I'm doing a homework assignment for my course in C (first programming course).
Part of the assignment is to write code so that a user inputs a number up to 9 digits long, and the program needs to determine whether this number is "increasing"/"truly increasing"/"decreasing"/"truly decreasing"/"increasing and decreasing"/"truly decreasing and truly increasing"/"not decreasing and not increasing". (7 options in total)
Since this is our first assignment we're not allowed to use anything besides what was taught in class:
do-while, for, while loops, else-if, if,
break,continue
scanf, printf ,modulo, and the basic operators
(We can't use any library besides for stdio.h)
That's it. I can't use arrays or getchar or any of that stuff. The only function I can use to receive input from the user is scanf.
So far I've already written the algorithm with a flowchart and everything, but I need to separate the user's input into it's distinct digits.
For example, if the user inputs "1234..." i want to save 1 in a, 2 in b, and so on, and then make comparisons between all the digits to determine for example whether they are all equal (increasing and decreasing) or whether a > b >c ... (decreasing) and so on.
I know how to separate each digit by using the % and / operator, but I can't figure out how to "save" these values in a variable that I can later use for the comparisons.
This is what I have so far:
printf("Enter a positive number : ");
do {
scanf ("%ld", &number);
if (number < 0) {
printf ("invalid input...enter a positive integer: ");
continue;
}
else break;
} while (1);
while (number < 0) {
a = number % 10;
number = number - a;
number = number / 10;
b = a;
}
Why not scan them as characters (string)? Then you can access them via an array offset, by subtracting the offset of 48 from the ASCII character code. You can verify that the character is a digit using isdigit from ctype.h.
EDIT
Because of the incredibly absent-minded limitations that your professor put in place:
#include <stdio.h>
int main()
{
int number;
printf("Enter a positive number: ");
do
{
scanf ("%ld", &number);
if (number < 0)
{
printf ("invalid input...enter a positive integer: ");
continue;
}
else break;
} while (1);
int a = -1;
int b = -1;
int c = -1;
int d = -1;
int e = -1;
int f = -1;
int g = -1;
int h = -1;
int i = -1;
while (number > 0)
{
if (a < 0) a = number % 10;
else if (b < 0) b = number % 10;
else if (c < 0) c = number % 10;
else if (d < 0) d = number % 10;
else if (e < 0) e = number % 10;
else if (f < 0) f = number % 10;
else if (g < 0) g = number % 10;
else if (h < 0) h = number % 10;
else if (i < 0) i = number % 10;
number /= 10;
}
/* Printing for verification. */
printf("%i", a);
printf("%i", b);
printf("%i", c);
printf("%i", d);
printf("%i", e);
printf("%i", f);
printf("%i", g);
printf("%i", h);
printf("%i", i);
return 0;
}
The valid numbers at the end will be positive, so those are the ones you validate to meet your different conditions.
Since you only need to compare consecutive digits, there is an elegant way to do this without arrays:
int decreasing = 2;
int increasing = 2;
while(number > 9)
{
int a = number % 10;
int b = (number / 10) % 10;
if(a == b)
{
decreasing = min(1, decreasing);
increasing = min(1, increasing);
}
else if(a > b)
decreasing = 0;
else if(a < b)
increasing = 0;
number /= 10;
}
Here, we walk through the number (by dividing by 10) until only one digit remains. We store info about the number up to this point in decreasing and increasing - a 2 means truly increasing/decreasing, a 1 means increasing/decreasing, and a 0 means not increasing/decreasing.
At each step, a is the ones digit and b is the tens. Then, we change increasing and decreasing based on a comparison between a and b.
At the end, it should be easy to turn the values of increasing and decreasing into the final answer you want.
Note: The function min returns the smaller of its 2 arguments. You should be able to write your own, or replace those lines with if statements or conditionals.
It's stupid to ask you to do loops without arrays --- but that's your teacher's fault, not yours.
That being said, I would do something like this:
char c;
while (1) {
scanf("%c", &c);
if (c == '\n') /* encountered newline (end of input) */
break;
if (c < '0' || c > '9')
break; /* do something to handle bad characters? */
c -= '0';
/*
* At this point you've got 0 <= c < 9. This is
* where you do your homework :)
*/
}
The trick here is that when you type numbers into a program, you send the buffer all at once, not one character at a time. That means the first scanf will block until the entire string (i.e. "123823" or whatever) arrives all at once, along with the newline character ( '\n' ). Then this loop parses that string at its leisure.
Edit For testing the increasing/decreasing-ness of the digits, you may think you need to store the entire string, but that's not true. Just define some additional variables to remember the important information, such as:
int largest_digit_ive_seen, smallest_digit_ive_seen, strict_increasing_thus_far;
etc. etc.
Let us suppose you have this number 23654
23654 % 10000 = 2 and 3654
3654 % 1000 = 3 and 654
654 % 100 = 6 and 54
54 % 10 = 5 and 4
4
This way you can get all the digits. Of course, you have to know if the number is greater than 10000, 1000, 100 or 10, in order to know the first divisor.
Play with sizeof to get the size of the integer, in order to avoid a huge if...else statement
EDIT:
Let us see
if (number>0) {
// Well, whe have the first and only digit
} else if (number>10) {
int first_digit = number/10;
int second_digit = number % 10;
} else if (number>100) {
int first_digit = number/100;
int second_digit = (number % 100)/10;
int third_digit = (number % 100) % 10;
} ...
and so on, I suppose
// u_i is the user input, My homework asked me to extract a long long, however, this should also be effective for a long.
int digits = 0;
long long d_base = 1;
int d_arr[20];
while (u_i / d_base > 0)
{
d_arr[digits] = (u_i - u_i / (d_base * 10) * (d_base * 10)) / d_base;
u_i -= d_arr[digits] * d_base;
d_base *= 10;
digits++;
}
EDIT: the extracted individual digit now lives in the int array d_arr. I'm not good at C, so I think the array declaration can be optimized.
Here's a working example in plain C :
#include <stdio.h>
unsigned long alePow (unsigned long int x, unsigned long int y);
int main( int argc, const char* argv[] )
{
int enter_num, temp_num, sum = 0;
int divisor, digit, count = 0;
printf("Please enter number\n");
scanf("%d", &enter_num);
temp_num = enter_num;
// Counting the number of digits in the entered integer
while (temp_num != 0)
{
temp_num = temp_num/10;
count++;
}
temp_num = enter_num;
// Extracting the digits
printf("Individual digits in the entered number are ");
do
{
divisor = (int)(alePow(10.0, --count));
digit = temp_num / divisor;
temp_num = temp_num % divisor;
printf(" %d",digit);
sum = sum + digit;
}
while(count != 0);
printf("\nSum of the digits is = %d\n",sum);
return 0;
}
unsigned long alePow(unsigned long int x, unsigned long int y) {
if (x==0) { return 0; }
if (y==0||x==1) { return 1; }
if (y==1) { return x; }
return alePow(x*x, y/2) * ((y%2==0) ? 1 : x);
}
I would suggest loop-unrolling.
int a=-1, b=-1, c=-1, d=-1, e=1, f=-1, g=-1, h=-1, i=-1; // for holding 9 digits
int count = 0; //for number of digits in the given number
if(number>0) {
i=number%10;
number/=10;
count++;
}
if(number>0) {
h=number%10;
number/=10;
count++;
}
if(number>0) {
g=number%10;
number/=10;
count++;
}
....
....
/* All the way down to the storing variable a */
Now, you know the number of digits (variable count) and they are stored in which of the variables. Now you have all digits and you can check their "decreasing", "increasing" etc with lots of if's !
I can't really think of a better soltion given all your conditions.
Related
I'm trying to code a program that can tell apart real and fake credit card numbers using Luhn's algorithm in C, which is
Multiply every other digit by 2, starting with the number’s
second-to-last digit, and then add those products’ digits together.
Add the sum to the sum of the digits that weren’t multiplied by 2.
If the total’s last digit is 0 (or, put more formally, if the total
modulo 10 is congruent to 0), the number is valid!
Then I coded something like this (I already declared all the functions at the top and included all the necessary libraries)
//Luhn's Algorithm
int luhn(long z)
{
int c;
return c = (sumall(z)-sumodd(z)) * 2 + sumaodd(z);
}
//sum of digits in odd position starting from the end
int sumodd(long x)
{
int a;
while(x)
{
a = a + x % 10;
x /= 100;
}
return a;
}
//sum of all digits
int sumall(long y)
{
int b;
while(y)
{
b = b + y % 10;
y /= 10;
}
return b;
}
But somehow it always gives out the wrong answer even though there's no error or bug detected. I came to notice that it works fine when my variable z stands alone, but when it's used multiple times in the same line of code with different functions, their values get messed up (in function luhn). I'm writing this to ask for any fix I can make to make my code run correctly as I intended.
I'd appreciate any help as I'm very new to this, and I'm not a native English speaker so I may have messed up some technical terms, but I hope you'd be able to understand my concerns.
sumall is wrong.
It should be sumeven from:
Add the sum to the sum of the digits that weren’t multiplied by 2.
Your sumall is summing all digits instead of the non-odd (i.e. even) digits.
You should do the * 2 inside sumodd as it should not be applied to the other [even] sum. And, it should be applied to the individual digits [vs the total sum].
Let's start with a proper definition from https://en.wikipedia.org/wiki/Luhn_algorithm
The check digit is computed as follows:
If the number already contains the check digit, drop that digit to form the "payload." The check digit is most often the last digit.
With the payload, start from the rightmost digit. Moving left, double the value of every second digit (including the rightmost digit).
Sum the digits of the resulting value in each position (using the original value where a digit did not get doubled in the previous step).
The check digit is calculated by 10 − ( s mod 10 )
Note that if we have a credit card of 9x where x is the check digit, then the payload is 9.
The correct [odd] sum for that digit is: 9 * 2 --> 18 --> 1 + 8 --> 9
But, sumodd(9x) * 2 --> 9 * 2 --> 18
Here's what I came up with:
// digsum -- calculate sum of digits
static inline int
digsum(int digcur)
{
int sum = 0;
for (; digcur != 0; digcur /= 10)
sum += digcur % 10;
return sum;
}
// luhn -- luhn's algorithm using digits array
int
luhn(long z)
{
char digits[16] = { 0 };
// get check digit and remove from "payload"
int check_expected = z % 10;
z /= 10;
// split into digits (we use little-endian)
int digcnt = 0;
for (digcnt = 0; z != 0; ++digcnt, z /= 10)
digits[digcnt] = z % 10;
int sum = 0;
for (int digidx = 0; digidx < digcnt; ++digidx) {
int digcur = digits[digidx];
if ((digidx & 1) == 0)
sum += digsum(digcur * 2);
else
sum += digcur;
}
int check_actual = 10 - (sum % 10);
return (check_actual == check_expected);
}
// luhn -- luhn's algorithm using long directly
int
luhn2(long z)
{
// get check digit and remove from "payload"
int check_expected = z % 10;
z /= 10;
int sum = 0;
for (int digidx = 0; z != 0; ++digidx, z /= 10) {
int digcur = z % 10;
if ((digidx & 1) == 0)
sum += digsum(digcur * 2);
else
sum += digcur;
}
int check_actual = 10 - (sum % 10);
return (check_actual == check_expected);
}
You've invoked undefined behavior by not initializing a few local variables in your functions, for instance you can remove your undefined behaviour in sumodd() by initializing a to zero like so:
//sum of digits in odd position starting from the end
int sumodd(long x)
{
int a = 0; //Initialize
while(x)
{
a += x % 10; //You can "a += b" instead of "a = a + b"
x /= 100;
}
return a;
}
It's also important to note that long is only required to be a minimum of 4-bytes wide, so it is not guaranteed to be wide enough to represent a decimal-16-digit-integer. Using long long solves this problem.
Alternatively you may find this problem much easier to solve by treating your credit card number as a char[] instead of an integer type altogether, for instance if we assume a 16-digit credit card number:
int luhn(long long z){
char number[16]; //Convert CC number to array of digits and store them here
for(int c = 0; c < 16; ++c){
number[c] = z % 10; //Last digit is at number[0], first digit is at number[15]
z /= 10;
}
int sum = 0;
for(int c = 0; c < 16; c += 2){
sum += number[c] + number[c + 1] * 2; //Sum the even digits and the doubled odd digits
}
return sum;
}
...and you could skip the long long to char[] translation part altogether if you treat the credit card number as an array of digits in the whole program
This expression:
(sumall(z)-sumodd(z)) * 2 + sumall(z);
Should be:
((sumall(z)-sumodd(z)) * 2 + sumodd(z))%10;
Based on your own definition.
But how about:
(sumall(z) * 2 - sumodd(z))%10
If you're trying to be smart and base off sumall(). You don't need to call anything twice.
Also you don't initialise your local variables. You must assign variables values before using them in C.
Also you don't need the local variable c in the luhn() function. It's harmless but unnecessary.
As others mention in a real-world application we can't recommend enough that such 'codes' are held in a character array. The amount of grief caused by people using integer types to represent digit sequence 'codes' and identifiers is vast. Unless a variable represents a numerical quantity of something, don't represent it as an arithmetic type. More issue has been caused in my career by that error than people trying to use double to represent monetary amounts.
#include <stdio.h>
//sum of digits in odd position starting from the end
int sumodd(long x)
{
int a=0;
while(x)
{
a = a + x % 10;
x /= 100;
}
return a;
}
//sum of all digits
int sumall(long y)
{
int b=0;
while(y)
{
b = b + y % 10;
y /= 10;
}
return b;
}
//Luhn's Algorithm
int luhn(long z)
{
return (sumall(z)*2-sumodd(z))%10;
}
int check_luhn(long y,int expect){
int result=luhn(y);
if(result==expect){
return 0;
}
return 1;
}
int check_sumodd(long y,int expect){
int result=sumodd(y);
if(result==expect){
return 0;
}
return 1;
}
int check_sumall(long y,int expect){
int result=sumall(y);
if(result==expect){
return 0;
}
return 1;
}
int main(void) {
int errors=0;
errors+=check_sumall(1,1);
errors+=check_sumall(12,3);
errors+=check_sumall(123456789L,45);
errors+=check_sumall(4273391,4+2+7+3+3+9+1);
errors+=check_sumodd(1,1);
errors+=check_sumodd(91,1);
errors+=check_sumodd(791,8);
errors+=check_sumodd(1213191,1+1+1+1);
errors+=check_sumodd(4273391,15);
errors+=check_luhn(1234567890,((9+7+5+3+1)*2+(0+8+6+4+2))%10);
errors+=check_luhn(9264567897,((9+7+5+6+9)*2+(7+8+6+4+2))%10);
if(errors!=0){
printf("*ERRORS*\n");
}else{
printf("Success\n");
}
return 0;
}
I am solving an exercise in C and I got stuck. I don't know the logic of the code to get to my solution. For example we enter 2 numbers from input let the numbers be 123451289 and 12 and I want to see how many times number 2 is showing at number 1 (if this is confusing let me know). For the numbers earlier the program outputs 2. I tried solving it here is my code:
#include <stdio.h>
int main() {
int num1, num2, counter = 0;
scanf("%d%d", num1, num2);
if (num1 < num2) {
int temp = num1;
num1 = num2;
num2 = temp;
}
int copy1 = num1;
int copy2 = num2;
while (copy2 > 0) {
counter++; // GETTING THE LENGHT OF THE SECOND NUMBER
copy2 /= 10;
// lastdigits = copy1 % counter //HERE I WANT TO GET THE LAST DIGITS OF THE FIRST NUMBER
// But it does not work
}
}
My question is how can I get the last digits of the first number according to the second one for example if the second number have 3 digits I want to get the last 3 digits of the first number. For the other part I think I can figure it out.
I must solve this problem WITHOUT USING ARRAYS.
The problem: find all the needles (e.g. 12) in a haystack (e.g. 123451289).
This can be done simply without arrays using a modulus of the needle. For 12, this is 100. That is, 12 is two digits wide. Using the modulus, we can
isolate the rightmost N digits of the haystack and compare them against the needle.
We "scan" haystack repeatedly by dividing by 10 until we reach zero.
Here is the code:
#include <stdio.h>
int
main(void)
{
int need, hay, counter = 0;
scanf(" %d %d", &hay, &need);
// ensure that the numbers are _not_ reversed
if (hay < need) {
int temp = need;
need = hay;
hay = temp;
}
// get modulus for needle (similar to number of digits)
int mod = 1;
for (int copy = need; copy != 0; copy /= 10)
mod *= 10;
// search haystack for occurences of needle
// examine the rightmost "mod" digits of haystack and check for match
// reduce haystack digit by digit
for (int copy = hay; copy != 0; copy /= 10) {
if ((copy % mod) == need)
++counter;
}
printf("%d appears in %d exactly %d times\n",need,hay,counter);
return 0;
}
UPDATE:
I'm afraid this does not work for 10 0. –
chqrlie
A one line fix for to the modulus calculation for the 10/0 case. But, I've had to add a special case for the 0/0 input.
Also, I've added a fix for negative numbers and allowed multiple lines of input:
#include <stdio.h>
int
main(void)
{
int need, hay, counter;
while (scanf(" %d %d", &hay, &need) == 2) {
counter = 0;
// we can scan for -12 in -1237812
if (hay < 0)
hay = -hay;
if (need < 0)
need = -need;
// ensure that the numbers are _not_ reversed
if (hay < need) {
int temp = need;
need = hay;
hay = temp;
}
// get modulus for needle (similar to number of digits)
int mod = need ? 1 : 10;
for (int copy = need; copy != 0; copy /= 10)
mod *= 10;
// search haystack for occurences of needle
// examine the rightmost "mod" digits of haystack and check for match
// reduce haystack digit by digit
for (int copy = hay; copy != 0; copy /= 10) {
if ((copy % mod) == need)
++counter;
}
// special case for 0/0 [yecch]
if ((hay == 0) && (need == 0))
counter = 1;
printf("%d appears in %d exactly %d times\n", need, hay, counter);
}
return 0;
}
Here is the program output:
12 appears in 123451289 exactly 2 times
0 appears in 10 exactly 1 times
0 appears in 0 exactly 1 times
UPDATE #2:
Good fixes, including tests for negative numbers... but I'm afraid large numbers still pose a problem, such as 2000000000 2000000000 and -2147483648 8 –
chqrlie
Since OP has already posted an answer, this is bit like beating a dead horse, but I'll take one last attempt.
I've changed from calculating a modulus of needle into calculating the number of digits in needle. This is similar to the approach of some of the other answers.
Then, the comparison is now done digit by digit from the right.
I've also switched to unsigned and allow for the number to be __int128 if desired/supported with a compile option.
I've added functions to decode and print numbers so it works even without libc support for 128 bit numbers.
I may be ignoring [yet] another edge case, but this is an academic problem (e.g. we can't use arrays) and my solution is to just use larger types for the numbers. If we could use arrays, we'd keep things as strings and this would be similar to using strstr.
Anyway, here's the code:
#include <stdio.h>
#ifndef NUM
#define NUM long long
#endif
typedef unsigned NUM num_t;
FILE *xfin;
int
numget(num_t *ret)
{
int chr;
num_t acc = 0;
int found = 0;
while (1) {
chr = fgetc(xfin);
if (chr == EOF)
break;
if ((chr == '\n') || (chr == ' ')) {
if (found)
break;
}
if ((chr >= '0') && (chr <= '9')) {
found = 1;
acc *= 10;
chr -= '0';
acc += chr;
}
}
*ret = acc;
return found;
}
#define STRMAX 16
#define STRLEN 100
const char *
numprt(num_t val)
{
static char strbuf[STRMAX][STRLEN];
static int stridx = 0;
int dig;
char *buf;
buf = strbuf[stridx++];
stridx %= STRMAX;
char *rhs = buf;
do {
if (val == 0) {
*rhs++ = '0';
break;
}
for (; val != 0; val /= 10, ++rhs) {
dig = val % 10;
*rhs = dig + '0';
}
} while (0);
*rhs = 0;
if (rhs > buf)
--rhs;
for (char *lhs = buf; lhs < rhs; ++lhs, --rhs) {
char tmp = *lhs;
*lhs = *rhs;
*rhs = tmp;
}
return buf;
}
int
main(int argc,char **argv)
{
num_t need, hay, counter;
--argc;
++argv;
if (argc > 0)
xfin = fopen(*argv,"r");
else
xfin = stdin;
while (1) {
if (! numget(&hay))
break;
if (! numget(&need))
break;
counter = 0;
// we can scan for -12 in -1237812
if (hay < 0)
hay = -hay;
if (need < 0)
need = -need;
// ensure that the numbers are _not_ reversed
if (hay < need) {
num_t temp = need;
need = hay;
hay = temp;
}
// get number of digits in needle (zero has one digit)
int ndig = 0;
for (num_t copy = need; copy != 0; copy /= 10)
ndig += 1;
if (ndig == 0)
ndig = 1;
// search haystack for occurences of needle
// starting from the right compare digit-by-digit
// "shift" haystack right on each iteration
num_t hay2 = hay;
for (; hay2 != 0; hay2 /= 10) {
num_t hcopy = hay2;
// do the rightmost ndig digits match in both numbers?
int idig = ndig;
int match = 0;
for (num_t need2 = need; idig != 0;
--idig, need2 /= 10, hcopy /= 10) {
// get single current digits from each number
int hdig = hcopy % 10;
int ndig = need2 % 10;
// do they match
match = (hdig == ndig);
if (! match)
break;
}
counter += match;
}
// special case for 0/0 et. al. [yecch]
if (hay == need)
counter = 1;
printf("%s appears in %s exactly %s times\n",
numprt(need), numprt(hay), numprt(counter));
}
return 0;
}
Here's the program output:
12 appears in 123451289 exactly 2 times
123 appears in 123451289 exactly 1 times
1234 appears in 123451289 exactly 1 times
1 appears in 123451289 exactly 2 times
0 appears in 10 exactly 1 times
0 appears in 0 exactly 1 times
1000000000 appears in 1000000000 exactly 1 times
2000000000 appears in 2000000000 exactly 1 times
This looks along the lines of what you're attempting.
You can use the pow() function from math.h to raise 10 to the power of how many digits you need for your modulus operation.
Compile with -lm or make your own function to calculate 10^num_digits
#include <stdio.h>
#include <math.h>
int main() {
int x = 123456789;
double num_digits = 3.0;
int last_digits = x % (int)pow(10.0, num_digits);
printf("x = %d\nLast %d Digits of x = %d\n", x, (int)num_digits, last_digits);
return 0;
}
Outputs:
x = 123456789
Last 3 Digits of x = 789
I think you are trying to ask :- if number1 = 1234567 and number2 = 673, then, length of number2 or number2 has 3 digits, so, you now want the last 3 digits in number1, i.e, '456', if I'm not wrong.
If that is the case, then, what you did to find the number of digits in num2 is correct, i.e,
while (copy2>0) {
counter++; // GETTING THE LENGHT OF THE SECOND NUMBER
copy2/=10;
}
you can do the same for number1 and find out its number of digits, then you can compare whether the number of digits in number2 is less than that in number1. Ex, 3 is less than number of digits in number1, so you can proceed further. Let's say number of digits in number1 is 7 and you want the last 3 digits, so you can do iterate over the digits in number1 till count of digits in number2 and pop out each last digit and store them in an array.
The code:
#include <stdio.h>
int main()
{
int num1,num2;
int count1 = 0, count2 = 0;
scanf("%d",&num1);
scanf("%d",&num2);
if(num1<num2){
int temp = num1;
num1 = num2;
num2 = temp;
}
int copy1 = num1;
int copy2 = num2;
while (copy1>0)
{
count1++;
copy1/=10;
}
while (copy2>0)
{
count2++;
copy2/=10;
}
// printf("num1 has %d digits and num2 has %d digits\n", count1, count2);
if (count1 >= count2)
{
int arr[count2];
int x = count2;
int p = num1;
int i = 0;
while (x > 0)
{
arr[i++] = p%10;
x --;
p/=10;
}
for (int j = 0; j < i; j++)
{
printf("%d ", arr[j]);
}
}
return 0;
}
output : 8 7 6
let's say, num1 = 12345678, num2 = 158, then arr = {8,7,6}.
You must determine the number of digits N of num2 and test if num1 ends with num2 modulo 10N.
Note these tricky issues:
you should not sort num1 and num2: If num2 is greater than num1, the count is obviously 0.
num2 has at least 1 digit even if it is 0.
if num1 and num2 are both 0, the count is 1.
if num2 is greater then INT_MAX / 10, the computation for mod would overflow, but there can only be one match, if num1 == num2.
it is unclear whether the count for 1111 11 should be 2 or 3. We will consider all matches, including overlapping ones.
to handle larger numbers, we shall use unsigned long long instead of int type.
Here is a modified version:
#include <limits.h>
#include <stdio.h>
int main() {
int counter = 0;
unsigned long long num1, num2;
if (scanf("%llu%llu", &num1, &num2) != 2) {
printf("invalid input\n");
return 1;
}
if (num1 == num2) {
/* special case for "0 0" */
counter = 1;
} else
if (num1 > num2 && num2 <= ULLONG_MAX / 10) {
unsigned long long copy1 = num1;
unsigned long long mod = 10;
while (mod < num2) {
mod *= 10;
}
while (copy1 > 0) {
if (copy1 % mod == num2)
counter++;
copy1 /= 10;
}
}
printf("count=%d\n", counter);
return 0;
}
Note that leading zeroes are not supported in either number: 101 01 should produce a count of 1 but after conversion by scanf(), the numbers are 101 and 1 leading to a count of 2. It is non trivial to handle leading zeroes as well as numbers larger than ULLONG_MAX without arrays.
This was the answer that i was looking for but thank you all for helping :)
#include <stdio.h>
#include <math.h>
int main(){
int num1,counter1,counter2,num2,temp,digit,copy1,copy2;
scanf("%d%d",&num1,&num2);
if(num1<num2){
temp = num1;
num1 = num2;
num2 = temp;
}
copy1 = num1;
copy2 = num2;
counter1 = counter2 = 0;
while (copy2>0) {
counter1++;
copy2/=10;
}
counter1 = pow(10,counter1);
if(num1> 1 && num2>1)
while (copy1>0) {
digit = copy1%counter1;
if(digit==num2){
counter2++;
}
copy1/=10;
} else{
if(num2<1){
while (copy1>0) {
digit = copy1%10;
if(digit==copy2){
counter2++;
}
copy1/=10;
}
}
}
printf("%d",counter2);
}
I'm a first year student in a programming university and my first assignment is to find the sum of prime numbers between 3990000000 and 4010000000. The problem is everything I do, when I run the program it says the sum is 0 with a return value of 25. I've been trying to debug this code but with no luck, could someone help me?
My code is:
#include <stdio.h>
#define STARTNUMBER 3990000000
#define ENDNUMBER 4010000000
int main() {
unsigned int num;
int j, c, flag, sum = 0;
flag = 1;
c = 5;
j = 7;
for (num = STARTNUMBER; num <= ENDNUMBER; num++) {
if (num % 2 == 0) { /*if number mod 2 equals zero go to next number*/
flag = 0;
break;
}
if (num % 3 == 0) { /*if number mod 3 equals zero go to next number*/
flag = 0;
break;
} else
/*check if number is prime with the sequences 5+6+6...<=sqrt(number) and 7+6+6..<=sqrt(number)*/
while (c * c <= num && j * j <= num && flag == 1) {
if (num % c == 0 || num % j == 0) {
flag = 0;
break;
}
c += 6;
j += 6;
}
if (flag == 1)
sum++;
}
printf("There are %d prime numbers", sum);
}
You are asking for the sum of the prime number, even if your code is just printing how many they are. Assuming you've misunderstood the exercise, I try to show a possible problem of your original question, glimpsing a possible trick in your exercise since the interval is very close to 232.
Assuming also you are on a 64-bit environment, if there are at least two prime numbers in that inteval, the sum is going to be greater than INT_MAX (231 - 1). An int is not sufficient to store a value, and also unsigned int is not sufficient since UINT_MAX is 232 - 1.
Finally, assuming you've solved your problems with the break statements already described in the comments, try to store your sum variable into a unsigned long int, and replace the last part of the loop with
if (flag==1)
sum += num;
I've been trying to create a program that can check if a credit card number is valid or not based on Hans Peter Luhn's algorithm. However, I can only get it to work for some inputs.
// Loop through every digit in the card number
for ( int i = 0; i < intlen (num); ++i )
{
nextDigit = getDigit (num, i);
// If every other number...
if ( i % 2 )
{
nextDigit *= 2;
// ...times by two and add the individual digits to the total
for ( int j = 0; j < intlen (nextDigit); ++j )
{
total += getDigit (nextDigit, j);
}
}
else
{
total += nextDigit;
}
}
When I use the AMEX card number 378282246310005 it works fine and tells the user it's valid. However, once I try the VISA card number 4012888888881881 it says it's invalid. I tried to do a sanity check and do it manually to see if my program was wrong but I deduced the same result. These card number were taken from the Paypal test credit card numbers page so I know they are valid.
So what am I doing wrong?
To clarify the details by the program, if total modulo 10 == 0 then the card number is valid.
Functions called:
// Function to return length (number of digits) of an int
int intlen (long long n)
{
int len = 1;
// While there is more than 1 digit...
while ( abs (n) > 9 )
{
// ...discard leading digits and add 1 to len
n /= 10;
++len;
}
return len;
}
// Function to return a digit in an integer at a specified index
short getDigit (long long num, int index)
{
// Calculating position of digit in integer
int pos = intlen (num) - index;
// Discard numbers after selected digit
while ( pos > 1 )
{
num /= 10;
--pos;
}
// Return right-most digit i.e. selected digit
return num % 10;
}
You'll want to change i % 2 to i % 2 == intlen (num) % 2 or similar; you should double every second digit, but starting from the right; i.e. excluding the final check digit:
From the rightmost digit, which is the check digit, moving left, double the value of every second digit; …
The reason the AMEX number you tried validated anyway is because it's an odd number of digits; the same digits get doubled regardless of whether you skip from the front or the back.
While I was looking at this to find the bug, I re-wrote the program to make it a bit simpler. As a side-effect this will be much faster.
We need to grab digits from the right anyway. We don't even need to count the digits; just keep pulling off the right-most digit until the number becomes 0. If the number starts out as 0, the checksum is trivially 0 and the code is still correct.
I grabbed all the numbers from the test page. This seems to be correct, except for one number: 76009244561 (listed as "Dankort (PBS)" in the test page). I tried this number with the Python code from the Wikipedia page, and again this number is rejected. I don't know why this number is different from the others.
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
bool check_one(long long num)
{
int checksum = 0;
int i = 1;
for (int i = 1; num; num /= 10, ++i)
{
int d = num % 10;
if (i % 2 == 0)
{
// even digit: double and add digits of doubled value
d *= 2;
if (d < 10)
{
// only one digit: we doubled a 0-4 so number is 0-8
checksum += d;
}
else
{
// two digits: we doubled a 5-9 so number is 10-18
checksum += (d % 10);
checksum += (d / 10);
}
}
else
{
// odd digit: just add
checksum += d;
}
}
return (checksum % 10) == 0;
}
static long long const valid_nums[] =
{
378282246310005,
371449635398431,
378734493671000,
5610591081018250,
30569309025904,
38520000023237,
6011111111111117,
6011000990139424,
3530111333300000,
3566002020360505,
5555555555554444,
5105105105105100,
4111111111111111,
4012888888881881,
4222222222222,
76009244561,
5019717010103742,
6331101999990016,
};
static size_t len_valid_nums = sizeof(valid_nums) / sizeof(valid_nums[0]);
static long long const non_valid_nums[] =
{
378282246310006, // add 1 to valid
371449635398432,
378734493671001,
5610591081018205, // swap last two digits
30569309025940,
38520000023273,
601111111111111, // delete last digit
601100099013942,
353011133330000,
};
static size_t len_non_valid_nums =
(sizeof(non_valid_nums) / sizeof(non_valid_nums[0]));
main()
{
bool f;
for (int i = 0; i < len_valid_nums; ++i)
{
long long num = valid_nums[i];
f = check_one(num);
if (!f)
{
printf("Number %lld considered invalid but should be valid\n", num);
}
}
for (int i = 0; i < len_non_valid_nums; ++i)
{
long long num = non_valid_nums[i];
f = check_one(num);
if (f)
{
printf("Number %lld considered valid but should be invalid\n", num);
}
}
}
my program generates random numbers with up to 6 digits with
int number = arc4random % 1000000;
I want that my program do something when a number like 66 or 4444 or 77777 appears (multidigit number with all digits identical). I could manual write:
switch (number) {
case 11: blabla...;
case 22: blabla...;
(...)
case 999999: blabla;
}
That would cost me many program code. (45 cases...)
Is there an easy way to solve the problem.
Here's one way to check that all digits are the same:
bool AllDigitsIdentical(int number)
{
int lastDigit = number % 10;
number /= 10;
while(number > 0)
{
int digit = number % 10;
if(digit != lastDigit)
return false;
number /= 10;
}
return true;
}
As long as you use the mod operator (sorry I do not know objective C) but I'm quite certain there must be a mod operator like % and modding it based on 1's.
For instance:
66%11
You know it is the same number of digits because mod returned 0 in this case.
Same here:
7777%1111
You could figure out how many digits, then divide a six-digit number by 111111, 5-digit number by 11111, etc, and see if the result is an integer.
Excuse me if I don't suggest any Objective-C code, I don't know that language.
convert the number to a string, check the length to get the number of digits, then mod by the appropriate number. pseudocode follows where num_to_check is the number you start out with (i.e. 777)
string my_num = (string)num_to_check;
int num_length = my_num.length;
int mod_result;
string mod_num = "1";
int mod_num_int;
for(int i = 1; i < num_length - 1; i++)
{
mod_num = mod_num + "1";
}
mod_num_int = (int)mod_num;
mod_result = num_to_check % mod_num_int;
//If mod_result == 0, the number was divisible by the appropriate 111... string with no remainder
You could do this recursively with the divide and multiply operator (a divide with remainder could simplify it though)
e.g.
bool IsNumberValid(int number)
{
if(number > 10)
{
int newNumber = number / 10;
int difference = number - newNumber * 10;
number = newNumber;
do
{
newNumber = number / 10;
if((number - newNumber * 10) != difference)
{
// One of the number didn't match the first number, thus its valid
return true;
}
number = newNumber;
} while(number);
// all of the numbers were the same, thus its invalid
return false;
}
// number was <= 10, according to your specifications, this should be valid
return true;
}
Here's a recursive version, just for larks. Again, not the most efficient way, but probably the shortest codewise.
bool IsNumberValid (int number) {
if (number < 10) return true;
int n2 = number / 10;
// Check if the last 2 digits are same, and recurse in to check
// other digits:
return ((n2 % 10) == (number % 10)) && IsNumberValid (n2);
}
Actually, this is tail recursion, so a decent compiler ought to generate pretty efficient code.
Convert to a string and check if each char in the string, starting at position 1, is the same as the previous one.
Assuming Objective-C has a 'bool' type analogous Standard C99:
#include <assert.h>
#include <stdbool.h>
extern bool all_same_digit(int number); // Should be in a header!
bool all_same_digit(int number)
{
static const struct
{
int lo_range;
int divisor;
} control[] =
{
{ 100000, 111111 },
{ 10000, 11111 },
{ 1000, 1111 },
{ 100, 111 },
{ 10, 11 },
};
static const int ncontrols = (sizeof(control)/sizeof(control[0]));
int i;
assert(number < 10 * control[0].lo_range);
for (i = 0; i < ncontrols; i++)
{
if (number > control[i].lo_range)
return(number % control[i].divisor == 0);
}
return(false);
}
You can probably work out a variation where the lo_range and divisor are each divided by ten on each iteration, starting at the values in control[0].
#include <stdlib.h>
#include <stdio.h>
int main() {
int a = 1111;
printf("are_all_equal(%d) = %d\n",a,are_all_equal(a));
a = 143;
printf("are_all_equal(%d) = %d\n",a,are_all_equal(a));
a = 1;
printf("are_all_equal(%d) = %d\n",a,are_all_equal(a));
a = 101;
printf("are_all_equal(%d) = %d\n",a,are_all_equal(a));
return 0;
}
int are_all_equal(int what) {
int temp = what;
int remainder = -1;
int last_digit = -1;
while (temp > 0) {
temp = temp/10;
remainder = temp%10;
if (last_digit != -1 && remainder != 0) {
if (last_digit != remainder) return 0;
}
last_digit = remainder;
}
return 1;
}
Similar, but not exactly equal to the other answers (which I didn't notice were there).
digitsequal = ( ((number < 1000000) && (number > 111110) && (number % 111111 == 0)) ||
...
((number < 1000) && (number > 110) && (number % 111 == 0)) ||
((number < 100) && (number > 10) && (number % 11 == 0))
);
Thanks to boolean operations that shortcut, this should be a good enough solution regarding the average number of comparisons, it requires at most only one modulo operation per number, it has no loop, it can be nicely formatted to look symmetric, and it is obvious what it tests. But of course, premature optimization, you know, but since a lot of other solutions are already given... ;)