Artificial Data normalisation as data is put into the database - artificial-intelligence

I was wondering if there is a software that can normalise the data for you by looking at the data you enter in the database. Then realising the duplicate data in rows and then splitting that data into two separate tables and linking the tables by foreign keys.
This can really help speedup the development time for the main logic of the code and other unaccounted data you might be putting in the database at the beginning of the development of the application.

It's not possible to construct a normalized database design simply by analysing data because normalization requires knowledge of semantics and not just content. What you can do is use a CASE tool like NORMA, which will transform a semantic model into a database design in Fifth Normal Form.
Other algorithms to transform a set of dependencies into a normalized database design also exist. You can find them in any good database theory textbook and they're not difficult to implement for yourself.

Related

How to Organize a Messy Database

I know there is no easy answer to this question, but how do I cleanup a database with no relationships, foreign keys, and not a whole lot of structure?
I'm an amateur to SQL, and I've inherited a database that is complete mess. We have no sort of referential integrity, and there's not a whole lot of logic to how tables are working.
My database is all data that comes from a warehouse that builds servers.
To give you an idea of the type of data I'm working with:
EDI from customers
Raw output from server projects
Sales information
Site information
Parts lists
I have been prioritizing Raw output and EDI information, and generating reports with that information using SSRS. I have learned a lot about SQL Server and the BI Microsoft tools (SSIS and SSRS) in my short time doing this. However, I'm still an amateur and I want to build a solid database that flows well and can stand on its own.
It seems like a data warehouse model is the type of structure I should adapt.
My question how do I take my mess of a database and make something more organized before I drown in data?
Since your end goal appears to be business reporting, and you're dealing with data from multiple sources made up from "isolated" tables, I would advise you to start by aggregating all that into a data model.
Personally, I would design a dimensional model to structure and store all that data, with the goal of being easy to understand (for reporting or adhoc querying). The model should be focused on business entities and their transactions. In a dimensional model, the business entities will (almost always) be the dimensions and the transactions (the metrics) will be the facts. For example, without knowing your model I'm guessing that the immediate entities would include Customer, Site, Part and transactions would include ServerSale, SiteVisit, PartPurchase, PartRepair, PartOrder, etc...
More information about dimensional modelling here and here, but I suggest going straight to the source: https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/books/data-warehouse-dw-toolkit/
When your model is designed (and implemented in a database like SQL Server) you'll then be loading data into the model, by extracting it from its different source systems/databases and transforming it from the current structure into the structure defined by the model, namely by using an ETL tool like MS Integration Services. For example, your Customer data may be scattered across the "sales", "customer" and "site", so you want to aggregate all that data and load it into a single Customer dimension table. It's when doing this ETL that you should check your data for the problems you already mentioned, loading correct rows into you data model and discarding incorrect rows into a file/log where they can later be checked and corrected. (multiple ways to address this).
A straightforward tutorial to get started on doing ETL using SSIS can be found at https://technet.microsoft.com/en-us/library/jj720568(v=sql.110).aspx
So, to sum up, you should build a data mart:
design a dimensional model that represents the business facts and
context on the data you have. This will strongly facilitate both data understanding and reporting, because a dimensional model is closely matches business users terminology and mental models.
use an ETL tool to extract the data from its current source, process it (e.g. check for data quality problems, join data from different sources) and load it into the dimensional model and check it for problems. This will get you close to having an automated data integration job/pipeline with quality checks you deem fit for the data.

Design database based on EAV or XML for objects with variable features in SQL Server?

I want to make a database that can store any king of objects and for each classes of objects different features.
Giving some of the questions i asked on different forums the solution is http://en.wikipedia.org/wiki/Entity-attribute-value_model or http://en.wikipedia.org/wiki/Xml with some kind of validation before storage.
Can you please give me an alternative to the ones above or some advantages or examples that would help decide which of the two methods is the best one in my case?
Thanks
UPDATE 1 :
Is your db read or write intensive?
will be both -> auction engine
Will you ever conceivably move off SQL Server and onto another platform?
I won't move it, I will use a WCF Service to expose functionality to mobile devices.
How do you plan to surface your data to the application?
Entity Framework for DAL and WCF Service Layer for Bussiness
Will people connect to your data through means other than those you control?
No
While #marc_s is correct in his cautions, there unarguably are situations where the relational model is just not flexible enough. For quite a number of years now, I've been working with a database that is straightforwardly relational for the largest part, but has a small EAV part. This is because users can invent new properties any time for observation purposes in trials.
Admittedly, it is awkward wrt querying and reporting, to name a few, but no other strategy would suffice here. We use stored procedures with T-Sql's pivot to offer flattened data structures for reporting and grids with dynamic columns for display. Once the infrastructure stands it's pretty comfortable altogether.
We never considered using XML data because it wasn't there yet and, apart from its common limitations, it has some drawbacks in our context:
The EAV data is queried heavily. A development team needs more than standard sql knowledge because of the special syntax. Indexing is possible but "there is a cost associated with maintaining the index during data modification" (as per MSDN).
The XML datatype is far less accessible than regular tables and fields when it comes to data processing and reporting.
Hardly ever do users fetch all attribute values of an entity, but the whole XML would have to be crunched anyway.
And, not unimportant: XML datatype is not (yet) supported by Entity Framework.
So, to conclude, I would go for a design that is relational as much as possible but EAV where necessary. Auction items could have a number of fixed fields and EAV's for the flexible data.
I will use my answer from another question:
EAV:
Storage. If your value will be used often for different products, e.g. clothes where attribute "size" and values of sizes will be repeated often, your attribute/values tables will be smaller. Meanwhile, if values will be rather unique that repeatable (e.g. values for attribute "page count" for books), you will get a big enough table with values, where every value will be linked to one product.
Speed. This scheme is not weakest part of project, because here data will be changed rarely. And remember that you always can denormalize database scheme to prepare DW-like solution. You can use caching if database part will be slow too.
Elasticity This is the strongest part of solution. You can easily add/remove attributes and values and ever to move values from one attribute to another!
XML storage is more like NoSQL: you will abdicate database functionality and you wisely prepare your solution to:
Do not lose data integrity.
Do not rewrite all database functionality in application (it is senseless)
I think there is way too much context missing for anyone to add any kind of valid comment to the discussion.
Is your db read or write intensive?
Will you ever conceivably move off SQL Server and onto another platform?
How do you plan to surface your data to the application?
Will people connect to your data through means other than those you control?
First do not go either route unless the structure truly cannot be known in advance. Using EAV or XML because you don't want to actually define the requirements will result in an unmaintainable mess and a badly performing mess at that. Usually at least 90+% (a conservative estimate based on my own experience) of the fields can be known in advance and should be in ordinary relational tables. Only use special techiniques for structures that can't be known in advance. I can't stress this strongly enough. EAV tables look simple but are actually very hard to query especially for complex reporting queries. Sure it is easy to get data into them, but very very difficult to get the data back out.
If you truly need to go the EAV route, consider using a nosql database for that part of the application and a relational database for the rest. Nosql databases simply handle EAV better.

is EAV - Hybrid a bad database design choice

We have to redesign a legacy POI database from MySQL to PostgreSQL. Currently all entities have 80-120+ attributes that represent individual properties.
We have been asked to consider flexibility as well as good design approach for the new database. However new design should allow:
n no. of attributes/properties for any entity i.e. no of attributes for any entity are not fixed and may change on regular basis.
allow content admins to add new properties to existing entities on the fly using through admin interfaces rather than making changes in db schema all the time.
There are quite a few discussions about performance issues of EAV but if we don't go with a hybrid-EAV we end up:
having lot of empty columns (we still go and add new columns even if 99% of the data does not have those properties)
spend more time maintaining database esp. when attributes keep changing.
no way of allowing content admins to add new properties to existing entities
Anyway here's what we are thinking about the new design (basic ERD included):
Have separate tables for each entity containing some basic info that is exclusive e.g. id,name,address,contact,created,etc etc.
Have 2 tables attribute type and attribute to store properties information.
Link each entity to an attribute using a many-to-many relation.
Store addresses in different table and link to entities using foreign key.
We think this will allow us to be more flexible when adding,removing or updating on properties.
This design, however, will result in increased number of joins when fetching data e.g.to display all "attributes" for a given stadium we might have a query with 20+ joins to fetch all related attributes in a single row.
What are your thoughts on this design, and what would be your advice to improve it.
Thank you for reading.
I'm maintaining a 10 year old system that has a central EAV model with 10M+ entities, 500M+ values and hundreds of attributes. Some design considerations from my experience:
If you have any business logic that applies to a specific attribute it's worth having that attribute as an explicit column. The EAV attributes should really be stuff that is generic, the application shouldn't distinguish attribute A from attribute B. If you find a literal reference to an EAV attribute in the code, odds are that it should be an explicit column.
Having significant amounts of empty columns isn't a big technical issue. It does need good coding and documentation practices to compartmentalize different concerns that end up in one table:
Have conventions and rules that let you know which part of your application reads and modifies which part of the data.
Use views to ease poking around the database with debugging tools.
Create and maintain test data generators so you can easily create schema conforming dummy data for the parts of the model that you are not currently interested in.
Use rigorous database versioning. The only way to make schema changes should be via a tool that keeps track of and applies change scripts. Postgresql has transactional DDL, that is one killer feature for automating schema changes.
Postgresql doesn't really like skinny tables. Each attribute value results in 32 bytes of data storage overhead in addition to the extra work of traversing all the rows to pull the data together. If you mostly read and write the attributes as a batch, consider serializing the data into the row in some way. attr_ids int[], attr_values text[] is one option, hstore is another, or something client side, like json or protobuf, if you don't need to touch anything specific on the database side.
Don't go out of your way to put everything into one single entity table. If they don't share any attributes in a sensible way, use multiple instantitions of the specific EAV pattern you use. But do try to use the same pattern and share any accessor code between the different instatiations. You can always parametrise the code on the entity name.
Always keep in mind that code is data and data is code. You need to find the correct balance between pushing decisions into the meta-model and expressing them as code. If you make the meta-model do too much, modifying it will need the same kind of ability to understand the system, versioning tools, QA procedures, staging as your code, but it will have none of the tools. In essence you will be doing programming in a very awkward non-standard language. On the other hand, if you leave too much in the code, every trivial change will need a new version of your software. People tend to err on the side of making the meta-model too complex. Building developer tools for meta-models is hard and tedious work and has limited benefit. On the other hand, making the release process cheaper by automating everything that happens from commit to deploy has many side benefits.
EAV can be useful for some scenarios. But it is a little like "the dark side". Powerful, flexible and very seducing it is. But it's something of an easy way out. An easy way out of doing proper analysis and design.
I think "entity" is a bit over the top too general. You seem to have some idea of what should be connected to that entity, like address and contact. What if you decide to have "Books" in the model. Would they also have adresses and contacts? I think you should try to find the right generalizations and keep the EAV parts of the model to a minium. Whenever you find yourself wanting to show a certain subset of the attributes, or test for existance of the value, or determining behaviour based on the value you should really have it modelled as a columns.
You will not get a better opportunity to design this system than now. The requirements are known since the previous version, and also what worked and what didn't. (Just don't fall victim to the Second System Effect)
One good implementation of EAV can be found in magento, a cms for ecommerce. There is a lot of bad talk about EAV those days, but I challenge anyone to come up with another solution than EAV for dealing with infinite product attributes.
Sure you can go about enumerating all the columns you would need for every product in the world, but that would take you a lot of time and you would inevitably forget product attributes in the way.
So the bottom line is : use EAV for infinite stuff but don't rely on EAV for all the database's tables. Hence an hybrid EAV and relational db, when done right, is a powerful tool that could not be acomplished by only using fixed columns.
Basically EAV is trying to implement a database within a database, and it leads to madness. The queries to pull data become overly complex, and your data has no stable, specific model to keep it in some kind of order.
I've written EAV systems for limited applications, but as a generic solution it's usually a bad idea.

Database alternatives?

I was wondering the trade-offs for using databases and what the other options were? Also, what problems are not well suited for databases?
I'm concerned with Relational Databases.
The concept of database is very broad. I will make some simplifications in what I present here.
For some tasks, the most common database is the relational database. It's a database based on the relational model. The relational model assumes that you describe your data in rows, belonging to tables where each table has a given and fixed number of columns. You submit data on a "per row" basis, meaning that you have to provide a row in a single shot containing the data relative to all columns of your table. Every submitted row normally gets an identifier which is unique at the table level, sometimes at the database level. You can create relationships between entities in the relational database, for example by saying that a given cell in your table must refer to another table's row, so to preserve the so called "referential integrity".
This model works fine, but it's not the only one out there. In some cases, data are better organized as a tree. The filesystem is a hierarchical database. starts at a root, and everything goes under this root, in a tree like structure. Another model is the key/value pair. Sleepycat BDB is basically a store of key/value entities.
LDAP is another database which has two advantages: stores rather generic data, it's distributed by design, and it's optimized for reading.
Graph databases and triplestores allow you to store a graph and perform isomorphism search. This is typically needed if you have a very generic dataset that can encompass a broad level of description of your entities, so broad that is basically unknown. This is in clear opposition to the relational model, where you create your tables with a very precise set of columns, and you know what each column is going to contain.
Some relational column-based databases exist as well. Instead of submitting data by row, you submit them by whole column.
So, to answer your question: a database is a method to store data. Technically, even a text file is a database, although not a particularly nice one. The choice of the model behind your database is mostly relative to what is the typical needs of your application.
Setting the answer as CW as I am probably saying something strictly not correct. Feel free to edit.
This is a rather broad question, but databases are well suited for managing relational data. Alternatives would almost always imply to design your own data storage and retrieval engine, which for most standard/small applications is not worth the effort.
A typical scenario that is not well suited for a database is the storage of large amounts of data which are organized as a relatively small amount of logical files, in this case a simple filesystem-like system can be enough.
Don't forget to take a look at NOSQL databases. It's pretty new technology and well suited for stuff that doesn't fit/scale in a relational database.
Use a database if you have data to store and query.
Technically, most things are suited for databases. Computers are made to process data and databases are made to store them.
The only thing to consider is cost. Cost of deployment, cost of maintenance, time investment, but it will usually be worth it.
If you only need to store very simple data, flat files would be an alternative (text files).
Note: you used the generic term 'database', but there are many many different types and implementations of these.
For search applications, full-text search engines (some of which are integrated to traditional DBMSes, but some of which are not), can be a good alternative, allowing both more features (various linguistic awareness, ability to have semi-structured data, ranking...) as well as better performance.
Also, I've seen applications where configuration data is stored in the database, and while this makes sense in some cases, using plain text files (or YAML, XML and such) and loading the underlying objects during initialization, may be preferable, due to the self-contained nature of such alternative, and to the ease of modifying and replicating such files.
A flat log file, can be a good alternative to logging to DBMS, depending on usage of course.
This said, in the last 10 years or so, the DBMS Systems, in general, have added many features, to help them handle different forms of data and different search capabilities (ex: FullText search a fore mentioned, XML, Smart storage/handling of BLOBs, powerful user-defined functions, etc.) which render them more versatile, and hence a fairly ubiquitous service. Their strength remain mainly with relational data however.

Star-Schema Design [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 6 years ago.
Improve this question
Is a Star-Schema design essential to a data warehouse? Or can you do data warehousing with another design pattern?
Using star schemas for a data warehouse system gets you several benefits and in most cases it is appropriate to use them for the top layer. You may also have an operational data store (ODS) - a normalised structure that holds 'current state' and facilitates operations such as data conformation. However there are reasonable situations where this is not desirable. I've had occasion to build systems with and without ODS layers, and had specific reasons for the choice of architecture in each case.
Without going into the subtlties of data warehouse architecture or starting a Kimball vs. Inmon flame war the main benefits of a star schema are:
Most database management systems
have facilities in the query optimiser
to do 'Star Transformations' that
use Bitmap Index structures or
Index Intersection for fast
predicate resolution. This means that selection from a star schema can be done without hitting the fact table (which is usually much bigger than the indexes) until the selection is resolved.
Partitioning a star schema is relatively straightforward as only the fact table needs to be partitioned (unless you have some biblically large dimensions). Partition elimination means that the query optimiser can ignore patitions that could not possibly participate in the query results, which saves on I/O.
Slowly changing dimensions are much easier to implement on a star schema than a snowflake.
The schema is easier to understand and tends to involve less joins than a snowflake or E-R schema. Your reporting team will love you for this
Star schemas are much easier to use and (more importantly) make perform well with ad-hoc query tools such as Business Objects or Report Builder. As a developer you have very little control over the SQL generated by these tools so you need to give the query optimiser as much help as possible. Star schemas give the query optimiser relatively little opportunity to get it wrong.
Typically your reporting layer would use star schemas unless you have a specific reason not to. If you have multiple source systems you may want to implement an Operational Data Store with a normalised or snowflake schema to accumulate the data. This is easier because an ODS typically does not do history. Historical state is tracked in star schemas where this is much easier to do than with normalised structures. A normalised or snowflaked Operational Data Store reflects 'current' state and does not hold a historical view over and above any that is inherent in the data.
ODS load processes are concerned with data scrubbing and conforming, which is easier to do with a normalised structure. Once you have clean data in an ODS, dimension and fact loads can track history (changes over time) with generic or relatively simple mechanisms relatively simply; this is much easier to do with a star schema, Many ETL tools (for example) provide built-in facilities for slowly changing dimensions and implementing a generic mechanism is relatively straightforward.
Layering the system in this way providies a separation of responsibilities - business and data cleansing logic is dealt with in the ODS and the star schema loads deal with historical state.
There is an ongoing debate in the datawarehousing litterature about where in the datawarehouse-architecture the Star-Schema design should be applied.
In short Kimball advocates very highly for using only the Star-Schema design in the datawarehouse, while Inmon first wants to build an Enterprise Datawarehouse using normalized 3NF design and later use the Star-Schema design in the datamarts.
In addition here to you could also say that Snowflake schema design is another approach.
A fourth design could be the Data Vault Modeling approach.
Star schemas are used to enable high speed access to large volumes of data. The high performance is enabled by reducing the amount of joins needed to satsify any query that may be made against the subject area. This is done by allowing data redundancy in dimension tables.
You have to remember that the star schema is a pattern for the top layer for the warehouse. All models also involve staging schemas at the bottom of the warehouse stack, and some also include a persistant transformed merged staging area where all source systems are merged into a 3NF modelled schema. The various subject areas sit above this.
Alternatives to star schemas at the top level include a variation, which is a snowflake schema. A new method that may bear out some investigation as well is Data Vault Modelling proposed by Dan Linstedt.
The thing about star schemas is they are a natural model for the kinds of things most people want to do with a data warehouse. For instance it is easy to produce reports with different levels of granularity (month or day or year for example). It is also efficient to insert typical business data into a star schema, again a common and important feature of a data warehouse.
You certainly can use any kind of database you want but unless you know your business domain very well it is likely that your reports will not run as efficiently as they could if you had used a star schema.
Star schemas are a natural fit for the last layer of a data warehouse. How you get there is another question. As far as I know, there are two big camps, those of Bill Inmon and Ralph Kimball. You might want to look at the theories of these two guys if/when you decide to go with a star.
Also, some reporting tools really like the star schema setup. If you are locked into a specific reporting tool, that might drive what the reporting mart looks like in your warehouse.
Star schema is a logical data model for relational databases that fits the regular data warehousing needs; if the relational environment is given, a star or a snowflake schema will be a good design pattern, hard-wired in lots of DW design methodologies.
There are however other than relational database engines too, and they can be used for efficient data warehousing. Multidimensional storage engines might be very fast for OLAP tasks (TM1 eg.); we can not apply star schema design in this case. Other examples requiring special logical models include XML databases or column-oriented databases (eg. the experimental C-store)).
It's possible to do without. However, you will make life hard for yourself -- your organization will want to use standard tools that live on top of DWs, and those tools will expect a star schema -- a lot of effort will be spent fitting a square peg in a round hole.
A lot of database-level optimizations assume that you have a star schema; you will spend a lot of time optimizing and restructuring to get the DB to do "the right thing" with your not-quite-star layout.
Make sure that the pros outweigh the cons..
(Does it sound like I've been there before?)
-D
There are three problems we need to solve.
1) How to get the data out of the operational source system without putting undue pressure on them by joining tables within and between them, cleaning data as we extract, creating derivations etc.
2) How to merge data from disparate sources - some legacy, some file based, from different departments into an integral, accurate, efficiently stored whole that models the business, and does not reflect the structures of the source systems. Remember, systems change / are replaced relatively quickly, but the basic model of the business changes slowly.
3) How to structure the data to meet specific analytical and reporting requirements for particular people/departments in the business as quickly and accurately as possible.
The solution to these three very different problems require different architectural layers to solve them
Staging Layer
We replicate the structures of the sources, but only changed data from the sources are loaded each night. once the data is taken from the staging layer into the next layer, the data is dropped. Queries are single table queries with a simple data_time filter. Very little effect on the source.
Enterprise Layer
This is a business oriented 3rd normal form database. Data is extracted (and afterward dropped) from the staging layer into the enterprise layer, where it is cleaned, integrated and normalised.
Presentation (Star Schema) Layer
Here, we model dimensionally to meet specific requirements. Data is deliberately de-normalise to reduce the number of joins. Hierarchies that may occupy several tables in the Enterprise Layer are collapsed into a single dimension tables, and multiple transactional tables may be merged into single fact tables.
You always face these three problems. If you choose to do away with the enterprise layer, you still have to solve the second problem, but you have to do it in the star schema layer, and in my view, this is the wrong place to do it.

Resources