Related
I am writing a program to see if a user entered number is Armstrong or not, here is my code:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main(){
int x = 0;
printf("Enter a natural number: ");
scanf("%d", &x);
int ans = x;
// Digit Counter
int counter = 0; //Variable for number of digits in the user entered number
int b = x; //For each time number can be divided by 10 and isnt 0
for (int i = 1; i <= x; i++){ // Then counter variable is incremented by 1
b /= 10;
if (b != 0){
counter += 1;
}
}
++counter;
//Digit Counter
int sum = 0;
// Digit Finder
int D;
for (int j = 1; j <= x; j++){
D = x % 10; //Shows remainder of number (last digit) when divided by 10
sum += pow(D, counter); //Raises Digit found by counter and adds to sum
printf("%d\n", sum);
x /= 10; // Divides user entered number by 10 to get rid of digit found
}
if (sum == ans){
printf("%d is a Armstrong number! :)", ans);
}else
printf("%d is not an Armstrong number :(", ans);
//Digit Finder
return 0;
}
My problem is that the program works fine apart from one point, when the program is given a Armstrong number which does not start with 1 then it behaves normally and indicates if it is an Armstrong number or not, but when i input a Armstrong number which start with 1 then it will print out the Armstrong number but -1.
For example: If i input something such as 371 which is an Armstrong number it will show that it is an Armstrong number. However if i input 1634 it will output 1633 which is 1 less than 1634.
How can i fix this problem?, also by the way could someone comment on my code and tell me if it seems good and professional/efficient because i am a beginner in C and would like someone else's opinion on my code.
How can I fix this problem.
You know the number of iterations you want to make once you have calculated the digit count. So instead of looping till you reach the value of x:
for (int j = 1; j <= x; j++){
use the digit counter instead:
for (int j = 1; j <= counter; j++) {
also by the way could someone comment on my code and tell me if it seems good and professional/efficient because i am a beginner in C and would like someone else's opinion on my code.
There's a number of things you can do to improve your code.
First and foremost, any piece of code should be properly indented and formatted. Right now your code has no indenting, which makes it more difficult to read and it just looks ugly in general. So, always indent your code properly. Use an IDE or a good text editor, it will help you.
Be consistent in your code style. If you are writing
if (some_cond) {
...
}
else
//do this
It is not consistent. Wrap the else in braces as well.
Always check the return value of a function you use, especially for scanf. It will save you from many bugs in the future.
if (scanf("%d", &x) == 1)
//...all OK...
else
// ...EOF or conversion failure...
exit(EXIT_FAILURE);
Your first for loop will iterate x times uselessly. You can stop when you know that you have hit 0:
for (int i = 1; i <= x; i++){ // Then counter variable is incremented by 1
b /= 10;
if (b == 0){
break;
}
counter += 1;
}
C has ++ operator. Use that instead of doing counter += 1
int D; you create this, but don't initialize it. Always initialize your variables as soon as possible
C has const qualifier keyword, which makes a value immutable. This makes your code more readable, as the reader can immediately tell that this value will not change. In your code, you can change ans variable and make it a const int because it never changes:
const int ans = x;
Use more descriptive names for your variables. ans, D don't tell me anything. Use proper names, so that the reader of your code can easily understand your code.
These are some of the things that in my opinion you should do and keep doing to improve your code and coding skills. I am sure there can be more things though. Keep your code readable and as simple as possible.
The condition in this loop
for (int i = 1; i <= x; i++){ // Then counter variable is incremented by 1
b /= 10;
if (b != 0){
counter += 1;
}
}
does not make sense because there will be numerous redundant iterations of the loop.
For example if x is equal to 153 that is contains only 3 digits the loop will iterate exactly 153 times.
Also additional increment of the variable counter after the loop
++counter;
makes the code logically inconsistent.
Instead of the loop you could write at least the following way
int counter = 0;
int b = x;
do
{
++counter;
} while ( b /= 10 );
This loop iterates exactly the number of times equal to the number of digits in a given number.
In this loop
for (int j = 1; j <= x; j++){
D = x % 10; //Shows remainder of number (last digit) when divided by 10
sum += pow(D, counter); //Raises Digit found by counter and adds to sum
printf("%d\n", sum);
x /= 10; // Divides user entered number by 10 to get rid of digit found
}
it seems you did not take into account that the variable x is decreased inside the body of the loop
x /= 10; // Divides user entered number by 10 to get rid of digit found
So the loop can interrupt its iterations too early. In any case the condition of the loop again does not make great sense the same way as the condition of the first loop and only adds a bug.
The type of used variables that store a given number should be unsigned integer type. Otherwise the user can enter a negative number.
You could write a separate function that checks whether a given number is an Armstrong number.
Here you are.
#include <stdio.h>
int is_armstrong( unsigned int x )
{
const unsigned int Base = 10;
size_t n = 0;
unsigned int tmp = x;
do
{
++n;
} while ( tmp /= Base );
unsigned int sum = 0;
tmp = x;
do
{
unsigned int digit = tmp % Base;
unsigned int power = digit;
for ( size_t i = 1; i < n; i++ ) power *= digit;
sum += power;
} while ( ( tmp /= Base ) != 0 && !( x < sum ) );
return tmp == 0 && x == sum;
}
int main(void)
{
unsigned int a[] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407,
1634, 8208, 9474, 54748, 92727, 93084, 548834
};
const size_t N = sizeof( a ) / sizeof( *a );
for ( size_t i = 0; i < N; i++ )
{
printf( "%u is %san Armstrong number.\n", a[i], is_armstrong( a[i] ) ? "": "not " );
}
return 0;
}
The program output is
0 is an Armstrong number.
1 is an Armstrong number.
2 is an Armstrong number.
3 is an Armstrong number.
4 is an Armstrong number.
5 is an Armstrong number.
6 is an Armstrong number.
7 is an Armstrong number.
8 is an Armstrong number.
9 is an Armstrong number.
153 is an Armstrong number.
370 is an Armstrong number.
371 is an Armstrong number.
407 is an Armstrong number.
1634 is an Armstrong number.
8208 is an Armstrong number.
9474 is an Armstrong number.
54748 is an Armstrong number.
92727 is an Armstrong number.
93084 is an Armstrong number.
548834 is an Armstrong number.
Please remove j++ from 2nd loop for (int j = 1; j <= x; j++)
I tried this:
void armstrong(int x)
{
// count digits
int counter = 0, temp = x, sum = 0;
while(temp != 0)
{
temp = temp/10;
++counter; // Note: pre increment faster
}
// printf("count %d\n",counter);
temp = x;
while(temp != 0)
{
sum += pow(temp % 10, counter);
temp = temp/10;
}
// printf("sum %d\n",sum);
if(x == sum)
{
printf("Armstrong\n");
}
else
{
printf("No Armstrong\n");
}
}
int main(){
armstrong(371);
armstrong(1634);
return 0;
}
Let's take this and add the ability to handle multiple numeric bases while we're at it. Why? BECAUSE WE CAN!!!! :-)
#include <stdio.h>
#include <math.h>
double log_base(int b, double n)
{
return log(n) / log((double)b);
}
int is_armstrong_number(int b, /* base */
int n)
{
int num_digits = trunc(log_base(b, (double)n)) + 1;
int sum = 0;
int remainder = n;
while(remainder > 0)
{
sum = sum + pow(remainder % b, num_digits);
remainder = (int) (remainder / b);
}
return sum == n;
}
int main()
{
printf("All the following are valid Armstrong numbers\n");
printf(" 407 base 10 - result = %d\n", is_armstrong_number(10, 407));
printf(" 0xEA1 base 16 - result = %d\n", is_armstrong_number(16, 0xEA1));
printf(" 371 base 10 - result = %d\n", is_armstrong_number(10, 371));
printf(" 1634 base 10 - result = %d\n", is_armstrong_number(10, 1634));
printf(" 0463 base 8 - result = %d\n", is_armstrong_number(8, 0463));
printf("All the following are NOT valid Armstrong numbers\n");
printf(" 123 base 10 - result = %d\n", is_armstrong_number(10, 123));
printf(" 0x2446 base 16 - result = %d\n", is_armstrong_number(16, 0x2446));
printf(" 022222 base 8 - result = %d\n", is_armstrong_number(8, 022222));
}
At the start of is_armstrong_number we compute the number of digits directly instead of looping through the number. We then loop through the digits of n in base b, summing up the value of the digit raised to the number of digits in the number, for the given numeric base. Once the remainder hits zero we know there are no more digits to compute and we return a flag indicating if the given number is an Armstrong number in the given base.
Ok, so I enjoy using SPOJ to practice programming and developing algorithms. I always have issues with the questions though. A lot of times, I will get a "wrong answer" message when clearly my code answers the questions properly. If someone could tell me if there is anything wrong or why SPOJ would be telling me my answer was wrong that would be awesome! Here is the problem word-for-word:
Prime Number Generator
Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate all prime numbers between two given numbers!
Input
The input begins with the number t of test cases in a single line (t<=10). In each of the next t lines there are two numbers m and n (1 <= m <= n <= 1000000000, n-m<=100000) separated by a space.
Output
For every test case print all prime numbers p such that m <= p <= n, one number per line, test cases separated by an empty line.
My code:
int n;
scanf("%d", &n);
if(n > 10){ return 0; }
n = n*2;
int arr[n];
for(int i = 0; i < n; i++){ scanf("%d", &arr[i]); }
for(int i = 0; i < n; i += 2){
if(arr[i] >= 1 && arr[i] <= arr[i+1] && arr[i+1] <= 1000000000 && arr[i+1]-arr[i] <= 100000){
for(int j = arr[i]; j <= arr[i+1]; j++){
if(j % 2 == 1 || j == 2){
printf("%d\n", j);
}
}
printf("\n");
}
}
return 0;
INPUT:
2
7 11
2 9
OUTPUT:
7
9
11
2
3
5
7
9
A lot of times, I will get a "wrong answer" message when clearly my code answers the questions properly.
This is not one of those cases as evidenced by the fact that, despite the contrary, your code seems to think that 9 is a prime. The line:
if(j % 2 == 1 || j == 2)
combined with the fact that you appear to be printing all odd numbers (and two), is an indication that your prime check is incorrect.
Where you should probably start is with a simple prime check function such as:
int isPrime(int num) {
int chk = 2;
while (chk * chk <= num)
if ((num % chk) == 0)
return 0;
++chk;
}
return 1;
}
Once you have it working, then worry about performance (two of my favourite mantras are "Wrong is the least optimised state" and "Get it working first, then get it working fast").
The things you can look into for optimisations include, but are not limited to:
Eratosthenes sieve where, provided the range of primes isn't too large, it can greatly improve speed by not having to do a lot of calculations for each prime test; and
Using the fact that all primes other than two and three are of the form 6n±1, effectively tripling the speed of the isPrime function (see here for an explanation).
For that second bullet point, you can use:
int isPrime(unsigned int num) {
// Special cases for 0-3.
if (num < 2) return 0;
if (num < 4) return 1;
int chk = 5, add = 2; // prime generator, 6n +/- 1.
while (chk * chk <= num) // check every candidate.
if ((num % chk) == 0) // check if composite.
return 0;
chk += add; // next candidate.
add = 6 - add; // alternate +2, +4.
}
return 1; // no factors, must be prime.
}
int prime(unsigned long long n){
unsigned val=1, divisor=7;
if(n==2 || n==3) return 1; //n=2, n=3 (special cases).
if(n<2 || !(n%2 && n%3)) return 0; //if(n<2 || n%2==0 || n%3==0) return 0;
for(; divisor<=n/divisor; val++, divisor=6*val+1) //all primes take the form 6*k(+ or -)1, k[1, n).
if(!(n%divisor && n%(divisor-2))) return 0; //if(n%divisor==0 || n%(divisor-2)==0) return 0;
return 1;
}
The code above is something a friend wrote up for getting a prime number. It seems to be using some sort of sieving, but I'm not sure how it exactly works. The code below is my less awesome version. I would use sqrt for my loop, but I saw him doing something else (probably sieving related) and so I didn't bother.
int prime( unsigned long long n ){
unsigned i=5;
if(n < 4 && n > 0)
return 1;
if(n<=0 || !(n%2 || n%3))
return 0;
for(;i<n; i+=2)
if(!(n%i)) return 0;
return 1;
}
My question is: what exactly is he doing?
Your friend's code is making use of the fact that for N > 3, all prime numbers take the form (6×M±1) for M = 1, 2, ... (so for M = 1, the prime candidates are N = 5 and N = 7, and both those are primes). Also, all prime pairs are like 5 and 7. This only checks 2 out of every 3 odd numbers, whereas your solution checks 3 out of 3 odd numbers.
Your friend's code is using division to achieve something akin to the square root. That is, the condition divisor <= n / divisor is more or less equivalent to, but slower and safer from overflow than, divisor * divisor <= n. It might be better to use unsigned long long max = sqrt(n); outside the loop. This reduces the amount of checking considerably compared with your proposed solution which searches through many more possible values. The square root check relies on the fact that if N is composite, then for a given pair of factors F and G (such that F×G = N), one of them will be less than or equal to the square root of N and the other will be greater than or equal to the square root of N.
As Michael Burr points out, the friend's prime function identifies 25 (5×5) and 35 (5×7) as prime, and generates 177 numbers under 1000 as prime whereas, I believe, there are just 168 primes in that range. Other misidentified composites are 121 (11×11), 143 (13×11), 289 (17×17), 323 (17×19), 841 (29×29), 899 (29×31).
Test code:
#include <stdio.h>
int main(void)
{
unsigned long long c;
if (prime(2ULL))
printf("2\n");
if (prime(3ULL))
printf("3\n");
for (c = 5; c < 1000; c += 2)
if (prime(c))
printf("%llu\n", c);
return 0;
}
Fixed code.
The trouble with the original code is that it stops checking too soon because divisor is set to the larger, rather than the smaller, of the two numbers to be checked.
static int prime(unsigned long long n)
{
unsigned long long val = 1;
unsigned long long divisor = 5;
if (n == 2 || n == 3)
return 1;
if (n < 2 || n%2 == 0 || n%3 == 0)
return 0;
for ( ; divisor<=n/divisor; val++, divisor=6*val-1)
{
if (n%divisor == 0 || n%(divisor+2) == 0)
return 0;
}
return 1;
}
Note that the revision is simpler to understand because it doesn't need to explain the shorthand negated conditions in tail comments. Note also the +2 instead of -2 in the body of the loop.
He's checking for the basis 6k+1/6k-1 as all primes can be expressed in that form (and all integers can be expressed in the form of 6k+n where -1 <= n <= 4). So yes it is a form of sieving.. but not in the strict sense.
For more:
http://en.wikipedia.org/wiki/Primality_test
In case the 6k+-1 portion is confusing, note that you can perform some factorization of most forms of 6k+n and some are obviously composite and some need to be tested.
Consider numbers:
6k + 0 -> composite
6k + 1 -> not obviously composite
6k + 2 -> 2(3k+1) --> composite
6k + 3 -> 3(2k+1) --> composite
6k + 4 -> 2(3k+2) --> composite
6k + 5 -> not obviously composite
I've not seen this little trick before, so it's neat, but of limited utility since a sieve of Eratosthenese is more efficient for finding many small prime numbers, and larger prime numbers benefit from faster, more intelligent, tests.
#include<stdio.h>
int main()
{
int i,j;
printf("enter the value :");
scanf("%d",&i);
for (j=2;j<i;j++)
{
if (i%2==0 || i%j==0)
{
printf("%d is not a prime number",i);
return 0;
}
else
{
if (j==i-1)
{
printf("%d is a prime number",i);
}
else
{
continue;
}
}
}
}
#include<stdio.h>
int main()
{
int n, i = 3, count, c;
printf("Enter the number of prime numbers required\n");
scanf("%d",&n);
if ( n >= 1 )
{
printf("First %d prime numbers are :\n",n);
printf("2\n");
}
for ( count = 2 ; count <= n ; )
{
for ( c = 2 ; c <= i - 1 ; c++ )
{
if ( i%c == 0 )
break;
}
if ( c == i )
{
printf("%d\n",i);
count++;
}
i++;
}
return 0;
}
I'm doing a homework assignment for my course in C (first programming course).
Part of the assignment is to write code so that a user inputs a number up to 9 digits long, and the program needs to determine whether this number is "increasing"/"truly increasing"/"decreasing"/"truly decreasing"/"increasing and decreasing"/"truly decreasing and truly increasing"/"not decreasing and not increasing". (7 options in total)
Since this is our first assignment we're not allowed to use anything besides what was taught in class:
do-while, for, while loops, else-if, if,
break,continue
scanf, printf ,modulo, and the basic operators
(We can't use any library besides for stdio.h)
That's it. I can't use arrays or getchar or any of that stuff. The only function I can use to receive input from the user is scanf.
So far I've already written the algorithm with a flowchart and everything, but I need to separate the user's input into it's distinct digits.
For example, if the user inputs "1234..." i want to save 1 in a, 2 in b, and so on, and then make comparisons between all the digits to determine for example whether they are all equal (increasing and decreasing) or whether a > b >c ... (decreasing) and so on.
I know how to separate each digit by using the % and / operator, but I can't figure out how to "save" these values in a variable that I can later use for the comparisons.
This is what I have so far:
printf("Enter a positive number : ");
do {
scanf ("%ld", &number);
if (number < 0) {
printf ("invalid input...enter a positive integer: ");
continue;
}
else break;
} while (1);
while (number < 0) {
a = number % 10;
number = number - a;
number = number / 10;
b = a;
}
Why not scan them as characters (string)? Then you can access them via an array offset, by subtracting the offset of 48 from the ASCII character code. You can verify that the character is a digit using isdigit from ctype.h.
EDIT
Because of the incredibly absent-minded limitations that your professor put in place:
#include <stdio.h>
int main()
{
int number;
printf("Enter a positive number: ");
do
{
scanf ("%ld", &number);
if (number < 0)
{
printf ("invalid input...enter a positive integer: ");
continue;
}
else break;
} while (1);
int a = -1;
int b = -1;
int c = -1;
int d = -1;
int e = -1;
int f = -1;
int g = -1;
int h = -1;
int i = -1;
while (number > 0)
{
if (a < 0) a = number % 10;
else if (b < 0) b = number % 10;
else if (c < 0) c = number % 10;
else if (d < 0) d = number % 10;
else if (e < 0) e = number % 10;
else if (f < 0) f = number % 10;
else if (g < 0) g = number % 10;
else if (h < 0) h = number % 10;
else if (i < 0) i = number % 10;
number /= 10;
}
/* Printing for verification. */
printf("%i", a);
printf("%i", b);
printf("%i", c);
printf("%i", d);
printf("%i", e);
printf("%i", f);
printf("%i", g);
printf("%i", h);
printf("%i", i);
return 0;
}
The valid numbers at the end will be positive, so those are the ones you validate to meet your different conditions.
Since you only need to compare consecutive digits, there is an elegant way to do this without arrays:
int decreasing = 2;
int increasing = 2;
while(number > 9)
{
int a = number % 10;
int b = (number / 10) % 10;
if(a == b)
{
decreasing = min(1, decreasing);
increasing = min(1, increasing);
}
else if(a > b)
decreasing = 0;
else if(a < b)
increasing = 0;
number /= 10;
}
Here, we walk through the number (by dividing by 10) until only one digit remains. We store info about the number up to this point in decreasing and increasing - a 2 means truly increasing/decreasing, a 1 means increasing/decreasing, and a 0 means not increasing/decreasing.
At each step, a is the ones digit and b is the tens. Then, we change increasing and decreasing based on a comparison between a and b.
At the end, it should be easy to turn the values of increasing and decreasing into the final answer you want.
Note: The function min returns the smaller of its 2 arguments. You should be able to write your own, or replace those lines with if statements or conditionals.
It's stupid to ask you to do loops without arrays --- but that's your teacher's fault, not yours.
That being said, I would do something like this:
char c;
while (1) {
scanf("%c", &c);
if (c == '\n') /* encountered newline (end of input) */
break;
if (c < '0' || c > '9')
break; /* do something to handle bad characters? */
c -= '0';
/*
* At this point you've got 0 <= c < 9. This is
* where you do your homework :)
*/
}
The trick here is that when you type numbers into a program, you send the buffer all at once, not one character at a time. That means the first scanf will block until the entire string (i.e. "123823" or whatever) arrives all at once, along with the newline character ( '\n' ). Then this loop parses that string at its leisure.
Edit For testing the increasing/decreasing-ness of the digits, you may think you need to store the entire string, but that's not true. Just define some additional variables to remember the important information, such as:
int largest_digit_ive_seen, smallest_digit_ive_seen, strict_increasing_thus_far;
etc. etc.
Let us suppose you have this number 23654
23654 % 10000 = 2 and 3654
3654 % 1000 = 3 and 654
654 % 100 = 6 and 54
54 % 10 = 5 and 4
4
This way you can get all the digits. Of course, you have to know if the number is greater than 10000, 1000, 100 or 10, in order to know the first divisor.
Play with sizeof to get the size of the integer, in order to avoid a huge if...else statement
EDIT:
Let us see
if (number>0) {
// Well, whe have the first and only digit
} else if (number>10) {
int first_digit = number/10;
int second_digit = number % 10;
} else if (number>100) {
int first_digit = number/100;
int second_digit = (number % 100)/10;
int third_digit = (number % 100) % 10;
} ...
and so on, I suppose
// u_i is the user input, My homework asked me to extract a long long, however, this should also be effective for a long.
int digits = 0;
long long d_base = 1;
int d_arr[20];
while (u_i / d_base > 0)
{
d_arr[digits] = (u_i - u_i / (d_base * 10) * (d_base * 10)) / d_base;
u_i -= d_arr[digits] * d_base;
d_base *= 10;
digits++;
}
EDIT: the extracted individual digit now lives in the int array d_arr. I'm not good at C, so I think the array declaration can be optimized.
Here's a working example in plain C :
#include <stdio.h>
unsigned long alePow (unsigned long int x, unsigned long int y);
int main( int argc, const char* argv[] )
{
int enter_num, temp_num, sum = 0;
int divisor, digit, count = 0;
printf("Please enter number\n");
scanf("%d", &enter_num);
temp_num = enter_num;
// Counting the number of digits in the entered integer
while (temp_num != 0)
{
temp_num = temp_num/10;
count++;
}
temp_num = enter_num;
// Extracting the digits
printf("Individual digits in the entered number are ");
do
{
divisor = (int)(alePow(10.0, --count));
digit = temp_num / divisor;
temp_num = temp_num % divisor;
printf(" %d",digit);
sum = sum + digit;
}
while(count != 0);
printf("\nSum of the digits is = %d\n",sum);
return 0;
}
unsigned long alePow(unsigned long int x, unsigned long int y) {
if (x==0) { return 0; }
if (y==0||x==1) { return 1; }
if (y==1) { return x; }
return alePow(x*x, y/2) * ((y%2==0) ? 1 : x);
}
I would suggest loop-unrolling.
int a=-1, b=-1, c=-1, d=-1, e=1, f=-1, g=-1, h=-1, i=-1; // for holding 9 digits
int count = 0; //for number of digits in the given number
if(number>0) {
i=number%10;
number/=10;
count++;
}
if(number>0) {
h=number%10;
number/=10;
count++;
}
if(number>0) {
g=number%10;
number/=10;
count++;
}
....
....
/* All the way down to the storing variable a */
Now, you know the number of digits (variable count) and they are stored in which of the variables. Now you have all digits and you can check their "decreasing", "increasing" etc with lots of if's !
I can't really think of a better soltion given all your conditions.
I am trying to generate all the prime factors of a number n. When I give it the number 126 it gives me 2, 3 and 7 but when I give it say 8 it gives me 2, 4 and 8. Any ideas as to what I am doing wrong?
int findPrime(unsigned long n)
{
int testDivisor, i;
i = 0;
testDivisor = 2;
while (testDivisor < n + 1)
{
if ((testDivisor * testDivisor) > n)
{
//If the test divisor squared is greater than the current n, then
//the current n is either 1 or prime. Save it if prime and return
}
if (((n % testDivisor) == 0))
{
prime[i] = testDivisor;
if (DEBUG == 1) printf("prime[%d] = %d\n", i, prime[i]);
i++;
n = n / testDivisor;
}
testDivisor++;
}
return i;
}
You are incrementing testDivisor even when you were able to divide n by it. Only increase it when it is not divisible anymore. This will result in 2,2,2, so you have to modify it a bit further so you do not store duplicates, but since this is a homework assignment I think you should figure that one out yourself :)
Is this based on an algorithm your professor told you to implement or is it your own heuristic? In case it helps, some known algorithms for prime factorization are the Quadratic Sieve and the General Number Field Sieve.
Right now, you aren't checking if any divisors you find are prime. As long as n % testDivisor == 0 you are counting testDivisor as a prime factor. Also, you are only dividing through by testDivisor once. You could fix this a number of ways, one of which would be to replace the statement if (((n % testDivisor) == 0)) with while (((n % testDivisor) == 0)).
Fixing this by adding the while loop also ensures that you won't get composite numbers as divisors, as if they still divide n, a smaller prime factor must have also divided n and the while loop for that prime factor wouldn't have left early.
Here is code to find the Prime Factor:
long GetPrimeFactors(long num, long *arrResult)
{
long count = 0;
long arr[MAX_SIZE];
long i = 0;
long idx = 0;
for(i = 2; i <= num; i++)
{
if(IsPrimeNumber(i) == true)
arr[count++] = i;
}
while(1)
{
if(IsPrimeNumber(num) == true)
{
arrResult[idx++] = num;
break;
}
for(i = count - 1; i >= 0; i--)
{
if( (num % arr[i]) == 0)
{
arrResult[idx++] = arr[i];
num = num / arr[i];
break;
}
}
}
return idx;
}
Reference: http://www.softwareandfinance.com/Turbo_C/Prime_Factor.html
You can use the quadratic sieve algorithm, which factors 170-bit integers in second and 220-bit integers in minute. There is a pure C implementation here that does not require GMP or an external library : https://github.com/michel-leonard/C-Quadratic-Sieve, it's able to provide you a list of the prime factors of N. Thank You.