Preferred caching strategy for data-driven applications on mobile devices - mobile

What is the preferred strategy for creating a mobile application that relies on data to be moved to/from a cloud-based service (thus requiring connectivity)?
What mechanisms are typically employed to ensure synchronization while connectivity can be less than stable?
Are all potential write operations queued locally and recover gracefully from terminated uploads?
Are most downloads/data queries just re-executed when applications are brought back in scope or regain connectivity after losing it for a while?
Specific guidance as well as training materials/study resources are acceptable!

Related

Distributed database with hundreds of read-only replicas which can synchronise asynchronously through HTTP

I have a service running as a sidecar next to a variety of applications.
This service needs to be extremely fast and do not make remote calls.
It has to have in-memory database. The contents of this database have to be populated and kept up-to-date (although a lag is acceptable) with a central component.
The service does not accept writes.
Of course this could be done through a mechanism of long pooling, for instance, but this brings the complexity of managing this solution and some intrinsic inefficiencies.
Is there a lightweight, ephemeral in-process and preferably in-memory database that can synchronise asynchronously with central replica preferably through regular HTTP so that no ports needs to be opened?
Maybe Couchbase lite/mobile is what you are after. Atleast mobile is syncing over a web socket, not sure about which protocol lite is running (or if there is actually a difference between the products).
Seems like couchbase lite replaced touchDB which was a mobile version of CouchDB IIRC.
Another variant might be running pouchDB and using CouchDB as the master backend. You don't say which platform the application will run on, which is relevant if you want an in-process solution.

What considerations must I make to a potentially really busy web service?

As per title, assume I have a WCF web service that, at specific times of the day, will encounter huge amounts of traffic/calls. Each call to the web service will invoke a write to a database and a read from the same database.
Technically, what must I take into consideration (if anything) with regards to protecting the database from any unwanted effects from reading and writing to it very frequently?
Also, must the WCF web service be coded/structured any differently with this in mind?
There are 2 basic approaches:
Throttle the input. Use the throttling function in WCF to reduce the load on your database.
Put a layer of protection between the WCF calls and your database. For example a queue to protect against incomming messages and a cache to protect against excessive reads.
Which one you choose will depend on your situation. The first one is very cheap to implement since it is just a configuration change, but your users of the WCF service may notice that they are being throttled. The second is better for the users of the service, but much more expensive to implement.

When to avoid memcache?

I see in many cases memcached is used. Can you give examples when to avoid memcached other than large files? How large files are appropriate for memcached?
Thanks for your answer
If you know when to bust the caches to prevent out-of-date things from being cached, there's not really a reason to avoid memcache for anything small unless it's so trivial to compute that it'd be approximately as long to hit memcache as it would to just compute it.
I have seen Memcached is used to store session data.As my point of view its not recommended storing sessions in Memcached.If a session disappears, often the user is logged out,If a portion of a cache disappears or either due to a hardware crash it should not cause your users noticable pain.According to the memcached site, “memcached is a high-performance, distributed memory object caching system, generic in nature, but intended for use in speeding up dynamic web applications by alleviating database load.” So while developing your application, remember that you must have a fall-back mechanism to retrieve the data once it is not found in the Memcached server. Here are some tips,
Avoid storing frequently updated data in Memcached.
Memcached does not ship with in-built security mechanisms. So It is your responsibility to handle security issues.
Try to maintain predefined fixed number of connections in the connection pool because each set/get operation is a new atomic connection to the Memcached server.
Avoid storing raw data coming straight from the database rather than storing processed data

.NET CF mobile device application - best methodology to handle potential offline-ness?

I'm building a mobile application in VB.NET (compact framework), and I'm wondering what the best way to approach the potential offline interactions on the device. Basically, the devices have cellular and 802.11, but may still be offline (where there's poor reception, etc). A driver will scan boxes as they leave his truck, and I want to update the new location - immediately if there's network signal, or queued if it's offline and handled later. It made me think, though, about how to handle offline-ness in general.
Do I cache as much data to the device as I can so that I use it if it's offline - Essentially, each device would have a copy of the (relevant) production data on it? Or is it better to disable certain functionality when it's offline, so as to avoid the headache of synchronization later? I know this is a pretty specific question that depends on my app, but I'm curious to see if others have taken this route.
Do I build the application itself to act as though it's always offline, submitting everything to a local queue of sorts that's owned by a local class (essentially abstracting away the online/offline thing), and then have the class submit things to the server as it can? What about data lookups - how can those be handled in a "Semi-live" fashion?
Or should I have the application attempt to submit requests to the server directly, in real-time, and handle it if it itself request fails? I can see a potential problem of making the user wait for the timeout, but is this the most reliable way to do it?
I'm not looking for a specific solution, but really just stories of how developers accomplish this with the smoothest user experience possible, with a link to a how-to or heres-what-to-consider or something like that. Thanks for your pointers on this!
We can't give you a definitive answer because there is no "right" answer that fits all usage scenarios. For example if you're using SQL Server on the back end and SQL CE locally, you could always set up merge replication and have the data engine handle all of this for you. That's pretty clean. Using the offline application block might solve it. Using store and forward might be an option.
You could store locally and then roll your own synchronization with a direct connection, web service of WCF service used when a network is detected. You could use MSMQ for delivery.
What you have to think about is not what the "right" way is, but how your implementation will affect application usability. If you disable features due to lack of connectivity, is the app still usable? If you have stale data, is that a problem? Maybe some critical data needs to be transferred when you have GSM/GPRS (which typically isn't free) and more would be done when you have 802.11. Maybe you can run all day with lookup tables pulled down in the morning and upload only transactions, with the device tracking what changes it's made.
Basically it really depends on how it's used, the nature of the data, the importance of data transactions between fielded devices, the effect of data latency, and probably other factors I can't think of offhand.
So the first step is to determine how the app needs to be used, then determine the infrastructure and architecture to provide the connectivity and data access required.
I haven't used it myself, but have you looked into the "store and forward" capabilities of the CF? It may suit your needs. I believe it uses an Exchange mailbox as a message queue to send SOAP packets to and from the device.
The best way to approach this is to always work offline, then use message queues to handle sending changes to and from the device. When the driver marks something as delivered, for example, update the item as delivered in your local store and also place a message in an outgoing queue to tell the server it's been delivered. When the connection is up, send any queued items back to the server and get any messages that have been queued up from the server.

Queues against Tables in messaging systems [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
I've been experiencing the good and the bad sides of messaging systems in real production environments, and I must admit that a well organized table or schema of tables simply beats every time any other form of messaging queue, because:
Data are permanently stored on a table. I've seen so many java (jms) applications that lose or vanish messages on their way for uncaught exceptions or other bugs.
Queues tend to fill up. Db storage is virtually infinite, instead.
Tables are easily accessible, while you have to use esotic instruments to read from a queue.
What's your opinion on each approach?
The phrase beats every time totally depends on what your requirements were to begin with. Certainly its not going to beat every time for everyone.
If you are building a single system which is already using a database, you don't have very high performance throughput requirements and you don't have to communicate with any other teams or systems then you're probably right.
For simple, low thoughput, mostly single threaded stuff, database are a totally fine alternative to message queues.
Where a message queue shines is when
you want a high performance, highly concurrent and scalable load balancer so you can process tens of thousands of messages per second concurrently across many servers/processes (using a database table you'd be lucky to process a few hundred a second and processing with multiple threads is pretty hard as one process will tend to lock the message queue table)
you need to communicate between different systems using different databases (so don't have to hand out write access to your systems database to other folks in different teams etc)
For simple systems with a single database, team and fairly modest performance requirements - sure use a database. Use the right tool for the job etc.
However where message queues shine is in large organisations where there are lots of systems that need to communicate with each other (and so you don't want a business database to be a central point of failure or place of version hell) or when you have high performance requirements.
In terms of performance a message queue will always beat a database table - as message queues are specifically designed for the job and don't rely on pessimistic table locks (which are required for a database implementation of a queue - to do the load balancing) and good message queues will perform eager loading of messages to queues to avoid the network overhead of a database.
Similarly - you'd never use a database to do load balancing of HTTP requests across your web servers - as it'd be too slow - if you have high performance requirements for your load balancer you'd not use a database either.
I've used tables first, then refactor to a full-fledged msg queue when (and if) there's reason - which is trivial if your design is reasonable.
The biggest benefits are a.) it's easier, (b. it's a better audit trail because you have the other tables to join to, c.) if you know the database tools really well, they are easier to use than the Message Queue tools, d.) it's generally a bit easier to set up a test/dev environment in a context that already exists for your app (if same familiarity applies).
Oh, and e.) for perhaps you and others, it's not another product to learn, install, configure, administer, and support.
IMPE, it's just as reliable, disconnectable, and you can convert if it needs more scalable.
Data are permanently stored on a table. I've seen so many java (jms) applications that loose or vanish messages on their way for uncaught exceptions or other bugs.
Which JMS implementation? Sun sells reliable queue which can't lose messages. Perhaps you just purchased a cheesy JMS-compliant product. IBM's MQ is extremely reliable, and there are JMS libraries to access it.
Queues tend to fill up. Db storage is virtually infinite, instead.
Ummm... If your queue fills up, it sounds like something is broken. If your apps crash, that's not a good thing, and queues have little to do with that. If you've purchased a really poor JMS implementation, I can see where you might be unhappy with it. It's a competitive market-place. Find a better queue manager. Sun's JCAPS has a really good queue manager, formerly the SeeBeyond message queue.
Tables are easily accessible, while you have to use esotic instruments to read from a queue.
That doesn't fit with my experience. Tables are accessed through this peculiar "other language" (SQL), and requires that I be aware of structure mappings from tables to objects and data type mappings from VARCHAR2 to String. Further, I have to use some kind of access layer (JDBC or an ORM which uses JDBC). That seems very, very complex. A queue is accessed through MessageConsumers and MessageProducers using simple sends and receives.
It sounds as though the problems you've experienced are not inherent to messaging, but rather are artifacts of poorly-implemented messaging systems. Is building messaging systems harder than building database systems? Yes, if all you ever do is build database systems.
Losing messages to uncaught exceptions? That's hardly the fault of the message queue. The applications you're using are poorly engineered. They're removing messages from the queue before processing completes. They're not using transactions, or journalling.
Message queues fill up while DB storage is "virtually infinite"? You talk as though managing disk space were something that databases didn't require. Message queue servers require administration, just like database servers do.
Esoteric instruments to read from a queue? Maybe if you find asynchronous methods esoteric. Maybe if you find serialization and deserialization esoteric. (At least, those are the things I found esoteric when I was learning messaging. Like many seemingly-esoteric technologies, they're actually quite mundane once you understand them, and understanding them is an important part of the seasoned developer's education.)
Aspects of messaging that make it superior to databases:
Asynchronous processing. Message queues notify waiting processes when new messages arrive. To accomplish this functionality in a database, the waiting processes have to poll the database.
Separation of concerns. The communications channel is decoupled from the implementation details of the message content. Only the sender and the receiver need to know anything about the format of the data stream within a given message.
Fault-tolerance.. Messaging can function when connections between servers are intermittent. Message queues can store messages locally and only forward them to remote servers when the connection is live.
Systems integration. In the Windows world, at least, messaging is built into the operating system. It uses the OS's security model, it's managed through the OS's tools, etc.
If you don't need these things, you probably don't need messaging.
Here's a simple example of an application for messaging: I'm building a system right now where users, distributed across multiple networks, are entering fairly intricate sets of transactions that are used to produce printed output. Output generation is computationally expensive and not part of their workflow; i.e. the users don't care when the output gets generated, just that it does.
So we serialize the transactions into a message and drop it in a queue. A process running on a server grabs messages from the queue, produces the output, and stores the output in an imaging system.
If we used a database as our message store, we'd have to come up with a schema to store a transaction format that right now only the sender and receiver care about, we'd need to make sure every workstation on the network had permanent persistent connections to the database server, we'd have no capacity to distribute this transaction load across multiple servers, and our output server would have to query the database thousands of times a day waiting to see if there were new jobs to process.
Queues provide reliable messaging. The store-and-forward, disconnected nature of queueing make it much more scalable than databases, not to mention more robust.
And queues shouldn't really be used for permanent storage of information - it is best to think of them as temporary inboxes, unlike databases.

Resources