how to do fuzzy search in big data - database

I'm new to that area and I wondering mostly what the state-of-the-art is and where I can read about it.
Let's assume that I just have a key/value store and I have some distance(key1,key2) defined somehow (not sure if it must be a metric, i.e. if the triangle inequality must hold always).
What I want is mostly a search(key) function which returns me all items with keys up to a certain distance to the search-key. Maybe that distance-limit is configureable. Maybe this is also just a lazy iterator. Maybe there can also be a count-limit and an item (key,value) is with some probability P in the returned set where P = 1/distance(key,search-key) or so (i.e., the perfect match would certainly be in the set and close matches at least with high probability).
One example application is fingerprint matching in MusicBrainz. They use the AcoustId fingerprint and have defined this compare function. They use the PostgreSQL GIN Index and I guess (although I haven't fully understood/read the acoustid-server code) the GIN Partial Match Algorithm but I haven't fully understand wether that is what I asked for and how it works.
For text, what I have found so far is to use some phonetic algorithm to simplify words based on their pronunciation. An example is here. This is mostly to break the search-space down to a smaller space. However, that has several limitations, e.g. it must still be a perfect match in the smaller space.
But anyway, I am also searching for a more generic solution, if that exists.

There is no (fast) generic solution, each application will need different approach.
Neither of the two examples actually does traditional nearest neighbor search. AcoustID (I'm the author) is just looking for exact matches, but it searches in a very high number of hashes in hope that some of them will match. The phonetic search example uses metaphone to convert words to their phonetic representation and is also only looking for exact matches.
You will find that if you have a lot of data, exact search using huge hash tables is the only thing you can realistically do. The problem then becomes how to convert your fuzzy matching to exact search.
A common approach is to use locality-sensitive hashing (LSH) with a smart hashing method, but as you can see in your two examples, sometimes you can get away with even simpler approach.
Btw, you are looking specifically for text search, the simplest way you can do it split your input to N-grams and index those. Depending on how your distance function is defined, that might give you the right candidate matches without too much work.

I suggest you take a look at FLANN Fast Approximate Nearest Neighbors. Fuzzy search in big data is also known as approximate nearest neighbors.
This library offers you different metric, e.g Euclidian, Hamming and different methods of clustering: LSH or k-means for instance.
The search is always in 2 phases. First you feed the system with data to train the algorithm, this is potentially time consuming depending on your data.
I successfully clustered 13 millions data in less than a minute though (using LSH).
Then comes the search phase, which is very fast. You can specify a maximum distance and/or the maximum numbers of neighbors.
As Lukas said, there is no good generic solution, each domain will have its tricks to make it faster or find a better way using the inner property of the data your using.
Shazam uses a special technique with geometrical projections to quickly find your song. In computer vision we often use the BOW: Bag of words, which originally appeared in text retrieval.
If you can see your data as a graph, there are other methods for approximate matching using spectral graph theory for instance.
Let us know.

Depends on what your key/values are like, the Levenshtein algorithm (also called Edit-Distance) can help. It calculates the least number of edit operations that are necessary to modify one string to obtain another string.
http://en.wikipedia.org/wiki/Levenshtein_distance
http://www.levenshtein.net/

Related

Fast spatial data structure for nearest neighbor search amongst non-uniformly sized hyperspheres

Given a k-dimensional continuous (euclidean) space filled with rather unpredictably moving/growing/shrinking  hyperspheres I need to repeatedly find the hypersphere whose surface is nearest to a given coordinate. If some hyperspheres are of the same distance to my coordinate, then the biggest hypersphere wins. (The total count of hyperspheres is guaranteed to stay the same over time.)
My first thought was to use a KDTree but it won't take the hyperspheres' non-uniform volumes into account.
So I looked further and found BVH (Bounding Volume Hierarchies) and BIH (Bounding Interval Hierarchies), which seem to do the trick. At least in 2-/3-dimensional space. However while finding quite a bit of info and visualizations on BVHs I could barely find anything on BIHs.
My basic requirement is a k-dimensional spatial data structure that takes volume into account and is either super fast to build (off-line) or dynamic with barely any unbalancing.
Given my requirements above, which data structure would you go with? Any other ones I didn't even mention?
Edit 1: Forgot to mention: hypershperes are allowed (actually highly expected) to overlap!
Edit 2: Looks like instead of "distance" (and "negative distance" in particular) my described metric matches the power of a point much better.
I'd expect a QuadTree/Octree/generalized to 2^K-tree for your dimensionality of K would do the trick; these recursively partition space, and presumably you can stop when a K-subcube (or K-rectangular brick if the splits aren't even) does not contain a hypersphere, or contains one or more hyperspheres such that partitioning doesn't separate any, or alternatively contains the center of just a single hypersphere (probably easier).
Inserting and deleting entities in such trees is fast, so a hypersphere changing size just causes a delete/insert pair of operations. (I suspect you can optimize this if your sphere size changes by local additional recursive partition if the sphere gets smaller, or local K-block merging if it grows).
I haven't worked with them, but you might also consider binary space partitions. These let you use binary trees instead of k-trees to partition your space. I understand that KDTrees are a special case of this.
But in any case I thought the insertion/deletion algorithms for 2^K trees and/or BSP/KDTrees was well understood and fast. So hypersphere size changes cause deletion/insertion operations but those are fast. So I don't understand your objection to KD-trees.
I think the performance of all these are asymptotically the same.
I would use the R*Tree extension for SQLite. A table would normally have 1 or 2 dimensional data. SQL queries can combine multiple tables to search in higher dimensions.
The formulation with negative distance is a little weird. Distance is positive in geometry, so there may not be much helpful theory to use.
A different formulation that uses only positive distances may be helpful. Read about hyperbolic spaces. This might help to provide ideas for other ways to describe distance.

google app engine : query geohash

I have a db.StringProperty() of geohash, by given a hashcode, how do I find the closer 10 result?
I tried below but doesn't seem to be right
pois = POI.all().filter('geohash <', h_latlng).order('-geohash').fetch(10)
A geohash cannot accomplish the task to find the n-nearest results. You can find the contents of any square region by prefix. But to find a reliable result containing the n-nearest you need to fetch at least 9 prefixes, making it a quite expensive query. Complicating the matter is that prefixes of the 9 squares need to be calculated.
IMO this problem is currently a hard problem to solve efficiently on app-engine. So far, I am on it since a year and have not found a sophisticated and fast solution. A Relational DB with geo index or 2 inequalities will perform such tasks better and faster. But I am interested in good solutions, too. :-)
Citation David Troy:
Geohash also has the property that as
the number of digits decreases (from
the right), accuracy degrades. This
property can be used to do bounding
box searches, as points near to one
another will share similar Geohash
prefixes.
However, because a given point may
appear at the edge of a given Geohash
bounding box, it is necessary to
generate a list of Geohash values in
order to perform a true proximity
search around a point. Because the
Geohash algorithm uses a base-32
numbering system, it is possible to
derive the Geohash values surrounding
any other given Geohash value using a
simple lookup table.
See: https://github.com/davetroy/geohash-js

How to find that two words differ by how much distance>> Is there any shortest way for this

I have read about Levenshtein distance about the calculation of the distance between the two distinct words.
I have one source string and i have to match it with all 10,000 target words. The closest word should be returned.
The problem is I have given a list of 10,000 target words, and input source words is also huge.... So what shortest and efficient algorithm to apply here. Levenshtein distance calculation for each n every combination(brute force logic) would be very time consuming.
Any hints, or ideas are most welcome.
I guess it depends a little on how the words are structured. For example this guy improved the implementation based on the fact that he processes his words in order and does not repeat calculations for common prefixes. But if all your 10,000 words are totally different that won't do you much good. It's written in python so might be a bit of work involved to port to C.
There are also some kinda homebrew algorithms out there (with which I mean there is no official paper written about it) but that might do the trick.
There's two common approaches for this, and I've blogged about both. The simpler one to implement is BK-Trees - a tree datastructure that speeds lookup based on levenshtein distance by only searching relevant parts of the tree. They'll probably be perfectly sufficient for your use-case.
A more complicated but more efficient approach is Levenshtein Automata. This works by constructing an NFA that recognizes all words within levenshtein distance x of your target string, then iterating through it and the dictionary in lockstep, effectively performing a merge join on them.

Data structure for finding nearby keys with similar bitvalues

I have some data, up to a between a million and a billion records, each which is represented by a bitfield, about 64 bits per key. The bits are independent, you can imagine them basically as random bits.
If I have a test key and I want to find all values in my data with the same key, a hash table will spit those out very easily, in O(1).
What algorithm/data structure would efficiently find all records most similar to the query key? Here similar means that most bits are identical, but a minimal number are allowed to be wrong. This is traditionally measured by Hamming distance., which just counts the number of mismatched bits.
There's two ways this query might be made, one might be by specifying a mismatch rate like "give me a list of all existing keys which have less than 6 bits that differ from my query" or by simply best matches, like "give me a list of the 10,000 keys which have the lowest number of differing bits from my query."
You might be temped to run to k-nearest-neighbor algorithms, but here we're talking about independent bits, so it doesn't seem likely that structures like quadtrees are useful.
The problem can be solved by simple brute force testing a hash table for low numbers of differing bits. If we want to find all keys that differ by one bit from our query, for example, we can enumerate all 64 possible keys and test them all. But this explodes quickly, if we wanted to allow two bits of difference, then we'd have to probe 64*63=4032 times. It gets exponentially worse for higher numbers of bits.
So is there another data structure or strategy that makes this kind of query more efficient?
The database/structure can be preprocessed as much as you like, it's the query speed that should be optimized.
What you want is a BK-Tree. It's a tree that's ideally suited to indexing metric spaces (your problem is one), and supports both nearest-neighbour and distance queries. I wrote an article about it a while ago.
BK-Trees are generally described with reference to text and using levenshtein distance to build the tree, but it's straightforward to write one in terms of binary strings and hamming distance.
This sounds like a good fit for an S-Tree, which is like a hierarchical inverted file. Good resources on this topic include the following papers:
Hierarchical Bitmap Index: An Efficient and Scalable Indexing Technique for Set-Valued Attributes.
Improved Methods for Signature-Tree Construction (2000)
Quote from the first one:
The hierarchical bitmap index efficiently supports dif-
ferent classes of queries, including subset, superset and similarity queries.
Our experiments show that the hierarchical bitmap index outperforms
other set indexing techniques significantly.
These papers include references to other research that you might find useful, such as M-Trees.
Create a binary tree (specifically a trie) representing each key in your start set in the following way: The root node is the empty word, moving down the tree to the left appends a 0 and moving down the right appends a 1. The tree will only have as many leaves as your start set has elements, so the size should stay manageable.
Now you can do a recursive traversal of this tree, allowing at most n "deviations" from the query key in each recursive line of execution, until you have found all of the nodes in the start set which are within that number of deviations.
I'd go with an inverted index, like a search engine. You've basically got a fixed vocabulary of 64 words. Then similarity is measured by hamming distance, instead of cosine similarity like a search engine would want to use. Constructing the index will be slow, but you ought to be able to query it with normal search enginey speeds.
The book Introduction to Information Retrieval covers the efficient construction, storage, compression and querying of inverted indexes.
"Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions", from 2008, seems to be the best result as of then. I won't try to summarize since I read it over a year ago and it's hairy. That's from a page on locality-sensitive hashing, along with an implementation of an earlier version of the scheme. For more general pointers, read up on nearest neighbor search.
This kind of question has been asked before: Fastest way to find most similar string to an input?
The database/structure can be
preprocessed as much as you like
Well...IF that is true. Then all you need is a similarity matrix of your hamming distances. Make the matrix sparse by pruning out large distances. It doesn't get any faster and not that much of a memory hog.
Well, you could insert all of the neighbor keys along with the original key. That would mean that you store (64 choose k) times as much data, for k differing bits, and it will require that you decide k beforehand. Though you could always extend k by brute force querying neighbors, and this will automatically query the neighbors of your neighbors that you inserted. This also gives you a time-space tradeoff: for example, if you accept a 64 x data blowup and 64 times slower you can get two bits of distance.
I haven't completely thought this through, but I have an idea of where I'd start.
You could divide the search space up into a number of buckets where each bucket has a bucket key and the keys in the bucket are the keys that are more similar to this bucket key than any other bucket key. To create the bucket keys, you could randomly generate 64 bit keys and discard any that are too close to any previously created bucket key, or you could work out some algorithm that generates keys that are all dissimilar enough. To find the closest key to a test key, first find the bucket key that is closest, and then test each key in the bucket. (Actually, it's possible, but not likely, for the closest key to be in another bucket - do you need to find the closest key, or would a very close key be good enough?)
If you're ok with doing it probabilistically, I think there's a good way to solve question 2. I assume you have 2^30 data and cutoff and you want to find all points within cutoff distance from test.
One_Try()
1. Generate randomly a 20-bit subset S of 64 bits
2. Ask for a list of elements that agree with test on S (about 2^10 elements)
3. Sort that list by Hamming distance from test
4. Discard the part of list after cutoff
You repeat One_Try as much as you need while merging the lists. The more tries you have, the more points you find. For example, if x is within 5 bits, you'll find it in one try with about (2/3)^5 = 13% probability. Therefore if you repeat 100 tries you find all but roughly 10^{-6} of such x. Total time: 100*(1000*log 1000).
The main advantage of this is that you're able to output answers to question 2 as you proceed, since after the first few tries you'll certainly find everything within distance not more than 3 bits, etc.
If you have many computers, you give each of them several tries, since they are perfectly parallelizable: each computer saves some hash tables in advance.
Data structures for large sets described here: Detecting Near-Duplicates for Web Crawling
or
in memory trie: Judy-arrays at sourceforge.net
Assuming you have to visit each row to test its value (or if you index on the bitfield then each index entry), then you can write the actual test quite efficiently using
A xor B
To find the difference bits, then bit-count the result, using a technique like this.
This effectively gives you the hamming distance.
Since this can compile down to tens of instructions per test, this can run pretty fast.
If you are okay with a randomized algorithm (monte carlo in this case), you can use the minhash.
If the data weren't so sparse, a graph with keys as the vertices and edges linking 'adjacent' (Hamming distance = 1) nodes would probably be very efficient time-wise. The space would be very large though, so in your case, I don't think it would be a worthwhile tradeoff.

Similarity between line strings

I have a number of tracks recorded by a GPS, which more formally can be described as a number of line strings.
Now, some of the recorded tracks might be recordings of the same route, but because of inaccurasies in the GPS system, the fact that the recordings were made on separate occasions and that they might have been recorded travelling at different speeds, they won't match up perfectly, but still look close enough when viewed on a map by a human to determine that it's actually the same route that has been recorded.
I want to find an algorithm that calculates the similarity between two line strings. I have come up with some home grown methods to do this, but would like to know if this is a problem that's already has good algorithms to solve it.
How would you calculate the similarity, given that similar means represents the same path on a map?
Edit: For those unsure of what I'm talking about, please look at this link for a definition of what a line string is: http://msdn.microsoft.com/en-us/library/bb895372.aspx - I'm not asking about character strings.
Compute the Fréchet distance on each pair of tracks. The distance can be used to gauge the similarity of your tracks.
Math alert: Fréchet was a pioneer in the field of metric space which is relevant to your problem.
I would add a buffer around the first line based on the estimated probable error, and then determine if the second line fits entirely within the buffer.
To determine "same route," create the minimal set of normalized path vectors, calculate the total power differences and compare the total to a quality measure.
Normalize the GPS waypoints on total path length,
walk the vectors of the paths together, creating a new set of path vectors for each path based upon the shortest vector at each waypoint,
calculate the total power differences between endpoints of each vector in the normalized paths weighting for vector length, and
compare against a quality measure.
Tune the power of the differences (start with, say, squared differences) and the quality measure (say as a percent of the total power differences) visually. This algorithm produces a continuous quality measure of the path match as well as a binary result (Are the paths the same?)
Paul Tomblin said: I would add a buffer
around the first line based on the
estimated probable error, and then
determine if the second line fits
entirely within the buffer.
You could modify the algorithm as the normalized vector endpoints are compared. You could determine if any endpoint difference was above a certain size (implementing Paul's buffer idea) or perhaps, if the endpoints were outside the "buffer," use that fact to ignore that endpoint difference, allowing a comparison ignoring side trips.
You could walk along each point (Pa) of LineString A and measure the distance from Pa to the nearest line-segment of LineString B, averaging each of these distances.
This is not a quick or perfect method, but should be able to give use a useful number and is pretty quick to implement.
Do the line strings start and finish at similar points, or are they of very different extents?
If you consider a single line string to be a sequence of [x,y] points (or [x,y,z] points), then you could compute the similarity between each pair of line strings using the Needleman-Wunsch algorithm. As described in the referenced Wikipedia article, the Needleman-Wunsch algorithm requires a "similarity matrix" which defines the distance between a pair of points. However, it would be easy to use a function instead of a matrix. In your case you could simply use the 2D Euclidean distance function (or a 3D Euclidean function if your points have elevation) to provide the distance between each pair of points.
I actually side with the person (Aaron F) who said that you might be interested in the Levenshtein distance problem (and cited this). His answer seems to me to be the best so far.
More specifically, Levenshtein distance (also called edit distance), does not measure strictly the character-by-character distance, but also allows you to perform insertions and deletions. The best algorithm for this distance measure can be computed in quadratic time (pretty slow if your strings are long), but the computational biologists have pretty good heuristics for this, that might be of interest to you on their own. Check out BLAST and FASTA.
In your problem, it seems that you are dealing with differences between strings of numbers, and you care about the numbers. If you give more information, I might be able to direct you to the right variant of BLAST/FASTA/etc for your purposes. In any case, you might consider adapting BLAST and FASTA for your needs. They're quite simple.
1: http://en.wikipedia.org/wiki/Levenshtein_distance, http://www.nist.gov/dads/HTML/Levenshtein.html

Resources