, yet.
Differential evolution is actually a specific subset of the broader space of genetic algorithms, with the following restrictions:
The genotype is some form of real-valued vector
The mutation / crossover operations make use of the difference between two or more vectors in the population to create a new vector (typically by adding some random proportion of the difference to one of the existing vectors, plus a small amount of random noise)
DE performs well for certain situations because the vectors can be considered to form a "cloud" that explores the high value areas of the solution solution space quite effectively. It's pretty closely related to particle swarm optimization in some senses.
It still has the usual GA problem of getting stuck in local minima however.

How do algorithms differ from design patterns?

I am new to C programming; coming from an OOP PHP background.
I find C to be (no wonder) a much more difficult language. I had particularly lots of problems figuring out a couple of things on arrays at first: like there is no native associative array.
Now, this part I guess I'm figuring out little by little, but now I have a question regarding a conversation I had just yesterday with a C developer. She was explaining the binary search algorithm to me because I asked her whether there were libraries to do array related stuff in C or not because it seemed like a smarter solution than always re-inventing the wheel.
I would really love to learn more about algorithms in C, in particular what differences are there between algorithms and the design patterns I'm used to using in PHP?
Taking things in order: the extent of C's support for anything like an associative array would be qsort to sort an array of structures based on a key, and bsearch to find one based on a key. There are, of course, quite a few alternatives -- various other libraries have hash tables, balanced trees, etc. Exactly which will suit your purposes is hard to guess though.
Offhand, I don't know of many good books covering algorithms that use C as their primary vehicle for demonstration. A few obvious recommendations for books on algorithms in general (mostly language independent) would be:
The Art of Computer Programming by Donald Knuth. This is pretty much the class algorithms book. It's now (finally) up to four volumes. Knuth originally started on it in 1967, planning to write 7 volumes. Only three volumes were available for a long time. A fourth was added quite recently. At the rate he's going, it's only going to make it to 7 if Knuth lives to be well past 100 years old. Nonetheless, the parts that are there are extremely good -- but (warning!) he analyzes the algorithms in considerable detail; if you don't know at least a little calculus, a fair amount will probably be hard to follow.
Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein. IIRC, there's now a newer edition than I have, which adds yet another author. This is a large book (dropping it on your toes would be quite painful). It uses a fair amount of mathematical notation and such throughout, but if you're willing to work a little at looking up the notation, it's really pretty understandable. It covers quite a bit of important ground (e.g., graph algorithms) that are scheduled for later volumes of Knuth, but not (at least yet) available there.
Algorithms and Data Structures by Aho, Hopcraft and Ullman. This is (by a pretty fair margin) the smallest, lightest, and at least for most people probably the easiest of these to follow.
Though it's only available used anymore, if you can find a copy of Algorithms + Data Structures = Programs by Niklaus Wirth, that's what I'd really suggest. It uses Pascal (no surprise -- Niklaus Wirth invented Pascal), but that's enough like C that it doesn't cause a real problem. It doesn't go into as much depth as Knuth about each algorithm, but still enough to give a good feel for when one is likely to be a good choice versus another. For somebody in your position (some background in programming, but little in this area) it's my top recommendation.
Though I've said it before, I think it bears repeating: IMO, all of Robert Sedgewick's books on algorithms should be avoided. Algorithms in C++ is probably the worst of them, but the others are only marginally better. The code they include (again, especially the C++ version) is truly execrable, and the descriptions of algorithms are often incomplete and/or misleading. The most recent editions have fixed some of the problems, but (IMO) not nearly enough to qualify as something that should ever be recommended. If there was no alternative, you could probably get by with these, but given the number of alternatives that are dramatically superior, the only reason to read these at all is if somebody gives them to you, and you absolutely can't afford anything else.
As far as algorithms versus design patterns goes, the line can get blurry in places, but generally an algorithm is much more tightly defined. An algorithm will normally have a specific, tightly defined input which it processes in a specific way to produce an equally specific result/output. A design pattern tends to be more loosely defined, more generic. An algorithm can be generic as well (e.g., a sorting algorithms might require a type that defines a strict, weak ordering) but still has specific requirements on the type.
A design pattern tends to be somewhat more loosely defined. For example, the visitor pattern involves processing groups of objects -- but we don't want to modify the types of those objects when we decide we need to process them in a new and different way. We do that by defining the processes separately from the objects to be processed, along with how we'll traverse the groups of objects, and allow a process to work with each.
To look at it from a rather different direction, you can usually implement an algorithm with a function or a small group of functions. A design pattern tends to be oriented more toward the style in which you write your code, rather than just "here's a function, use it."
"Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms (3rd Edition)"
Cannot stress how good that series is.

Did you apply computational complexity theory in real life?

I'm taking a course in computational complexity and have so far had an impression that it won't be of much help to a developer.
I might be wrong but if you have gone down this path before, could you please provide an example of how the complexity theory helped you in your work? Tons of thanks.
O(1): Plain code without loops. Just flows through. Lookups in a lookup table are O(1), too.
O(log(n)): efficiently optimized algorithms. Example: binary tree algorithms and binary search. Usually doesn't hurt. You're lucky if you have such an algorithm at hand.
O(n): a single loop over data. Hurts for very large n.
O(n*log(n)): an algorithm that does some sort of divide and conquer strategy. Hurts for large n. Typical example: merge sort
O(n*n): a nested loop of some sort. Hurts even with small n. Common with naive matrix calculations. You want to avoid this sort of algorithm if you can.
O(n^x for x>2): a wicked construction with multiple nested loops. Hurts for very small n.
O(x^n, n! and worse): freaky (and often recursive) algorithms you don't want to have in production code except in very controlled cases, for very small n and if there really is no better alternative. Computation time may explode with n=n+1.
Moving your algorithm down from a higher complexity class can make your algorithm fly. Think of Fourier transformation which has an O(n*n) algorithm that was unusable with 1960s hardware except in rare cases. Then Cooley and Tukey made some clever complexity reductions by re-using already calculated values. That led to the widespread introduction of FFT into signal processing. And in the end it's also why Steve Jobs made a fortune with the iPod.
Simple example: Naive C programmers write this sort of loop:
for (int cnt=0; cnt < strlen(s) ; cnt++) {
/* some code */
}
That's an O(n*n) algorithm because of the implementation of strlen(). Nesting loops leads to multiplication of complexities inside the big-O. O(n) inside O(n) gives O(n*n). O(n^3) inside O(n) gives O(n^4). In the example, precalculating the string length will immediately turn the loop into O(n). Joel has also written about this.
Yet the complexity class is not everything. You have to keep an eye on the size of n. Reworking an O(n*log(n)) algorithm to O(n) won't help if the number of (now linear) instructions grows massively due to the reworking. And if n is small anyway, optimizing won't give much bang, too.
While it is true that one can get really far in software development without the slightest understanding of algorithmic complexity. I find I use my knowledge of complexity all the time; though, at this point it is often without realizing it. The two things that learning about complexity gives you as a software developer are a way to compare non-similar algorithms that do the same thing (sorting algorithms are the classic example, but most people don't actually write their own sorts). The more useful thing that it gives you is a way to quickly describe an algorithm.
For example, consider SQL. SQL is used every day by a very large number of programmers. If you were to see the following query, your understanding of the query is very different if you've studied complexity.
SELECT User.*, COUNT(Order.*) OrderCount FROM User Join Order ON User.UserId = Order.UserId
If you have studied complexity, then you would understand if someone said it was O(n^2) for a certain DBMS. Without complexity theory, the person would have to explain about table scans and such. If we add an index to the Order table
CREATE INDEX ORDER_USERID ON Order(UserId)
Then the above query might be O(n log n), which would make a huge difference for a large DB, but for a small one, it is nothing at all.
One might argue that complexity theory is not needed to understand how databases work, and they would be correct, but complexity theory gives a language for thinking about and talking about algorithms working on data.
For most types of programming work the theory part and proofs may not be useful in themselves but what they're doing is try to give you the intuition of being able to immediately say "this algorithm is O(n^2) so we can't run it on these one million data points". Even in the most elementary processing of large amounts of data you'll be running into this.
Thinking quickly complexity theory has been important to me in business data processing, GIS, graphics programming and understanding algorithms in general. It's one of the most useful lessons you can get from CS studies compared to what you'd generally self-study otherwise.
Computers are not smart, they will do whatever you instruct them to do. Compilers can optimize code a bit for you, but they can't optimize algorithms. Human brain works differently and that is why you need to understand the Big O. Consider calculating Fibonacci numbers. We all know F(n) = F(n-1) + F(n-2), and starting with 1,1 you can easily calculate following numbers without much effort, in linear time. But if you tell computer to calculate it with that formula (recursively), it wouldn't be linear (at least, in imperative languages). Somehow, our brain optimized algorithm, but compiler can't do this. So, you have to work on the algorithm to make it better.
And then, you need training, to spot brain optimizations which look so obvious, to see when code might be ineffective, to know patterns for bad and good algorithms (in terms of computational complexity) and so on. Basically, those courses serve several things:
understand executional patterns and data structures and what effect they have on the time your program needs to finish;
train your mind to spot potential problems in algorithm, when it could be inefficient on large data sets. Or understand the results of profiling;
learn well-known ways to improve algorithms by reducing their computational complexity;
prepare yourself to pass an interview in the cool company :)
It's extremely important. If you don't understand how to estimate and figure out how long your algorithms will take to run, then you will end up writing some pretty slow code. I think about compuational complexity all the time when writing algorithms. It's something that should always be on your mind when programming.
This is especially true in many cases because while your app may work fine on your desktop computer with a small test data set, it's important to understand how quickly your app will respond once you go live with it, and there are hundreds of thousands of people using it.
Yes, I frequently use Big-O notation, or rather, I use the thought processes behind it, not the notation itself. Largely because so few developers in the organization(s) I frequent understand it. I don't mean to be disrespectful to those people, but in my experience, knowledge of this stuff is one of those things that "sorts the men from the boys".
I wonder if this is one of those questions that can only receive "yes" answers? It strikes me that the set of people that understand computational complexity is roughly equivalent to the set of people that think it's important. So, anyone that might answer no perhaps doesn't understand the question and therefore would skip on to the next question rather than pause to respond. Just a thought ;-)
There are points in time when you will face problems that require thinking about them. There are many real world problems that require manipulation of large set of data...
Examples are:
Maps application... like Google Maps - how would you process the road line data worldwide and draw them? and you need to draw them fast!
Logistics application... think traveling sales man on steroids
Data mining... all big enterprises requires one, how would you mine a database containing 100 tables and 10m+ rows and come up with a useful results before the trends get outdated?
Taking a course in computational complexity will help you in analyzing and choosing/creating algorithms that are efficient for such scenarios.
Believe me, something as simple as reducing a coefficient, say from T(3n) down to T(2n) can make a HUGE differences when the "n" is measured in days if not months.
There's lots of good advice here, and I'm sure most programmers have used their complexity knowledge once in a while.
However I should say understanding computational complexity is of extreme importance in the field of Games! Yes you heard it, that "useless" stuff is the kind of stuff game programming lives on.
I'd bet very few professionals probably care about the Big-O as much as game programmers.
I use complexity calculations regularly, largely because I work in the geospatial domain with very large datasets, e.g. processes involving millions and occasionally billions of cartesian coordinates. Once you start hitting multi-dimensional problems, complexity can be a real issue, as greedy algorithms that would be O(n) in one dimension suddenly hop to O(n^3) in three dimensions and it doesn't take much data to create a serious bottleneck. As I mentioned in a similar post, you also see big O notation becoming cumbersome when you start dealing with groups of complex objects of varying size. The order of complexity can also be very data dependent, with typical cases performing much better than general cases for well designed ad hoc algorithms.
It is also worth testing your algorithms under a profiler to see if what you have designed is what you have achieved. I find most bottlenecks are resolved much better with algorithm tweaking than improved processor speed for all the obvious reasons.
For more reading on general algorithms and their complexities I found Sedgewicks work both informative and accessible. For spatial algorithms, O'Rourkes book on computational geometry is excellent.
In your normal life, not near a computer you should apply concepts of complexity and parallel processing. This will allow you to be more efficient. Cache coherency. That sort of thing.
Yes, my knowledge of sorting algorithms came in handy one day when I had to sort a stack of student exams. I used merge sort (but not quicksort or heapsort). When programming, I just employ whatever sorting routine the library offers. ( haven't had to sort really large amount of data yet.)
I do use complexity theory in programming all the time, mostly in deciding which data structures to use, but also in when deciding whether or when to sort things, and for many other decisions.
'yes' and 'no'
yes) I frequently use big O-notation when developing and implementing algorithms.
E.g. when you should handle 10^3 items and complexity of the first algorithm is O(n log(n)) and of the second one O(n^3), you simply can say that first algorithm is almost real time while the second require considerable calculations.
Sometimes knowledges about NP complexities classes can be useful. It can help you to realize that you can stop thinking about inventing efficient algorithm when some NP-complete problem can be reduced to the problem you are thinking about.
no) What I have described above is a small part of the complexities theory. As a result it is difficult to say that I use it, I use minor-minor part of it.
I should admit that there are many software development project which don't touch algorithm development or usage of them in sophisticated way. In such cases complexity theory is useless. Ordinary users of algorithms frequently operate using words 'fast' and 'slow', 'x seconds' etc.
#Martin: Can you please elaborate on the thought processes behind it?
it might not be so explicit as sitting down and working out the Big-O notation for a solution, but it creates an awareness of the problem - and that steers you towards looking for a more efficient answer and away from problems in approaches you might take. e.g. O(n*n) versus something faster e.g. searching for words stored in a list versus stored in a trie (contrived example)
I find that it makes a difference with what data structures I'll choose to use, and how I'll work on large numbers of records.
A good example could be when your boss tells you to do some program and you can demonstrate by using the computational complexity theory that what your boss is asking you to do is not possible.

Resources