I want to start a big cakePHP project where performance will be an issue. I will have a users table with act as tree behavior and many financial data related to the users. This application will make a lot of dynamic reports aggregating data for different tree nodes etc.
Since there is on github an easy to use library which sets data source of model to redis, I was wondering if it's a good idea to use it for entire app? Is there anyone who has experience with it, and what could be potential problems if I decide to depend on redis as main/only data storage?
EDIT: I have installed redis and Tried to use RedisModel for two models with simple relation HasMany/BelongsTo. When I tried to simply use those models like standard AppModels - it simply wont work (Redis Error: Missing key). Apparently you can't use Model->find Model->save etc. in standard way. You have to use redis methods instead (setKeyValue ect.). This means that pagination and other cakePHP futures will also not work. So maybe it is not the best idea to use redisModel for all my models...
I cannot speak for CakePHP specifically, but I'll talk about redis in general and the points of your question in particular, it should be applicable to your framework of choice in the end. Let's see:
You mention you want to start an application where performance will be an issue — I just wanted to mention you should be careful with the assumption that you will need a nosql solution, because this is hard to assess beforehand. Redis is hella fast, but MySQL for instance has been proven to be capable to handling millions of records and operations just fine, provided it's properly configured and used, and it's much simpler if you need lots of relational structures.
Concerning Redis as the main and only data store:
Redis is perfectly stable for the job. Instagram
reportedly stored 300 million key-value pairs pseudo-sharded
using hashes to great effect, and while it's not the only data
storage system they use, it goes to show redis is pretty reliable.
This very site (Stack Overflow) uses redis also extensively for
caching purposes.
Redis is also reported to have an overall excellent continuous uptime on average (which shouldn't be surprising considering the point above)
Options exists to mitigate downtime issues, replication is supported to some extent, and Redis Cluster is coming soon to support proper distributed approaches.
The main problem you could face is not understanding properly how its
persistence works. You should absolutely read this and this article before you get started because this point is important. In a nutshell, redis does not write changes immediately to disk, which means that depending on your configuration, a crash can cause a data loss ranging from a few seconds to several minutes since the last disk write. This might or might not be a problem depending on your use case; if the data is extremely sensitive (ie, financial records) you might want to think twice before jumping to redis, or build a system where redis is not exclusively used but rather combined with another storage system.
Relational structures in a non-relational data store like redis mean doing more work and often duplicating/denormalizing data. It can be done, but it's something to consider; in your question you mention you'll need to aggregate data to generate dynamic reports, are you sure you want to use redis for this? it sounds like a relational database would give you way more flexibility at a very small cost of performance. If you know in advance you'll need to run complex queries over your data, it could be a good idea not to reinvent the wheel unless you absolutely need to.
My advice here would be to first get a better feeling on what redis is and how works, potentially build your own models instead of relying on others to better understand what can and cannot be done, and from there assess where you want to take it. Redis is reliable enough to be used standalone, but at the end of the day what's smart is to use the right tool for the right job, and you might find some things of your app work well with redis while some others are better off to a more traditional storage system.
Related
So I'm designing this blog engine and I'm trying to just keep my blog data without considering comments or membership system or any other type of multi-user data.
The blog itself is surrounded around 2 types of data, the first is the actual blog post entry which consists of: title, post body, meta data (mostly dates and statistics), so it's really simple and can be represented by simple json object. The second type of data is the blog admin configuration and personal information. Comment system and other will be implemented using disqus.
My main concern here is the ability of such engine to scale with spiked visits (I know you might argue this but lets take it for granted). So since I've started this project I'm moving well with the rest of my stack except the data layer. Now I've been having this dilemma choosing the database, I've considered MongoDB but some reviews and articles/benchmarking were suggesting slow reads after collections read certain size. Next I was looking at Redis and using its persistence features RDB and AOF, while Redis is good at both fast reading/writing I'm afraid of using it because I'm not familiar with it. And this whole search keeps going on to things like "PostgreSQL 9.4 is now faster than MongoDB for storing JSON documents" etc.
So is there any way I can settle this issue for good? considering that I only need to represent my data in key,value structure and only require fast reading but not writing and the ability to be fault tolerant.
Thank you
If I were you I would start small and not try to optimize for big data just yet. A lot of blogs you read about the downsides of a NoSQL solution are around large data sets - or people that are trying to do relational things with a database designed for de-normalized data.
My list of databases to consider:
Mongo. It has huge community support and based on recent funding - it's going to be around for a while. It runs very well on a single instance and a basic replica set. It's easy to set up and free, so it's worth spending a day or two running your own tests to settle the issue once and for all. Don't trust a blog.
Couchbase. Supports key/value storage and also has persistence to disk. http://www.couchbase.com/couchbase-server/features Also has had some recent funding so hopefully that means stability. =)
CouchDB/PouchDB. You can use PouchDB purely on the client side and it can connect to a server side CouchDB. CouchDB might not have the same momentum as Mongo or Couchbase, but it's an actively supported product and does key/value with persistence to disk.
Riak. http://basho.com/riak/. Another NoSQL that scales and is a key/value store.
You can install and run a proof-of-concept on all of the above products in a few hours. I would recommend this for the following reasons:
A given database might scale and hit your points, but be unpleasant to use. Consider picking a database that feels fun! Sort of akin to picking Ruby/Python over Java because the syntax is nicer.
Your use case and domain will be fairly unique. Worth testing various products to see what fits best.
Each database has quirks and you won't find those until you actually try one. One might have quirks that are passable, one will have quirks that are a show stopper.
The benefit of trying all of them is that they all support schemaless data, so if you write JSON, you can use all of them! No need to create objects in your code for each database.
If you abstract the database correctly in code, swapping out data stores won't be that painful. In other words, your code will be happier if you make it easy to swap out data stores.
This is only an option for really simple CMSes, but it sounds like that's what you're building.
If your blog is super-simple as you describe and your main concern is very high traffic then the best option might be to avoid a database entirely and have your CMS generate static files instead. By doing this, you eliminate all your database concerns completely.
It's not the best option if you're doing anything dynamic or complex, but in this small use case it might fit the bill.
I have to implement caching for a function that processes strings of varying lenghts (a couple of bytes up to a few kilobytes). My intention is to use a database for this - basically one big table with input and output columns and an index on the input column. The cache would try to find the string in the input column and get the output column - probably one of the simplest database applications imaginable.
What database would be best for this application? A fully-featured database like mysql or a simple one like sqlite3? Or is there even a better way by not using a database?
Document-stores are made for this. I highly recommend Redis for this specific problem. It is a "key-value" store, meaning it does not have relations, it does not have schemas, all it does is map keys to values. Which sounds like just what you need.
Alternatives are MongoDB and CouchDB. Look around and see what suites you best. My recommendation stays with Redis though.
Reading: http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis
Joe has some good recommendations for data stores that are commonly use for caching. I would say Redis, Couchbase (not CouchDB though - it goes to disk fairly frequently/not that fast from my experience) and just plain Memcached.
MongoDB can be used for caching, but I don't think it's quite as tuned for pure caching like something like Redis is. Mongo can hit the disk quite a bit.
Also I highly recommend using time to live (TTL) as your main caching strategy. Just give a value some time to expire and then re-populate it later. It is a very hard problem to pro-actively find all instances of some data in a cache and refresh it.
I am writing a web application with nodeJS that can be used by other applications to store logs and accessed later in a web interface or by applications themselves providing an API. Similar to Graylog2 but schema free.
I've already tried couchDB in which each document would be a log doc but since I'm not really using revisions it seems to me I'm not using its all features. And beside that I think if the logs exceeds a limit it would be pretty hard to manage in couchDB.
What I'm really looking for, is a big array of logs that can be sorted, filtered, searched and capped on. Then the last events of it accessed. It should be schema free and writing to it should be non-blocking.
I'm considering using Cassandra(I'm not really familiar with it) due to the points here said. MongoDB seems good here too, since Graylog2 uses in mongoDB, in here it has some good points about it.
I've already have seen this question, but not satisfied with the answers.
Edit:
For some reasons I can't use Cassandra in production, now I'm trying MongoDB.
One more reason to use mongoDB :
http://www.slideshare.net/WombatNation/logging-app-behavior-to-mongo-db
More edits:
It is similar to graylog2, but the difference I want to make that instead of having a message field, having fileds defined by the client, which is why I want it to be schema free, and because of that, I may need to query in the user defined fields. We can build it on SQL, but querying on the user defined fields would be reinventing wheel. Same goes with files.
Technically what I'm looking for is to get rich statistical data in the end, or easy debugging and a lot of other stuff that we can't get out of the logs.
Where shall it be stored and how shall it be retrieved?
I guess it depends on how much data you are dealing with. If you have a huge amount (terabytes and petabytes per day) of logs then Apache Kafka, which is designed to allow data to be PULLED by HDFS in parallel, is a interesting solution - still in the incubation stage. I believe if you want to consume Kafka messages with MongoDb, you'd need to develop your own adapter to ingest it as a consumer of a particular Kafka topic. Although MongoDb data (e.g. shards and replicas) is distributed, it may be a sequential process to ingest each message. So, there may be a bottleneck or even race conditions depending on the rate and size of message traffic. Kafka is optimized to pump and append that data to HDFS nodes using message brokers FAST. Then once it is in HDFS you can map/reduce to analyze your information in a variety of ways.
If MongoDb can handle the ingestion load, then it is an excellent, scalable, real-time solution to find information, particularly documents. Otherwise, if you have more time to process data (i.e. batch processes that take hours and sometimes days), then Hadoop or some other Map Reduce database is warranted. Finally, Kafka can distribute that load of messages and hookup that fire-hose to a variety of consumers. Overall, these new technologies spread the load and huge amounts of data across cheap hardware using software to manage failure and recover with a very low probability of losing data.
Even with a small amount of data, MongoDb is a nice option to traditional relational database solutions which require more overhead of developer resources to design, build and maintain.
General Approach
You have a lot of work ahead of you. Whichever database you use, you have many features which you must build on top of the DB foundation. You have done good research about all of your options. It sounds like you suspect that all have pros and cons but all are imperfect. Your suspicion is correct. At this point it is probably time to start writing code.
You could just choose one arbitrarily and start building your application. If your guess was correct that the pros and cons balance out and it's all about the same, then why not simply start building immediately? When you hit difficulty X on your database, remember that it gave you convenience Y and Z and that's just life.
You could also establish the fundamental core of your application and implement various prototypes on each of the databases. That might give you true insight to help discriminate between the databases for your specific application. For example, besides the interface, indexing, and querying questions, what about deployment? What about backups? What about maintenance and security? Maybe "wasting" time to build the same prototype on each platform will make the answer very clear for you.
Notes about CouchDB
I suppose CouchDB is "NoSQL" if you say so. Other things which are "no SQL" include bananas, poems, and cricket. It is not a very meaningful word. We have general-purpose languages and domain-specific languages; similarly CouchDB is a domain-specific database. It can save you time if you need the following features:
Built-in web API: clients may query directly
Incremental map-reduce: CouchDB runs the job once, but you can query repeatedly at no cost. Updates to the data set are immediately reflected in the map/reduce result without full re-processing
Easy to start small but expand to large clusters without changing application code.
Have you considered Apache Kafka?
Kafka is a distributed messaging system developed at LinkedIn for
collecting and delivering high volumes of log data with low latency.
Our system incorporates ideas from existing log aggregators and
messaging systems, and is suitable for both offline and online message
consumption.
I need to choose a database for storing statistical data (in fact this is a series of timestamp-value data). I understand that virtually any database can handle this, but there are a couple of requirements:
it should be fast;
it should be able to handle A LOT of
data (10s of gigabytes) and splice it
fast;
it should have a stable, maintained
and handy interface to Erlang;
it should be available from Python;
it should be able to make something
like the thing named "capped
collections" in mongodb: collection
with the capped size, with old data
being rewritten if the size reach the
limit.
I thought about mongo, but emongo seems to be a little dead - the last commit was made 7 months ago.
Riak may be a good choice (here's a Riak comparison to MongoDB). It's written in Erlang, is distributed, fault tolerant and scales linearly. It has clients for Erlang, Javascript, Java, PHP, Python, Ruby. A REST interface, a protobuf interface and so many other goodies (Map Reduce, links, replication, pre/post commit hooks, ...). It's open source and is created maintained by Basho. Basho has commercial offering of Riak as well with some extra features (like multi-site replication, SNMP monitoring, etc) but there's awsome value in the OS version.
Depending on your needs it may make sense to combine a couple of technologies. For example you could front your system with an in memory store like Redis for speed and use Riak to persist the data. Redis + Riak is a pretty sweet stack.
I think postgresql and pgsql driver it will be best solution for you.
Files on disk, rotated, will serve your demands fine. The point is you don't want to search data quickly.
redis is quite a close contender.
The only current limitation is the size of the dataset, which has to be either store in full in memory or use the VM method, in which only the key space has to fit in memory (however a bit of spare room for actual data would be nice) but has a very slow startup time.
Antirez, the developer, is rewriting the backend into something called diskstore which should solve your issue. It's not baked yet, but I have a lot of confidence in this project.
About the capped collections, redis does not have a direct way for handling that. But the LTRIM function can help you out.
I'm using SqlServer to drive a WPF application, I'm currently using NHibernate and pre-read all the data so it's cached for performance reasons. That works for a single client app, but I was wondering if there's an in memory database that I could use so I can share the information across multiple apps on the same machine. Ideally this would sit below my NHibernate stack, so my code wouldn't have to change. Effectively I'm looking to move my DB from it's traditional format on the server to be an in memory DB on the client.
Note I only need select functionality.
I would be incredibly surprised if you even need to load all your information in memory. I say this because, just as one example, I'm working on a Web app at the moment that (for various reasons) loads thousands of records on many pages. This is PHP + MySQL. And even so it can do it and render a page in well under 100ms.
Before you go down this route make sure that you have to. First make your database as performant as possible. Now obviously this includes things like having appropriate indexes and tuning your database but even though are putting the horse before the cart.
First and foremost you need to make sure you have a good relational data model: one that lends itself to performant queries. This is as much art as it is science.
Also, you may like NHibernate but ORMs are not always the best choice. There are some corner cases, for example, that hand-coded SQL will be vastly superior in.
Now assuming you have a good data model and assuming you've then optimized your indexes and database parameters and then you've properly configured NHibernate, then and only then should you consider storing data in memory if and only if performance is still an issue.
To put this in perspective, the only times I've needed to do this are on systems that need to perform millions of transactions per day.
One reason to avoid in-memory caching is because it adds a lot of complexity. You have to deal with issues like cache expiry, independent updates to the underlying data store, whether you use synchronous or asynchronous updates, how you give the client a consistent (if not up-to-date) view of your data, how you deal with failover and replication and so on. There is a huge complexity cost to be paid.
Assuming you've done all the above and you still need it, it sounds to me like what you need is a cache or grid solution. Here is an overview of Java grid/cluster solutions but many of them (eg Coherence, memcached) apply to .Net as well. Another choice for .Net is Velocity.
It needs to be pointed out and stressed that something like NHibernate is only consistent so long as nothing externally updates the database and that there is exactly one NHibernate-enabled process (barring clustered solutions). If two desktop apps on two different PCs are both updating the same database with NHibernate the caching simply won't work because the persistence units simply won't be aware of the changes the other is making.
http://www.db4o.com/ can be your friend!
Velocity is an out of process object caching server designed by Microsoft to do pretty much what you want although it's only in CTP form at the moment.
I believe there are also wrappers for memcached, which can also be used to cache objects.
You can use HANA, express edition. You can download it for free, it's in-memory, columnar and allows for further analytics capabilities such as text analytics, geospatial or predictive. You can also access with ODBC, JDBC, node.js hdb library, REST APIs among others.