I have built my first neural network in python, and i've been playing around with a few datasets; it's going well so far !
I have a quick question regarding modelling events with multiple outcomes: -
Say i wish to train a network to tell me the probability of each runner winning a 100m sprint. I would give the network all of the relevant data regarding each runner, and the number of outputs would be equal to the number of runners in the race.
My question is, using a sigmoid function, how can i ensure the sum of the outputs will be equal to 1.0 ? Will the network naturally learn to do this, or will i have to somehow make this happen explicitly ? If so, how would i go about doing this ?
Many Thanks.
The output from your neural network will approach 1. I don't think it will actually get to 1.
You actually don't need to see which output is equal to 1. Once you've trained your network up to a specific error level, when you present the inputs, just look for the maximum output in your output later. For example, let's say your output layer presents the following output: [0.0001, 0.00023, 0.0041, 0.99999412, 0.0012, 0.0002], then the runner that won the race is runner number 4.
So yes, your network will "learn" to produce 1, but it won't exactly be 1. This is why you train to within a certain error rate. I recently created a neural network to recognize handwritten digits, and this is the method that I used. In my output layer, I have a vector with 10 components. The first component represents 0, and the last component represents 9. So when I present a 4 to the network, I expect the output vector to look like [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]. Of course, it's not what I get exactly, but it's what I train the network to provide. So to find which digit it is, I simply check to see which component has the highest output or score.
Now in your second question, I believe you're asking how the network would learn to provide the correct answer? To do this, you need to provide your network with some training data and train it until the output is under a certain error threshold. So what you need is a set of data that contains the inputs and the correct output. Initially your neural network will be set up with random weights (there are some algorithms that help you select better weights to minimize training time, but that's a little more advanced). Next you need a way to tell the neural network to learn from the data provided. So basically you give the data to the neural network and it provides an output, which is highly likely to be wrong. Then you compare that data with the expected (correct) output and you tell the neural network to update its weights so that it gets closer to the correct answer. You do this over and over again until the error is below a certain threshold.
The easiest way to do this is to implement the stochastic backpropagation algorithm. In this algorithm, you calculate the error between the actual output of the neural network and the expected output. Then you backpropagate the error from the output layer all the way up to the weights to the hidden layer, adjusting the weights as you go. Then you repeat this process until the error that you calculate is below a certain threshold. So during each step, you're getting closer and closer towards your solution.
You can use the algorithm described here. There is a decent amount of math involved, so be prepared for that! If you want to see an example of an implementation of this algorithm, you can take a look at this Java code that I have on github. The code uses momentum and a simple form of simulated annealing as well, but the standard backpropagation algorithm should be easily discernible. The Wikipedia article on backpropagation has a link to an implementation of the backpropagation algorithm in Python.
You're probably not going to understand the algorithm immediately; expect to spend some time understanding it and working through some of the math. I sat down with a pencil and paper as I was coding, and that's how I eventually understood what was going on.
Here are a few resources that should help you understand backpropagation a little better:
The learning process: backpropagation
Error backpropagation
If you want some more resources, you can also take a look at my answer here.
Basically you want a function of multiple real numbers that converts those real numbers into probabilities (each between 0 to 1, sum to 1). You can this easily by post processing the output of your network.
Your network gives you real numbers r1, r2, ..., rn that increases as the probability of each runner wins the race.
Then compute exp(r1), exp(r2), ..., and sum them up for ers = exp(r1) + exp(r2) + ... + exp(rn). Then the probability that the first racer wins is exp(r1) / ers.
This is a one use of the Boltzman distribution. http://en.wikipedia.org/wiki/Boltzmann_distribution
Your network should work around that and learn it naturally eventually.
To make the network learn that a little faster, here's what springs to mind first:
add an additional output called 'sum' (summing all the other output neurons) -- if you want all the output neurons to be in an separate layer, just add a layer of outputs, first numRunners outputs just connect to corresponding neuron in the previous layer, and the last numRunners+1-th neuron you connect to all the neurons from the previous layer, and fix the weights to 1)
the training set would contain 0-1 vectors for each runner (did-did not run), and the "expected" result would be a 0-1 vector 00..00001000..01 first 1 marking the runner that won the race, last 1 marking the "sum" of "probabilities"
for the unknown races, the network would try to predict which runner would win. Since the outputs have contiguous values (more-or-less :D) they can be read as "the certainty of the network that the runner would win the race" -- which is what you're looking for
Even without the additional sum neuron, this is the rough description of the way the training data should be arranged.
Related
I have a simple task to classify people by their height and hair length to either MAN or WOMAN category using a neural network. Also teach it the pattern with some examples and then use it to classify on its own.
I have a basic understanding of neural networks but would really need some help here.
I know that each neuron divides the area to two subareas, basically that is why P = w0 + w1*x1 + w2*x2 + ... + wn*xn is being used here (weights are just moving the line if we consider geometric representation).
I do understand that each epoche should modify the weights to get closer to correct result, yet I have never program it and I am hopeless about how to start.
How should I proceed, meaning: How can I determine the threshold and how should I deal with the inputs?
It is not a homework rather than task for the ones who were interested. I am and I would like to understand it.
Looks like you are dealing with a simple Perceptron with a threshold activation function. Have a look at this question. Since you ARE using a bias neuron (w0), you would set the threshold to 0.
You then simply take the output of your network and compare it to 0, so you would e.g. output class 1 if x < 0 and class 2 if x > 0. You could model the case x=0 as "indistinct".
For learning the weights you need to apply the Delta Learning Rule which can be implemented very easily. But be careful: a perceptron with a simple threshold activation function can only be correct if your data are linearly separable. If you have more complex data you will need a Multilayer Perceptron and a nonlinear activation function like the Logistic Sigmoid Function.
Have a look at Geoffrey Hintons Coursera Course, Lecture 2 for details.
I've been working with machine learning lately (but I'm not an expert) but you should look at the Accord.NET framework. It contains all the common machine learning algorithme out of the box. So it's easy to take an existing samples and modify it instead of starting from scratch. Also, the developper of the framework is very helpful in the forum available on the same page.
With the available samples, you may also discover something better than neural network like the Kernel Support Vector Machine. If you stick to the neural network, have fun modifying all the different variables and by tryout and error you will understand how it work.
Have fun!
Since you said:
I know that each neuron divides the area to two subareas
&
weights are just moving the line if we consider geometric representation
I think you want to use perseptron or ADALINE neural networks. These neural networks can just classify linear separable patterns. since your input data is complicated, It's better to use a Multi layer Non-Linear Neural network. (my suggestion is a two layer neural network with tanh activation function) . For training these network you should use back propagation algorithm.
For answering to
how should I deal with the inputs?
I need to know more details about the inputs( Like: are they just height and hair length or there is more, what is their range and your resolution and etc.)
If you're dealing with just height and hair length I suggest that divide heights and length in some classes (for example 160cm-165cm, 165cm-170cm & etc.) and for each one of these classes set an On/Off input neuron. then put a hidden layer after all classes related to heights and another hidden layer after all classes related to hair length (tanh activation function). Number of neurons in these two hidden layer is determined based on number of training cases.
then take these two hidden layer output and send them to an aggregation layer with 1 output neuron.
Nominally a good problem to have, but I'm pretty sure it is because something funny is going on...
As context, I'm working on a problem in the facial expression/recognition space, so getting 100% accuracy seems incredibly implausible (not that it would be plausible in most applications...). I'm guessing there is either some consistent bias in the data set that it making it overly easy for an SVM to pull out the answer, =or=, more likely, I've done something wrong on the SVM side.
I'm looking for suggestions to help understand what is going on--is it me (=my usage of LibSVM)? Or is it the data?
The details:
About ~2500 labeled data vectors/instances (transformed video frames of individuals--<20 individual persons total), binary classification problem. ~900 features/instance. Unbalanced data set at about a 1:4 ratio.
Ran subset.py to separate the data into test (500 instances) and train (remaining).
Ran "svm-train -t 0 ". (Note: apparently no need for '-w1 1 -w-1 4'...)
Ran svm-predict on the test file. Accuracy=100%!
Things tried:
Checked about 10 times over that I'm not training & testing on the same data files, through some inadvertent command-line argument error
re-ran subset.py (even with -s 1) multiple times and did train/test only multiple different data sets (in case I randomly upon the most magical train/test pa
ran a simple diff-like check to confirm that the test file is not a subset of the training data
svm-scale on the data has no effect on accuracy (accuracy=100%). (Although the number of support vectors does drop from nSV=127, bSV=64 to nBSV=72, bSV=0.)
((weird)) using the default RBF kernel (vice linear -- i.e., removing '-t 0') results in accuracy going to garbage(?!)
(sanity check) running svm-predict using a model trained on a scaled data set against an unscaled data set results in accuracy = 80% (i.e., it always guesses the dominant class). This is strictly a sanity check to make sure that somehow svm-predict is nominally acting right on my machine.
Tentative conclusion?:
Something with the data is wacked--somehow, within the data set, there is a subtle, experimenter-driven effect that the SVM is picking up on.
(This doesn't, on first pass, explain why the RBF kernel gives garbage results, however.)
Would greatly appreciate any suggestions on a) how to fix my usage of LibSVM (if that is actually the problem) or b) determine what subtle experimenter-bias in the data LibSVM is picking up on.
Two other ideas:
Make sure you're not training and testing on the same data. This sounds kind of dumb, but in computer vision applications you should take care that: make sure you're not repeating data (say two frames of the same video fall on different folds), you're not training and testing on the same individual, etc. It is more subtle than it sounds.
Make sure you search for gamma and C parameters for the RBF kernel. There are good theoretical (asymptotic) results that justify that a linear classifier is just a degenerate RBF classifier. So you should just look for a good (C, gamma) pair.
Notwithstanding that the devil is in the details, here are three simple tests you could try:
Quickie (~2 minutes): Run the data through a decision tree algorithm. This is available in Matlab via classregtree, or you can load into R and use rpart. This could tell you if one or just a few features happen to give a perfect separation.
Not-so-quickie (~10-60 minutes, depending on your infrastructure): Iteratively split the features (i.e. from 900 to 2 sets of 450), train, and test. If one of the subsets gives you perfect classification, split it again. It would take fewer than 10 such splits to find out where the problem variables are. If it happens to "break" with many variables remaining (or even in the first split), select a different random subset of features, shave off fewer variables at a time, etc. It can't possibly need all 900 to split the data.
Deeper analysis (minutes to several hours): try permutations of labels. If you can permute all of them and still get perfect separation, you have some problem in your train/test setup. If you select increasingly larger subsets to permute (or, if going in the other direction, to leave static), you can see where you begin to lose separability. Alternatively, consider decreasing your training set size and if you get separability even with a very small training set, then something is weird.
Method #1 is fast & should be insightful. There are some other methods I could recommend, but #1 and #2 are easy and it would be odd if they don't give any insights.
I have an artificial neural network which plays Tic-Tac-Toe - but it is not complete yet.
What I have yet:
the reward array "R[t]" with integer values for every timestep or move "t" (1=player A wins, 0=draw, -1=player B wins)
The input values are correctly propagated through the network.
the formula for adjusting the weights:
What is missing:
the TD learning: I still need a procedure which "backpropagates" the network's errors using the TD(λ) algorithm.
But I don't really understand this algorithm.
My approach so far ...
The trace decay parameter λ should be "0.1" as distal states should not get that much of the reward.
The learning rate is "0.5" in both layers (input and hidden).
It's a case of delayed reward: The reward remains "0" until the game ends. Then the reward becomes "1" for the first player's win, "-1" for the second player's win or "0" in case of a draw.
My questions:
How and when do you calculate the net's error (TD error)?
How can you implement the "backpropagation" of the error?
How are the weights adjusted using TD(λ)?
Thank you so much in advance :)
If you're serious about making this work, then understanding TD-lambda would be very helpful. Sutton and Barto's book, "Reinforcement Learning" is available for free in HTML format and covers this algorithm in detail. Basically, what TD-lambda does is create a mapping between a game state and the expected reward at the game's end. As games are played, states that are more likely to lead to winning states tend to get higher expected reward values.
For a simple game like tic-tac-toe, you're better off starting with a tabular mapping (just track an expected reward value for every possible game state). Then once you've got that working, you can try using a NN for the mapping instead. But I would suggest trying a separate, simpler NN project first...
I have been confused about this too, but I believe this is the way it works:
Starting from the end node, you check R, (output received) and E, (output expected). If E = R, it's fine, and you have no changes to make.
If E != R, you see how far off it was, based on thresholds and whatnot, and then shift the weights or threshold up or down a bit. Then, based on the new weights, you go back in, and guess whether or not it was too high, or too low, and repeat, with a weaker effect.
I've never really tried this algorithm, but that's basically the version of the idea as I understand it.
As far as I remember you do the training with a known result set - so you calculate the output for a known input and subtract your known output value from that - that is the error.
Then you use the error to correct the net - for a single layer NN adjusted with the delta rule I know that an epsilon of 0.5 is too high - something like 0.1 is better - slower but better. With backpropagation it is a bit more advanced - but as far as I remember the math equation description of a NN is complex and hard to understand - it is not that complicated.
take a look at
http://www.codeproject.com/KB/recipes/BP.aspx
or google for "backpropagation c" - it is probably easier to understand in code.
I'm trying to train an ANN (I use this library: http://leenissen.dk/fann/ ) and the results are somewhat puzzling - basically if I run the trained network on the same data used for training, the output is not what specified in the training set, but some random number.
For example, the first entry in the training file is something like
88.757004 88.757004 104.487999 138.156006 100.556000 86.309998 86.788002
1
with the first line being the input values and the second line is the desired output neuron's value. But when I feed the exact same data to the trained network, I get different results on each train attempt, and they are quite different from 1, e.g.:
Max epochs 500000. Desired error: 0.0010000000.
Epochs 1. Current error: 0.0686412785. Bit fail 24.
Epochs 842. Current error: 0.0008697828. Bit fail 0.
my test result -4052122560819626000.000000
and then on another attempt:
Max epochs 500000. Desired error: 0.0010000000.
Epochs 1. Current error: 0.0610717005. Bit fail 24.
Epochs 472. Current error: 0.0009952184. Bit fail 0.
my test result -0.001642
I realize that the training set size may be inadequate (I only have about a 100 input/output pairs so far), but shouldn't at least the training data trigger the right output value? The same code works fine for the "getting started" XOR function described at the FANN's website (I've already used up my 1 link limit)
Short answer: No
Longer answer (but possibly not the as correct):
1st: a training run only moves the weights of the neurons towards a position where they affect the output to be as in the testdata. After some/many iterations the output should be close to the expected output. Iff the neurol network is up to the task, which brings me to
2nd: Not every neuronal network works for every problem. For a single neuron it is pretty easy to come up with a simple function that can not get approximated by a single neuron. Though not as easy to see, the same limit applies for every neural network. In such cases your results will very likely look like random numbers. Edit after comment: In many cases this can be fixed by adding neurons to the network.
3rd: actually the first point is a strength of a neural network, because it allows the network to handle outliers nicely.
4th: I blame 3 for my lacking understanding of music. It just doesn't fit my brain ;-)
No, if you get your ANN to work perfectly on the training data, you either have a really easy problem or you're overfitting.
I want to program a chess engine which learns to make good moves and win against other players. I've already coded a representation of the chess board and a function which outputs all possible moves. So I only need an evaluation function which says how good a given situation of the board is. Therefore, I would like to use an artificial neural network which should then evaluate a given position. The output should be a numerical value. The higher the value is, the better is the position for the white player.
My approach is to build a network of 385 neurons: There are six unique chess pieces and 64 fields on the board. So for every field we take 6 neurons (1 for every piece). If there is a white piece, the input value is 1. If there is a black piece, the value is -1. And if there is no piece of that sort on that field, the value is 0. In addition to that there should be 1 neuron for the player to move. If it is White's turn, the input value is 1 and if it's Black's turn, the value is -1.
I think that configuration of the neural network is quite good. But the main part is missing: How can I implement this neural network into a coding language (e.g. Delphi)? I think the weights for each neuron should be the same in the beginning. Depending on the result of a match, the weights should then be adjusted. But how? I think I should let 2 computer players (both using my engine) play against each other. If White wins, Black gets the feedback that its weights aren't good.
So it would be great if you could help me implementing the neural network into a coding language (best would be Delphi, otherwise pseudo-code). Thanks in advance!
In case somebody randomly finds this page. Given what we know now, what the OP proposes is almost certainly possible. In fact we managed to do it for a game with much larger state space - Go ( https://deepmind.com/research/case-studies/alphago-the-story-so-far ).
I don't see why you can't have a neural net for a static evaluator if you also do some classic mini-max lookahead with alpha-beta pruning. Lots of Chess engines use minimax with a braindead static evaluator that just adds up the pieces or something; it doesn't matter so much if you have enough levels of minimax. I don't know how much of an improvement the net would make but there's little to lose. Training it would be tricky though. I'd suggest using an engine that looks ahead many moves (and takes loads of CPU etc) to train the evaluator for an engine that looks ahead fewer moves. That way you end up with an engine that doesn't take as much CPU (hopefully).
Edit: I wrote the above in 2010, and now in 2020 Stockfish NNUE has done it. "The network is optimized and trained on the [classical Stockfish] evaluations of millions of positions at moderate search depth" and then used as a static evaluator, and in their initial tests they got an 80-elo improvement when using this static evaluator instead of their previous one (or, equivalently, the same elo with a little less CPU time). So yes it does work, and you don't even have to train the network at high search depth as I originally suggested: moderate search depth is enough, but the key is to use many millions of positions.
Been there, done that. Since there is no continuity in your problem (the value of a position is not closely related to an other position with only 1 change in the value of one input), there is very little chance a NN would work. And it never did in my experiments.
I would rather see a simulated annealing system with an ad-hoc heuristic (of which there are plenty out there) to evaluate the value of the position...
However, if you are set on using a NN, is is relatively easy to represent. A general NN is simply a graph, with each node being a neuron. Each neuron has a current activation value, and a transition formula to compute the next activation value, based on input values, i.e. activation values of all the nodes that have a link to it.
A more classical NN, that is with an input layer, an output layer, identical neurons for each layer, and no time-dependency, can thus be represented by an array of input nodes, an array of output nodes, and a linked graph of nodes connecting those. Each node possesses a current activation value, and a list of nodes it forwards to. Computing the output value is simply setting the activations of the input neurons to the input values, and iterating through each subsequent layer in turn, computing the activation values from the previous layer using the transition formula. When you have reached the last (output) layer, you have your result.
It is possible, but not trivial by any means.
https://erikbern.com/2014/11/29/deep-learning-for-chess/
To train his evaluation function, he utilized a lot of computing power to do so.
To summarize generally, you could go about it as follows. Your evaluation function is a feedforward NN. Let the matrix computations lead to a scalar output valuing how good the move is. The input vector for the network is the board state represented by all the pieces on the board so say white pawn is 1, white knight is 2... and empty space is 0. An example board state input vector is simply a sequence of 0-12's. This evaluation can be trained using grandmaster games (available at a fics database for example) for many games, minimizing loss between what the current parameters say is the highest valuation and what move the grandmasters made (which should have the highest valuation). This of course assumes that the grandmaster moves are correct and optimal.
What you need to train a ANN is either something like backpropagation learning or some form of a genetic algorithm. But chess is such an complex game that it is unlikly that a simple ANN will learn to play it - even more if the learning process is unsupervised.
Further, your question does not say anything about the number of layers. You want to use 385 input neurons to encode the current situation. But how do you want to decide what to do? On neuron per field? Highest excitation wins? But there is often more than one possible move.
Further you will need several hidden layers - the functions that can be represented with an input and an output layer without hidden layer are really limited.
So I do not want to prevent you from trying it, but chances for a successful implemenation and training within say one year or so a practically zero.
I tried to build and train an ANN to play Tic-tac-toe when I was 16 years or so ... and I failed. I would suggest to try such an simple game first.
The main problem I see here is one of training. You say you want your ANN to take the current board position and evaluate how good it is for a player. (I assume you will take every possible move for a player, apply it to the current board state, evaluate via the ANN and then take the one with the highest output - ie: hill climbing)
Your options as I see them are:
Develop some heuristic function to evaluate the board state and train the network off that. But that begs the question of why use an ANN at all, when you could just use your heuristic.
Use some statistical measure such as "How many games were won by white or black from this board configuration?", which would give you a fitness value between white or black. The difficulty with that is the amount of training data required for the size of your problem space.
With the second option you could always feed it board sequences from grandmaster games and hope there is enough coverage for the ANN to develop a solution.
Due to the complexity of the problem I'd want to throw the largest network (ie: lots of internal nodes) at it as I could without slowing down the training too much.
Your input algorithm is sound - all positions, all pieces, and both players are accounted for. You may need an input layer for every past state of the gameboard, so that past events are used as input again.
The output layer should (in some form) give the piece to move, and the location to move to.
Write a genetic algorithm using a connectome which contains all neuron weights and synapse strengths, and begin multiple separated gene pools with a large number of connectomes in each.
Make them play one another, keep the best handful, crossover and mutate the best connectomes to repopulate the pool.
Read blondie24 : http://www.amazon.co.uk/Blondie24-Playing-Kaufmann-Artificial-Intelligence/dp/1558607838.
It deals with checkers instead of chess but the principles are the same.
Came here to say what Silas said. Using a minimax algorithm, you can expect to be able to look ahead N moves. Using Alpha-beta pruning, you can expand that to theoretically 2*N moves, but more realistically 3*N/4 moves. Neural networks are really appropriate here.
Perhaps though a genetic algorithm could be used.